References
- Ahmadi O., Shparlinski I.E., Voloch J.F. Multiplicative order of
Gauss periods. Int. J. Number Theory 2010,
6 (4), 877–882. doi:10.1142/S1793042110003290
- Andrews G.E. The theory of partitions. Encyclopedia of Mathematics
and its Applications Vol. 2, Addison-Wesley Publishing Co., Reading,
Mass.-London-Amsterdam, 1976.
- Berrizbeitia P. Sharpening “PRIMES is in \(P\)” for a large family of
numbers. Math. Comp. 2005, 74 (252), 2043–2059.
doi:10.1090/S0025-5718-05-01727-8
- Cheng Q. On the construction of finite field elements of large
order. Finite Fields Appl. 2005, 11 (3), 358–366.
doi:10.1016/j.ffa.2005.06.001
- Gao S. Elements of provable high orders in finite fields.
Proc. Amer. Math. Soc. 1999, 127 (6), 1615–1623.
doi:10.1090/S0002-9939-99-04795-4
- von zur Gathen J., Shparlinski I. Orders of Gauss
periods in finite fields. Appl. Algebra Engrg. Comm. Comput. 1998,
9 (1), 15–24. doi:10.1007/s002000050093
- Granville A. It is easy to determine whether a given integer is
prime. Bull. Amer. Math. Soc. (N.S.) 2005, 42 (1),
3–38. doi:10.1090/S0273-0979-04-01037-7
- Maróti A. On elementary lower bounds for the partition
function. Integers 2003, 3, 1–9.
- Brochero M.F.E., Reis L. Elements of high order in Artin-Schreier
extensions of finite fields \({\mathbb
F}_q\). Finite Fields Appl. 2016,
41, 24–33. doi:10.1016/j.ffa.2016.05.002
- Gary L. Mullen, Panario D. Handbook of finite fields. Discrete
Mathematics and its Applications (Boca Raton). In: Mullen G. L., CRC
Press, Boca Raton, FL, 2013. doi:10.1201/b15006
- Panario D., Thomson D. Efficient \(p\)th root computations in finite
fields of characteristic \(p\). Des. Codes Cryptogr. 2009,
50 (3), 351–358. doi:10.1007/s10623-008-9236-0
- Popovych R. Elements of high order in finite fields of the
form\(F_q[x]/(x^m-a)\). Finite Fields
Appl. 2013, 19, 86–92.
doi:10.1016/j.ffa.2012.10.006
- Popovych R. Elements of high order in finite fields of the form
\(F_q[x]/\Phi_r(x)\).
Finite Fields Appl. 2012, 18 (4), 700–710.
doi:10.1016/j.ffa.2012.01.003
- Popovych R. Sharpening of the explicit lower bounds for the order
of elements in finite field extensions based on cyclotomic
polynomials. Ukrainian Math. J. 2014, 66 (6),
916–927. doi:10.1007/s11253-014-0981-0
- Popovych R. On elements of high order in general finite
fields. Algebra Discrete Math. 2014, 18 (2),
295–300.
- Popovych R. Lower bound on product of binomial coefficients.
Bul. Acad. Ştiinţe Repub. Mold. Mat. 2015, 2 (78),
21–26.
- Popovych R., Skuratovskii R. Normal high order elements in finite
field extensions based on the cyclotomic polynomials. Algebra
Discrete Math. 2020, 29 (2), 241–248.
doi:10.12958/adm1117
- Voloch J.F. Elements of high order on finite fields from elliptic
curves. Bull. Aust. Math. Soc. 2010, 81 (3),
425–429. doi:10.1017/S0004972709001075