
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2025, 17 (2), 661–678 Карпатськi матем. публ. 2025, Т.17, №2, С.661–678

doi:10.15330/cmp.17.2.661-678

Analytical investigation of a boundary value problem for
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This paper investigates the existence of mild solutions for an initial value problem involv-

ing fractional-order differential inclusions with nonlocal boundary conditions, specifically infinite-

point or Riemann-Stieltjes integral conditions. We establish sufficient conditions for the uniqueness

of the solution and examine its continuous dependence on the given data. To demonstrate the prac-

tical applicability of our findings, we conclude with two illustrative examples.
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1 Introduction

Differential and integral equation models have been instrumental in modeling various phe-

nomena across physical sciences and applied mathematics, particularly in boundary value

problems (BVPs) involving fractional differential equations (see [1, 12]). Fractional differen-

tial equations have gained significant attention in recent years due to their ability to model

memory and hereditary properties in diverse systems, which classical integer-order differen-

tial equations cannot effectively describe [14, 15].

Traditionally, boundary conditions in such problems are imposed locally. However, non-

local conditions are increasingly being utilized because of their precision and applicability in

real-world problems. Nonlocal conditions often provide more accurate measurements com-

pared to local ones, as they incorporate global information about the state of the system across

the domain rather than at discrete points [2, 5]. This shift has led to extensive research on

fractional boundary value problems with nonlocal and resonant boundary conditions.

One key area of interest is the study of fractional BVPs at resonance, where fruitful re-

sults have emerged [4, 6]. In [7], it is examined a class of fractional differential equations with

m-point boundary conditions, and similar work was extended in [8], where fractional-order

three-point BVPs in resonant cases were investigated. Despite these advances, there remains a

scarcity of studies concerning fractional boundary value problems involving Riemann-Stieltjes

integrals, which are important for modeling more complex, real-world systems, where inte-

gration with respect to non-differentiable functions is required. H.M. Srivastava et. al. [16]

explored the Riemann-Stieltjes integral in the context of multi-point boundary conditions, fur-

ther demonstrating its versatility in mathematical modeling.
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Additionally, some authors have examined boundary value problems involving nonlo-

cal, integral, and infinite-point boundary conditions, which expand the scope of applicabil-

ity for fractional differential equations [13, 17]. For example, H.M. Srivastava et. al. [16] ad-

dressed nonlinear BVPs for arbitrary fractional-order differential equations with Riemann-

Stieltjes functional integral and infinite-point boundary conditions, providing a robust frame-

work for solving such problems.

In this paper, we extend these developments by studying the existence of mild solutions for

a functional integro-differential inclusion of the form

cDηµ(r) ∈ Φ1

(

r, Iσφ2

(

r, µ(ϕ(r))
))

, η ∈ (0, 1), r ∈ (0, T], (1)

equipped with Riemann-Stieltjes integro boundary conditions

µ(0) +
∫ T

0
µ(ς)dh(ς) = µ◦, h : [0, T] → R is a nondecreasing function, (2)

or infinite-point boundary conditions given by

µ(0) +
∞

∑
k=1

akµ(τk) = µ◦, ak > 0, τk ∈ (0, T]. (3)

Here, cDσ is the Caputo fractional derivative, and Φ1 : [0, T]× R
+ → P(R) is a set-valued

mapping, where P(R) denotes the family of nonempty subsets of R. The function h(ς) plays a

critical role in defining the nonlocal boundary conditions via the Riemann-Stieltjes integral.

Our approach focuses on reformulating the functional integro-differential inclusion into a

coupled system under several appropriate assumptions for the set-valued function Φ1. We will

first address the continuous solution of problem (1) with the m-point boundary conditions

µ(0) +
m

∑
k=1

akµ(τk) = µ◦, ak > 0, τk ∈ [0, 1]. (4)

We then explore the solutions for BVPs involving the Riemann-Stieltjes integral given by

(1) and (2), as well as BVPs with infinite-point boundary conditions provided by (1) and (3).

