References

  1. Aubin J.P., Cellina A. Differential Inclusion. Springer-Verlag, Berlin, 1984.
  2. Al-Issa Sh.M., El-Sayed A.M.A. Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders. Comment. Math. 2009, 49 (2), 171–177.
  3. Al-Issa Sh.M., Mawed N.M. Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra. J. Nonlinear Sci. Appl. 2021, 14 (4), 181–195. doi:10.22436/jnsa.014.04.01
  4. Caputo M. Linear models of dissipation whose \(Q\) is almost frequency independent II. Geophys. J. R. Astr. Soc. 1967, 13, 529–539. doi:10.1111/j.1365-246X.1967.tb02303.x
  5. Curtain R.F., Pritchard A.J. Functional Analysis in Modern Applied Mathematics. Acad. Press, London, 1977.
  6. Cellina A., Solimini S. Continuous extension of selection. Bull. Pol. Acad. Sci. Math. 1978, 35 (9), 12–18.
  7. El-Sayed A.M.A., Hamdallah E.M.A., Ba-Ali M.M.S. Qualitative Study for a Delay Quadratic Functional Integro-Differential Equation of Arbitrary (Fractional) Orders. Symmetry 2022, 14 (4), 784. doi:10.3390/sym14040784
  8. El-Sayed A.M.A., Hashem H., Al-Issa Sh.M. Existence of solutions for an ordinary secondorder hybrid functional differential equation. Adv. Differential Equations 2020, 2020 (1), 296. doi:10.1186/s13662-020-02742-6
  9. El-Sayed A.M.A., Hashem H., Al-Issa Sh.M. An Implicit Hybrid Delay Functional Integral Equation: Existence of Integrable Solutions and Continuous Dependence. Mathematics 2021, 9 (24), 3234. doi:10.3390/math9243234
  10. El-Sayed A.M.A., Al-Issa Sh.M. Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders. Int. J. Differ. Equ. 2019, 18 (1), 1–9.
  11. El-Sayed A.M.A., Al-Issa Sh. M. Monotonic solutions for a quadratic integral equation of fractional order. AIMS Math. 2019, 4 (3), 821–830. doi:10.3934/math.2019.3.821
  12. Kolomogorov A.N., Fomin S.V. Inroductory Real Analysis. Dover Publ. Inc., New York, 1975.
  13. Lakshmikantham V., Leela S. Differential and Integral Inequalities: Ordinary differential equations. In: Mathematics in science and engineering, 55. Academic press, New York-London, 1969.
  14. Podlubny I., EL-Sayed A.M.A. On two defintions of fractional calculus. Preprint UEF 03-69, ISBN 80-7099-252-2. Solvak Academy of science-Institute of Experimental Phys., 1996.
  15. Podlubny I. Fractional Differential Equation. Acad. Press, San Diego-New York-london, 1999.
  16. Srivastava H.M., El-Sayed A.M.A., Gaafar F.M. A Class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions. Symmetry 2018, 10 (10), 508. doi:10.3390/sym10100508
  17. Srivastava H.M., El-Sayed A.M.A., Hashem H.H.G., Al-Issa Sh.M. Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2022, 116 (1), 26. doi:10.1007/s13398-021-01166-5