References
- Abbassi M.T.K. Note on the classification theorems of \(g\)-natural metrics on the tangent bundle
of a Riemannian manifold \((M,g)\). Comment. Math. Univ. Carolin.
2004, 45 (4), 591–596.
- Altunbas M., Simsek R., Gezer A. Some harmonic problems on the
tangent bundle with a Berger-type deformed Sasaki metric. Politehn.
Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2020,
82 (2), 37–42.
- Altunbas M., Simsek R., Gezer A. A study concerning Berger type
deformed Sasaki metric on the tangent bundle. Zh. Mat. Fiz. Anal.
Geom. 2019, 15 (4), 435–447.
doi:10.15407/mag15.04.435
- Balashchenko V.V., Samsonov A.S. Nearly Kähler and Hermitian
\(f\)-Structures on Homogeneous \(k\)-Symmetric Spaces. Dokl. Math.
2010, 81 (3), 386–389.
doi:10.1134/S1064562410030130
- Balashchenko V.V. Invariant \(f\)-structures in generalized Hermitian
geometry. Univ. Belgrade Fac. Math., Belgrade, 2006, 5–27.
- Balashchenko V.V. Canonical \(f\)-structures of hyperbolic type on
regular-spaces. Russian Math. Surveys 1998, 53,
861–874.
- Balkana Y.S., Uddin S., Stankovic M.S., Alkhaldid A.H. A new
class of \(f\)-structures satisfying
\(f^{3}-f=0\). Filomat 2018,
32 (17), 5919–5929.
- Bureš J., Vanžura J. Metric polynomial structures. Kodai
Math. J. 1976, 27 (3), 345–352.
- Chen B.Y., Nagano T. Harmonic metrics, harmonic tensors and Gauss
maps. J. Math. Soc. Japan 1984, 36 (2), 295–313.
doi:10.2969/jmsj/03620295
- Djaa N.E., Zagane A. On the geodesics of deformed Sasaki
metric. Turkish J. Math. 2022, 46 (6), 2121–2140.
doi:10.55730/1300-0098.3258
- Dombrowski P. On the geometry of the tangent bundle. J.
Reine Angew. Math. 1962, 210, 73–88.
- Druţă-Romaniuc S.L. General natural \((\alpha, \varepsilon)\)-structures.
Mediterr. J. Math. 2018, 15, atricle number 228.
doi:10.1007/S00009-018-1271-0
- Eells J., Lemaire L. Selected topics in harmonic maps. Conf.
Board of the Math. Sci. A.M.S. 1983, 50, 85–95.
- Ells J., Lemaire L. Another report on harmonic maps. Bull.
Lond. Math. Soc. 1988, 20, 385–524. doi:10.1112/blms/20.5.385
- Eells J., Sampson J.H., Sampson Jr. Harmonic mappings of
Riemannian manifolds. Amer. J. Math. 1964, 86,
109–160.
- Ishihara T. Harmonic sections of tangent bundles. J. Math.
Tokushima Univ. 1979, 13, 23–27.
- Konderak J.J. On harmonic vector fields. Publ. Mat. 1992,
36 (1), 217–228.
- Kowalski O., Sekizawa M. Natural transformations of Riemannian
metrics on manifolds to metrics on tangent bundles – A
classification. Bull. Tokyo Gakugei Univ. 1988, 40
(4), 1–29.
- Pusic N. On quarter-symmetric metric connections on a hyperbolic
Kaehlerian space. Publ. Inst. Math. (Beograd) (N.S.) 2003,
73 (87), 73–80.
- Opozda B. The \(f\)-sectional
curvature of \(f\)-Kaehlerian
manifolds. Ann. Polon. Math. 1983, 43 (2),
141–150.
- Oproiu V. A generalization of natural almost Hermitian structures
on the tangent bundles. Math. J. Toyama Univ. 1999,
22, 1–14.
- Vanzura J. Integrability conditions for polynomial
structures. Kodai Math. J. 1976, 27 (1–2),
42–50.
- Yano K., Ishihara S. Tangent and cotangent bundles. Marcel Dekker.
INC., New York, 1973. doi:10.1112/blms/7.2.218
- Yampolsky A. On geodesics of tangent bundle with fiberwise
deformed Sasaki metric over Kählerian manifold. Zh. Mat. Fiz. Anal.
Geom. 2012, 8 (2), 177–189.
- Zagane A., Djaa M. On geodesics of warped Sasaki metric.
Math. Sci. Appl. 2017, 5 (1), 85–92. doi:10.36753/mathenot.421709