References
- Akishev G.A. The ortho-diameters of Nikolskii and Besov classes
in the Lorentz spaces. Russian Math. (Iz. VUZ) 2009,
53 (2), 21–29. doi:10.3103/S1066369X09020029
(translation of Izv. Vyssh. Uchebn. Zaved. Mat. 2009,
2, 25–33. (in Russian))
- Amanov T.I. Representation and embedding theorems for function
spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and
\(S^{(r)}_{p,\theta^*}B\), \((0\leq x_j\leq2\pi\); \(j=1,\ldots,n)\). Tr. Mat. Inst.
Steklova 1965, 77, 5–34. (in Russian)
- Andrianov A.V., Temlyakov V.N. On two methods of generalization
of properties of univariate function systems to their tensor
product. Proc. Steklov Inst. Math. 1997, 219,
25–35. (translation of Tr. Mat. Inst. Steklova 1997,
219, 32–43. (in Russian))
- Balgimbayeva S.A., Smirnov T.I. Estimates of the Fourier widths
of the classes of periodic functions with given majorant of the mixed
modulus of smoothness. Sib. Math. J. 2018, 59 (2),
217–230. doi:10.1134/S0037446618020040 (translation of Sibirsk. Mat. Zh.
2018, 59 (2), 277–292. doi:10.17377/smzh.2018.59.204
(in Russian))
- Bari N.K., Stechkin S.B. The best approximations and differential
properties of two conjugate functions. Trans. Moscow Math. Soc.
1956, 5, 483–522. (in Russian)
- Bazarkhanov D.B. Estimates of the Fourier widths of classes of
Nikolskii-Besov and Lizorkin-Triebel types of periodic functions of
several variables. Math. Notes 2010, 87 (1-2),
281–284. doi:10.1134/S0001434610010359 (translation of Mat. Zametki
2010, 87 (2), 305–308. doi:10.4213/mzm8592 (in
Russian))
- Belinskii E.S. Approximation by a “floating” system of
exponentials on classes of periodic functions with a bounded mixed
derivative. Research on the theory of functions of many real
variables: Proc. of Yaroslavl’ State University 1988, 16–33. (in
Russian).
- Belinsky E.S. Estimates of entropy numbers and Gaussian measures
for classes of functions with bounded mixed derivative. J. Approx.
Theory 1998, 93, 114–127. doi:10.1006/jath.1997.3157
- Bernstein S.N. Collected work, Vol. II. Constructive theory of
functions (1931-1953). Nauka, Moscow, 1954. (in Russian)
- D\(\rm\tilde{u}\)ng D.
Approximation by trigonometric polynomials of functions of several
variables on the torus. Sb. Math. 1988, 59 (1),
247–267. doi:10.1070/SM1988v059n01ABEH003134 (translation of Mat. Sb.
1986, 131(173) (2), 251–271. (in Russian))
- D\(\rm\tilde{u}\)ng D., Temlyakov
V.N., Ullrich T. Hyperbolic Cross Approximation. Birkhauser, Basel,
2018.
- Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of
approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of several variables with given majorant of mixed moduli of
continuity in the space \(L_{q}\).
Carpathian Math. Publ. 2019, 11 (2), 281–295.
doi:10.15330/cmp.11.2.281-295
- Fedunyk-Yaremchuk O.V., Hembars’kyi M.V., Hembars’ka S.B.
Approximative characteristics of the Nikol’skii-Besov-type classes
of periodic functions in the space \(B_{\infty,1}\). Carpathian Math. Publ.
2020, 12 (2), 376–391.
doi:10.15330/cmp.12.2.376-391
- Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative
characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic
functions of many variables with given majorant of mixed continuity
moduli in the space \(L_{\infty}\). J. Math. Sci. (N.Y.)
2018, 231 (1), 28–40. doi:10.1007/s10958-018-3803-3
(translation of Ukr. Mat. Visn. 2017, 14 (3), 345–360.
