References
- Appell J., De Pascale E., Vignoli A. Nonlinear Spectral Theory. In:
Appell J. (Ed.) Germany De Gruyter Series in Nonlinear Analysis and
Applications, 10. Walter de Gruyter, Germany, 2004.
- Appell J., Dörfner M. Some spectral theory for nonlinear
operators. Nonlinear Anal. 1997, 28 (12),
1955–1976. doi:10.1016/S0362-546X(96)00040-5
- Armstrong S.N. Principal eigenvalues and an anti-maximum
principle for homogeneous fully nonlinear elliptic equations. J.
Differential Equations 2009, 246 (7), 2958–2987.
doi:10.1016/j.jde.2008.10.026
- Azzollini A., d’Avenia P., Pomponio A. Multiple critical points
for a class of nonlinear functionals. Ann. Mat. Pura Appl. (4)
2011, 190, 507–523.
- Barroso C.S. Semilinear Elliptic Equations and Fixed Points.
Proc. Amer. Math. Soc. 2004, 133 (3), 745–749.
doi:10.1090/S0002-9939-04-07718-4
- Berger M.S. A Strum-Liouville theorem for nonlinear elliptic
partial differential equations. Ann. Sc. Norm. Super. Pisa Cl. Sci.
(5) 1966, 20 (3), 543–582.
- Brezis H. Functional analysis, Sobolev spaces and partial
differential equations. In: Berestycki N., Casacuberta C., Greenlees J.,
MacIntyre A., Sabbah C., Süli E. (Eds.) Universitext. Springer, New
York, 2011.
- Brézis H. Équations et inéquations non linéaires dans les espaces
vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 1968,
18 (1), 115–175. (in French)
- Browder F.E. Nonlinear Eigenvalue Problems and Galerkin
Approximations. Bull. Amer. Math. Soc. 1968, 74,
651–656.
- Browder F.E. Variational methods for nonlinear elliptic
eigenvalue problems. Bull. Amer. Math. Soc. 1965,
71, 176–183. doi:10.1090/S0002-9904-1965-11275-7
- Browder F.E. Infinite dimensional manifolds and nonlinear
elliptic eigenvalue problems. Ann. of Math. (2) 1965,
82, 459–477.
- Bungert L., Burger M., Chambolle A., Novaga M. Nonlinear Spectral
Decompositions by Gradient Flows of One-Homogeneous Functionals.
Anal. PDE 2021, 14 (3), 823–860.
doi:10.2140/apde.2021.14.823
- Calamai A., Furi M., Vignoli A. A new spectrum for nonlinear
operators in Banach spaces. Nonlinear Funct. Anal. Appl. 2009,
14 (2), 317–347. doi:10.48550/arXiv.1005.1819
- Chipot M., Weissler F. On the Elliptic Problem \(\Delta u-\left\vert \nabla u\right\vert
^{q}+\lambda u^{p}=0\). In: Ni W.M., Peletier L.A., Serrin
J. Nonliner Diffusion Equations and their equilibruim states I.
Berkeley, CA, Math Sci. Res. Inst. Publ. 1986, 12,
Springer, New York, 237–243.
- Costea N., Mihăilescu M. Nonlinear, degenerate and singular
eigenvalue problems on \(R^{n}\).
Nonlinear Anal. 2009, 71 (3–4), 1153–1159.
doi:10.1016/j.na.2008.11.041
- Crandal M.G., Rabinowitz P.H. Bifurcation from simple
eigenvalues. J. Funct. Anal. 1971, 8 (2), 321–340.
doi:10.1016/0022-1236(71)90015-2
- Dugundji J. An extension of Tietze’s theorem. Pacific J.
Math. 1951, 1 (3), 353–367.
doi:10.2140/pjm.1951.1.353
- Feng W. A new spectral theory for nonlinear operators and its
applications. Abstr. Appl. Anal. 1997, 2 (1–2),
163–183.