Using Schauder’s fixed point theorem, we establish sufficient conditions for the existence of at

least one continuous solution. Notably, our work extends previous results by applying fixed

point theorems in the context of nonlinear fractional differential equations, which have been

widely used in the literature for proving existence and uniqueness of solutions (see [3, 9–11]).

The structure of this paper is as follows. In Section 2, we present our main findings for

the problem (1)–(4), followed by an investigation of BVPs given by (1)–(2) and (1)–(3). We

demonstrate sufficient conditions for the existence of solutions under both Riemann-Stieltjes

functional integral boundary conditions and infinite-point boundary conditions. In Section 3,

we discuss the continuous dependence and uniqueness of solutions. Several examples are

provided in Section 4 to illustrate the application of our findings. Finally, Section 5 concludes

the paper with a summary of our contributions and potential directions for future work.
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2 Existence of a continuous solution to (1) using the m-point boundary con-

ditions (4)

Take into account the following assumptions.

(i) The set-valued map Φ1 : I × R → 2R is continuous and Lipschitzian set-valued map

with a nonempty compact convex subset of 2R
+

, with a Lipschitz constant k > 0, such

that

Hd

(

Φ1(r, µ)− Φ1(r, ν)
)

≤ k|µ − ν|.
Note. The set of Lipschitz selections for Φ1 is not empty and by [1, Section 9, Chapter 1,

Theorem 1] there exists φ1 ∈ Φ1 such that

|φ1(r, µ)− φ1(r, ν)| ≤ k |µ − ν|.

(ii) The function ϕ : I → I is continuous.

(iii) The Caratheodory requirement is satisfied for function φ2 : I × R → R, i.e. φ2 is measur-

able in t for any µ ∈ R and continuous in µ for almost all t ∈ I. There exists a function

a(t) that is measurable, bounded and there is a positive constant b > 0 such that

|φ2(r, µ)| ≤ a(r) + b|µ| ∀ r ∈ I and x ∈ R.

(iv) The following statement is true

[

a
(

|µ◦|+
m

∑
k=1

|ak |
)

+ 1
]

kT < 1,
bTσ

Γ(σ + 1)
< 1, and I

γ
c a(·) ≤ M ∀ γ ≤ σ, c ≥ 0.

Note. Using hypothesis (i), we can infer that the set SΦ1
is nonempty and that there is a

Lipschitzian function φ1 ∈ Φ1 such that |φ1(r, µ)− φ1(r, ν)| ≤ k |µ − ν|, which implies

Dηµ(r) = φ1

(

r, Iσφ2

(

r, µ(ϕ(r))
))

, σ ∈ (0, 1), r ∈ I. (5)

Then the solution of the single-valued problem (5)–(4) is a solution of the inclusion prob-

lem (1)–(4).

Lemma 1. The integral representation of the mild solution of the single-valued problem (5)

with the non-local condition (4) is given by

µ(r) =
1

1 + ∑
m
k=1 ak

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς.

(6)

Proof. We begin by considering the problem (5) with m-point boundary conditions (4). Inte-

grating both sides of (5), we obtain

µ(r) = µ(0) + Iηφ1

(

r, Iσφ2

(

r, µ(ϕ(r))
))

.

When we substitute the value of µ(0) from (4), we get

µ(r) = µ◦ −
m

∑
k=1

akµ(τk) +
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς. (7)



664 Al-Issa Sh.M., Kaddoura I.H., Hamzae H.M.

In fact, when we set t = τk ∈ [0, T] in (7), we obtain

µ(τk) = µ◦ −
m

∑
k=1

akµ(τk) +
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς. (8)

So, we have

µ(τk) = µ(r) +
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

−
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς.

(9)

Substituting (9) in (7), we get

µ(r) = µ◦ −
m

∑
k=1

ak

(

µ(r) +
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

ds

−
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

ds

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς.

As a result, we obtain

(

1 +
m

∑
k=1

ak

)

µ(r) = µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

+
(

1 +
m

∑
k=1

ak

)

∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς,

which is equivalent to (6).

It is obvious from assumption (i), that the mild solution of the single-valued integral equa-

tion (6), where φ1 ∈ SF1
, is a solution to the inclusion (1) with µ(0) + ∑

m
k=1 akx(τk) = µ◦.

