References
- Aubin J.P., Cellina A. Differential Inclusion. Springer-Verlag,
Berlin, 1984.
- Al-Issa Sh.M., El-Sayed A.M.A. Positive integrable solutions for
nonlinear integral and differential inclusions of
fractional-orders. Comment. Math. 2009, 49 (2),
171–177.
- Al-Issa Sh.M., Mawed N.M. Results on solvability of nonlinear
quadratic integral equations of fractional orders in Banach
algebra. J. Nonlinear Sci. Appl. 2021, 14 (4),
181–195. doi:10.22436/jnsa.014.04.01
- Caputo M. Linear models of dissipation whose \(Q\) is almost frequency independent
II. Geophys. J. R. Astr. Soc. 1967, 13, 529–539.
doi:10.1111/j.1365-246X.1967.tb02303.x
- Curtain R.F., Pritchard A.J. Functional Analysis in Modern Applied
Mathematics. Acad. Press, London, 1977.
- Cellina A., Solimini S. Continuous extension of selection.
Bull. Pol. Acad. Sci. Math. 1978, 35 (9), 12–18.
- El-Sayed A.M.A., Hamdallah E.M.A., Ba-Ali M.M.S. Qualitative
Study for a Delay Quadratic Functional Integro-Differential Equation of
Arbitrary (Fractional) Orders. Symmetry 2022, 14
(4), 784. doi:10.3390/sym14040784
- El-Sayed A.M.A., Hashem H., Al-Issa Sh.M. Existence of solutions
for an ordinary secondorder hybrid functional differential
equation. Adv. Differential Equations 2020, 2020
(1), 296. doi:10.1186/s13662-020-02742-6
- El-Sayed A.M.A., Hashem H., Al-Issa Sh.M. An Implicit Hybrid
Delay Functional Integral Equation: Existence of Integrable Solutions
and Continuous Dependence. Mathematics 2021, 9
(24), 3234. doi:10.3390/math9243234
- El-Sayed A.M.A., Al-Issa Sh.M. Monotonic integrable solution for
a mixed type integral and differential inclusion of fractional
orders. Int. J. Differ. Equ. 2019, 18 (1),
1–9.
- El-Sayed A.M.A., Al-Issa Sh. M. Monotonic solutions for a
quadratic integral equation of fractional order. AIMS Math. 2019,
4 (3), 821–830. doi:10.3934/math.2019.3.821
- Kolomogorov A.N., Fomin S.V. Inroductory Real Analysis. Dover Publ.
Inc., New York, 1975.
- Lakshmikantham V., Leela S. Differential and Integral Inequalities:
Ordinary differential equations. In: Mathematics in science and
engineering, 55. Academic press, New York-London, 1969.
- Podlubny I., EL-Sayed A.M.A. On two defintions of fractional
calculus. Preprint UEF 03-69, ISBN 80-7099-252-2. Solvak Academy of
science-Institute of Experimental Phys., 1996.
- Podlubny I. Fractional Differential Equation. Acad. Press, San
Diego-New York-london, 1999.
- Srivastava H.M., El-Sayed A.M.A., Gaafar F.M. A Class of
nonlinear boundary value problems for an arbitrary fractional-order
differential equation with the Riemann-Stieltjes Functional Integral and
Infinite-Point Boundary Conditions. Symmetry 2018,
10 (10), 508. doi:10.3390/sym10100508
- Srivastava H.M., El-Sayed A.M.A., Hashem H.H.G., Al-Issa Sh.M.
Analytical investigation of nonlinear hybrid implicit functional
differential inclusions of arbitrary fractional orders. Rev. R.
Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2022,
116 (1), 26. doi:10.1007/s13398-021-01166-5