(in Ukrainian))
- Galeev E.M. Orders of the orthoprojection widths of classes of
periodic functions of one and of several variables. Math. Notes
1988, 43 (2), 110–118. doi:10.1007/BF01152547
(translation of Mat. Zametki 1988, 43 (2), 197–211. (in
Russian))
- Hembars’kyi M.V., Hembars’ka S.B. Approximate characteristics of
the classes \(B^{\Omega}_{p,\theta}\)
of periodic functions of one variable and many ones. J. Math. Sci.
(N.Y.) 2019, 242 (6), 820–832.
doi:10.1007/s10958-019-04518-0 (translation of Ukr. Mat. Visn. 2019,
16 (1), 88–104. (in Ukrainian))
- Hembars’kyi M.V., Hembars’ka S.B., Solich K.V. The best
approximations and widths of the classes of periodic functions of one
and several variables in the space \(B_{\infty,1}\). Mat. Stud. 2019,
51 (1), 74–85. doi:10.15330/ms.51.1.74-85 (in
Ukrainian)
- Konograi A.F., Stasyuk S.A. Best trigonometric approximations of
the classes \(B^{\Omega}_{p,\theta}\)
of periodic functions of many variables. Approx. Theory of
Functions and Related Problems: Proc. Inst. Math. NAS Ukr. 2007,
4 (1), 151–171. (in Ukrainian)
- Lizorkin P.I., Nikol’skii S.M. Function spaces of mixed
smoothness from the decomposition point of view. Proc. Steklov
Inst. Math. 1990, 187, 163–184. (translation of Tr.
Mat. Inst. Steklova 1989, 187, 143–161. (in
Russian))
- Nikol’skii S.M. Functions with dominant mixed derivative,
satisfying a multiple Holder condition. Sibirsk. Mat. Zh. 1963,
4 (6), 1342–1364. (in Russian)
- Pustovoitov N.N. Representation and approximation of periodic
functions of several variables with given mixed modulus of
continuity. Anal. Math. 1994, 20, 35–48.
doi:10.1007/BF01908917 (in Russian)
- Pustovoitov N.N. On the widths of multivariate periodic classes
of functions whose mixed moduli of continuity are bounded by a product
of power-and logarithmic-type functions. Anal. Math. 2008,
34, 187–224. doi:10.1007/s10476-008-0303-6 (in
Russian)
- Romanyuk A.S. Approximative characteristics of the classes of
periodic functions of many variables. Proc. Inst. Math. NAS Ukr., Kiev,
2012, 93. (in Russian)
- Romanyuk A.S. Approximation of ñlasses of functions of many
variables by their orthogonal projections onto subspaces of
trigonometric polynomials. Ukrainian Math. J. 1996,
48 (1), 90–100. doi:10.1007/BF02390986 (translation of
Ukrain. Mat. Zh. 1996, 48 (1), 80–89. (in Russian))
- Romanyuk A.S. Approximation of classes of periodic functions in
several variables. Math. Notes 2002, 71 (1),
98–109. doi:10.1023/A:1013982425195 (translation of Mat. Zametki 2002,
71 (1), 109–121. doi:10.4213/mzm332 (in Russian))
- Romanyuk A.S. Best trigonometric approximations for some classes
of periodic functions of several variables in the uniform metric.