It should be noticed that φ1 met the Lipschitz selection |φ1(r, µ)− φ1(r, ν)| ≤ k|µ − ν|. Note

that |φ1(r, µ)| ≤ k|µ|+ φ∗
1 , where φ∗

1 = sup
r∈[0,T] |φ1(r, 0)|.

Let us go on to the next step. Let a = (1 + ∑
m
k=1 ak)

−1 and

ν(r) = Iσφ2

(

r, µ(ϕ(r))
)

, r ∈ I. (10)

Thus, the nonlinear functional integral equation (6) can be expressed as

µ(r) = a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς (11)

for r ∈ I. As a result, the coupled system (10) and (11) and the functional integral equation (6)

are equal.

Now, we investigate the existence of a continuous solution of (6), by obtaining the continu-

ous solution of the coupled system (10) and (11).

Now for the existence of at least one solution, u = (µ, ν), µ, ν ∈ C(I), of the coupled system

(10), (11) we have the following theorem.
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Theorem 1. Assume that assumptions (i)–(iv) hold. Then the coupled system (10), (11) has at

least one continuous solution u = (µ, ν), µ, ν ∈ C(I).

Proof. Let the set Qr be defined by

Qr =
{

u = (µ, ν) ∈ R2, ‖u‖ ≤ r
}

,

where

r = r1 + r2 =
a|µ◦|+

[

a ∑
m
k=1 |ak|+ 1

]

f ∗1 T

1 −
[

a ∑
m
k=1 |ak|+ 1

]

kT
+

(

1 − bTσ

Γ(σ + 1)

)−1
MTσ−γ

Γ(σ − γ + 1)
.

It is clear that the set Qr is nonempty, bounded, closed and convex.

Afterwards, let us indicate by A the operator defined on the space C(I) by

Au(r) = A(µ, ν)(r) =
(

A1ν(r), A2µ(r)
)

,

where

A1ν(r) = a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς, r ∈ I,

A2µ(r) =
∫

r

0

(r− ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς, r ∈ I.

Hence, according to u = (µ, ν) ∈ Qr, we have

|A1ν(r)| =
∣

∣

∣

∣

a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

∣

∣

∣

∣

≤ a|µ◦|+ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
|φ1

(

ς, ν(ς)
)

| dς +
∫ t

0

(t − ς)η−1

Γ(η)
|φ1

(

ς, ν(ς)
)

| ds

≤ a|µ◦|+
[

a
m

∑
k=1

|ak|+ 1

]

(k|ν| + φ∗
1)T

η

Γ(η + 1)
.

Therefore

‖A1ν‖ ≤ a|µ◦|+
[

a
m

∑
k=1

|ak|+ 1

]

(k|ν| + φ∗
1)T

η

Γ(η + 1)
= r1,

r1 =
a|µ◦|+

[

a ∑
m
k=1 |ak |+ 1

] φ∗
1 Tη

Γ(η+1)

1 −
[

a ∑
m
k=1 |ak|+ 1

]

kTη

Γ(η+1)

.

Also

|A2µ(r)| =
∣

∣

∣

∣

∫

r

0

(r− ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

≤
∫

r

0

(r− ς)σ−1

Γ(σ)

∣

∣φ2

(

ς, µ(ϕ(ς))
)
∣

∣ dς ≤
∫

r

0

(r− ς)σ−1

Γ(σ)

[

a(ς) + b
∣

∣µ(ϕ(ς))
∣

∣

]

dς.

