References

  1. Abbassi M.T.K. Note on the classification theorems of \(g\)-natural metrics on the tangent bundle of a Riemannian manifold \((M,g)\). Comment. Math. Univ. Carolin. 2004, 45 (4), 591–596.
  2. Altunbas M., Simsek R., Gezer A. Some harmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2020, 82 (2), 37–42.
  3. Altunbas M., Simsek R., Gezer A. A study concerning Berger type deformed Sasaki metric on the tangent bundle. Zh. Mat. Fiz. Anal. Geom. 2019, 15 (4), 435–447. doi:10.15407/mag15.04.435
  4. Balashchenko V.V., Samsonov A.S. Nearly Kähler and Hermitian \(f\)-Structures on Homogeneous \(k\)-Symmetric Spaces. Dokl. Math. 2010, 81 (3), 386–389. doi:10.1134/S1064562410030130
  5. Balashchenko V.V. Invariant \(f\)-structures in generalized Hermitian geometry. Univ. Belgrade Fac. Math., Belgrade, 2006, 5–27.
  6. Balashchenko V.V. Canonical \(f\)-structures of hyperbolic type on regular-spaces. Russian Math. Surveys 1998, 53, 861–874.
  7. Balkana Y.S., Uddin S., Stankovic M.S., Alkhaldid A.H. A new class of \(f\)-structures satisfying \(f^{3}-f=0\). Filomat 2018, 32 (17), 5919–5929.
  8. Bureš J., Vanžura J. Metric polynomial structures. Kodai Math. J. 1976, 27 (3), 345–352.
  9. Chen B.Y., Nagano T. Harmonic metrics, harmonic tensors and Gauss maps. J. Math. Soc. Japan 1984, 36 (2), 295–313. doi:10.2969/jmsj/03620295
  10. Djaa N.E., Zagane A. On the geodesics of deformed Sasaki metric. Turkish J. Math. 2022, 46 (6), 2121–2140. doi:10.55730/1300-0098.3258
  11. Dombrowski P. On the geometry of the tangent bundle. J. Reine Angew. Math. 1962, 210, 73–88.
  12. Druţă-Romaniuc S.L. General natural \((\alpha, \varepsilon)\)-structures. Mediterr. J. Math. 2018, 15, atricle number 228. doi:10.1007/S00009-018-1271-0
  13. Eells J., Lemaire L. Selected topics in harmonic maps. Conf. Board of the Math. Sci. A.M.S. 1983, 50, 85–95.
  14. Ells J., Lemaire L. Another report on harmonic maps. Bull. Lond. Math. Soc. 1988, 20, 385–524. doi:10.1112/blms/20.5.385
  15. Eells J., Sampson J.H., Sampson Jr. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 1964, 86, 109–160.
  16. Ishihara T. Harmonic sections of tangent bundles. J. Math. Tokushima Univ. 1979, 13, 23–27.
  17. Konderak J.J. On harmonic vector fields. Publ. Mat. 1992, 36 (1), 217–228.
  18. Kowalski O., Sekizawa M. Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – A classification. Bull. Tokyo Gakugei Univ. 1988, 40 (4), 1–29.
  19. Pusic N. On quarter-symmetric metric connections on a hyperbolic Kaehlerian space. Publ. Inst. Math. (Beograd) (N.S.) 2003, 73 (87), 73–80.
  20. Opozda B. The \(f\)-sectional curvature of \(f\)-Kaehlerian manifolds. Ann. Polon. Math. 1983, 43 (2), 141–150.
  21. Oproiu V. A generalization of natural almost Hermitian structures on the tangent bundles. Math. J. Toyama Univ. 1999, 22, 1–14.
  22. Vanzura J. Integrability conditions for polynomial structures. Kodai Math. J. 1976, 27 (1–2), 42–50.
  23. Yano K., Ishihara S. Tangent and cotangent bundles. Marcel Dekker. INC., New York, 1973. doi:10.1112/blms/7.2.218
  24. Yampolsky A. On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kählerian manifold. Zh. Mat. Fiz. Anal. Geom. 2012, 8 (2), 177–189.
  25. Zagane A., Djaa M. On geodesics of warped Sasaki metric. Math. Sci. Appl. 2017, 5 (1), 85–92. doi:10.36753/mathenot.421709