- Furi M., Martelli M., Vignoli A. Contributions to spectral theory
for nonlinear operators in Banach spaces. Ann. Mat. Pura Appl. (4)
1978, 118, 229–294. doi:10.1007/BF02415132
- Hildebrandt S. Über die Lösung nichtlinearer Eigenwertaufgaben
mit der Gölerkinverfahren. Math. Z. 1967, 101,
255–264. (in German)
- Kang Sh., Zhang Y., Feng W. Nonlinear Spectrum and Fixed Point
Index for a Class of Decomposable Operators. Mathematics 2021,
9 (3), 278. doi:10.3390/math9030278
- Kachurovskij R.I. Regular points, spectrum and eigenfunctions of
nonlinear operators. Dokl. Akad. Nauk USSR 1969,
188, 274–277. (translation of Soviet Math. Dokl. 1969,
10, 1101–1105. (in Russian))
- Keller J.B., Antman S. Bifurcation Theory and Nonlinear Eigenvalue
Problems. Benjamin, New York, 1969.
- Lindqvist P. On the equation \(\mathrm{div}\left( \left\vert \nabla u\right\vert
^{p-2}\nabla u\right) +\lambda \left\vert
u\right\vert^{p-2}u=0\). Proc. Amer. Math. Soc. 1990,
109 (1), 157–164.
- Lopez-Gomez J. Spectral Theory and Nonlinear Functional Analysis.
Chapman and Hall/CRC, New York, 2001. doi:10.1201/9781420035506
- Neuberger J.W. Existence of a spectrum for nonlinear
transformations. Pacific J. Math. 1969, 31 (1),
157–159. doi:10.2140/pjm.1969.31.157
- Rabinowitz P.H. Some global results for nonlinear eigenvalue
problems. J. Funct. Anal. 1971, 7, 487–513. doi:10.1016/0022-1236(71)90030-9
- Rhodius A. Der numerische Wertebereich und die Lösbarkeit
linearer und nichtlinearer Operatorengleichungen. Math. Nachr.
1977, 79 (1), 343–360. (in German)
doi:10.1002/mana.19770790137
- Santucci P., Väth M. On the definition of eigenvalues for
nonlinear operators. Nonlinear Anal. 2000, 40
(1–8), 565–576. doi:10.1016/S0362-546X(00)85034-8
- Soltanov K.N. Nonlinear mappings and the solvability of nonlinear
equations. Soveit. Math. Dokl. 1987, 34 (1),
242–246.
- Soltanov K.N. Nonlinear Operators, Fixed-Point Theorems, Nonlinear
Equations. In: Mityushev V.V., Ruzhansky M.V. (Eds.) Trends in
Mathematics, Current Trends in Analysis and Its Applications, Proc. of
the 9th ISAAC Congress, Krakow, Poland, 2013, Springer, 2015, 347–360.
doi:10.1007/978-3-319-12577-0_41
- Soltanov K.N. Some applications of nonlinear analysis to differential
equations. ELM, Baku, 2002. (in Russian)
- Soltanov K.N. On equations with continuous mappings in Banach
spaces. Funct. Anal. Appl. 1999, 33 (1),
76–81.
- Soltanov K.N. On semi-continuous mappings, equations and
inclusions in the Banach space. Hacet. J. Math. Stat. 2008,
37 (1), 9–24.
- Soltanov K.N. Perturbation of the mapping and solvability
theorems in the Banach space. Nonlinear Anal. 2010,
72, 164–175. doi:10.1016/J.NA.2009.06.067
- Soltanov K.N. On noncoercive semilinear equations. Nonlinear
Anal. Hybrid Syst. 2008, 2 (2), 344–358.
- Vainberg M.M. Variational Methods for the investigation of non-linear
operators. GITTL, Moscow, 1959.
- Zeidler E. Nolinear Functional Analysis and its Applications II/B:
Nonlinaer Monotone Operators. Springer-Verlag, Berlin, 1990.
- Huang Y.Xi. On Eigenvalue Problems of the p-Laplacian with
Neumann Boundary Conditions. Proc. Amer. Math. Soc. 1990,
109 (1), 177–184. doi:10.2307/2048377