Math. Notes 2007, 82 (2), 216–228.
doi:10.1134/S0001434607070279 (translation of Mat. Zametki 2007,
82 (2), 247–261. doi:10.4213/mzm3797 (in Russian))
- Romanyuk A.S. Bilinear and trigonometric approximations of
periodic functions of several variables of Besov classes \(B^{r}_{p,\theta}\). Izv. Math. 2006,
70 (2), 277–306. doi:10.1070/IM2006v070n02ABEH002313
(translation of Izv. Ross. Akad. Nauk Ser. Mat. 2006,
70 (2), 69–98. doi:10.4213/im558 (in Russian))
- Romanyuk A.S. Diameters and best approximation of the classes
\(B^r_{p,\theta}\) of periodic
functions of several variables. Anal. Math. 2011,
37, 181–213. doi:10.1007/s10476-011-0303-9 (in
Russian)
- Romanyuk A.S. Estimates for approximation characteristics of the
Besov classes \(B^{r}_{p,\theta}\) of
periodic functions of many variables in the space \(L_q\). I. Ukrainian Math. J. 2001,
53 (9), 1473–1482. doi:10.1023/A:1014314708184
(translation of Ukrain. Mat. Zh. 2001, 53 (9),
1224–1231. (in Russian))
- Romanyuk A.S. Estimates for approximation characteristics of the
Besov classes \(B^{r}_{p,\theta}\) of
periodic functions of many variables in the space \(L_q\). II. Ukrainian Math. J. 2001,
53 (10), 1703–1711. doi:10.1023/A:1015200128349
(translation of Ukrain. Mat. Zh. 2001, 53 (10),
1402–1408. (in Russian))
- Romanyuk A.S., Romanyuk V.S. Approximating characteristics of the
classes of periodic multivariate functions in the space \(B_{\infty,1}\). Ukrainian Math. J.
2019, 71 (2), 308–321. doi:10.1007/s11253-019-01646-3
(translation of Ukrain. Mat. Zh. 2019, 71 (2), 271–282.
(in Ukrainian))
- Romanyuk A.S., Romanyuk V.S. Estimation of some approximating
characteristics of the classes of periodic functions of one and many
variables. Ukrainian Math. J. 2020, 71 (8),
1257–1272. doi:10.1007/s11253-019-01711-x (translation of Ukrain. Mat.
Zh. 2019, 71 (8), 1102–1115. (in Ukrainian))
- Romanyuk A.S., Yanchenko S. Ya. Approximation of classes of
periodic functions of one and many variables from the Nikol’skii-Besov
and Sobolev spaces. Ukrain. Mat. Zh. 2022, 74 (6),
857–868. (in Ukrainian)
- Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the
classes \(B^{\Omega}_{p,\theta}\) of
periodic functions of many variables. Ukrainian Math. J. 2006,
58 (5), 779–793. doi:10.1007/s11253-006-0101-x
(translation of Ukrain. Mat. Zh. 2006, 58 (5), 692–704.
(in Ukrainian))
- Stechkin S.B. On the order of the best approximations of
continuous functions. Izv. Ross. Akad. Nauk Ser. Mat. 1951,
15 (3), 219–242. (in Russian)
- Temlyakov V.N. Approximation of Periodic Functions. Nova Science
Publishers Inc., New York, 1993.
- Temlyakov V.N. Approximation of functions with bounded mixed
derivative. Proc. Steklov Inst. Math. 1989, 178,
1–121. (translation of Tr. Mat. Inst. Steklova 1986,
178, 3–113. (in Russian))
- Temlyakov V.N. Diameters of some classes of functions of several
variables. Dokl. Akad. Nauk 1982, 267 (2),
314–317. (in Russian)
- Temlyakov V.N. Estimates of the asymptotic characteristics of
classes of functions with bounded mixed derivative or difference.
Proc. Steklov Inst. Math. 1990, 189, 161–197.
(translation of Tr. Mat. Inst. Steklova 1989, 189,
138–168. (in Russian))
- Yongsheng S., Heping W. Representation and approximation of
multivariate periodic functions with bounded mixed moduli of
smoothness. Tr. Mat. Inst. Steklova 1997, 219,
356–377.
- Zaderey P.V., Hembars’ka S.B. Best orthogonal trigonometric
approximations of the Nikol’skii-Besov-type classes of periodic
functions in the space \(B_{\infty,1}\). Ukrain. Mat. Zh. 2022,
74 (6), 784–795. (in Ukrainian)