Taking supremum over r ∈ I, we obtain

‖A2µ‖ ≤
∫

r

0
a(ς)

(r − ς)σ−1

Γ(σ)
dς +

∫

r

0
b|µ(ϕ(ς))|(r − ς)σ−1

Γ(σ)
dς

≤ Iσa(r) + b r2

∫

r

0

(r− ς)σ−1

Γ(σ)
dς ≤ Iσ−γIγa(r) + b r2 Iσ(r)

≤ M
∫

r

0

(r− ς)σ−γ−1

Γ(σ − γ)
dς + b r2

∫

r

0

(r− ς)σ−1

Γ(σ)
dς ≤ Mr

σ−γ

Γ(σ − γ + 1)
+ b r2

r
σ

Γ(σ + 1)

≤ MTσ−γ

Γ(σ − γ + 1)
+

b r2Tσ

Γ(σ + 1)
= r2, r2 =

(

1 − bTσ

Γ(σ + 1)

)−1
MTσ−γ

Γ(σ − γ + 1)
.
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Now

‖Au‖X = ‖A1ν‖C + ‖A2µ‖C ≤ r1 + r2

≤
a|µ◦|+

[

a ∑
m
k=1 |ak |+ 1

] φ∗
1

Γ(β+1)

1 −
[

a ∑
m
k=1 |ak|+ 1

]

k
Γ(β+1)

+

(

1 − bTσ

Γ(σ + 1)

)−1
MTσ−γ

Γ(σ − γ + 1)
= r.

Hence, the class {Au}, u ∈ Qr, is uniformly bounded for AQr ⊂ Qr.

Currently, for u = (µ, ν) ∈ Qr, for all δ > 0 and for each r1, r2 ∈ [0, T], r1 < r2, such that

|r2 − r1| < δ, we get

|A1ν(r2)−A1ν(r1)|

=

∣

∣

∣

∣

a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r2

0

(r2 − ς)η−1

Γ(η)
f1

(

ς, ν(ς)
)

dς

− a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r1

0

(r1 − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

∣

∣

∣

∣

≤
∫

r2

r1

(r2 − ς)η−1

Γ(η)

∣

∣φ1

(

ς, ν(ς)
)
∣

∣ dς +
∫

r1

0

[

(r2 − ς)η−1

Γ(η)
− (r1 − ς)η−1

Γ(η)

]

∣

∣φ1

(

ς, ν(ς)
)
∣

∣ dς

≤
(

k|ν|+ φ∗
1

) (r2 − r1)
η

Γ(η + 1)
+

(

k|ν| + φ∗
1

)

(−(r2 − r1)
η

Γ(η + 1)
+

r
σ
2

Γ(η + 1)
− r

η
1

Γ(β + 1)

)

≤
(

k|ν|+ φ∗
1

)

(

r
η
2 − r

η
1

Γ(η + 1)

)

and

|A2µ(r2)−A2µ(r1)|

≤
∣

∣

∣

∣

∫

r2

0

(r2 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς −
∫

r1

0

(r1 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

r2

0

(r2 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς −
∫

r1

0

(r2 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

r1

0

(r2 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς −
∫

r1

0

(r1 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

r2

r1

(r2 − ς)σ−1

Γ(α)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

r1

0

(r2 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

r1

0

(r1 − ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς

∣

∣

∣

∣

≤
∫

r2

r1

(r2− ς)σ−1

Γ(σ)

∣

∣φ2

(

ς, µ(ϕ(ς))
)∣

∣ dς +
∫

r1

0

(r2 − ς)σ−1−(r1 − ς)σ−1

Γ(σ)

∣

∣φ2

(

ς, µ(ϕ(ς))
)∣

∣ dς

≤
∫

r2

r1

[

a + b|µ(ϕ(ς))|
] (r2− ς)σ−1

Γ(σ)
dς +

∫

r1

0

[

a + b|µ(ϕ(s))|
] (r2 − ς)σ−1−(r1− ς)σ−1

Γ(σ)
dς

≤(a + br2)
∫

r2

r1

(r2 − ς)σ−1

Γ(σ)
ds + (a + br2)

∫

r1

0

(r2 − ς)σ−1 − (r1 − ς)σ−1

Γ(σ)
dς

≤(a + br2)
(r2 − r1)

σ

Γ(σ + 1)
+ (a + br2)

(−(r2 − r1)
σ

Γ(σ + 1)
+

r
σ
2

Γ(σ + 1)
− r

σ
1

Γ(σ + 1)

)

≤(a + br2)
(rσ

2 − r
σ
1 )

Γ(σ + 1)
.
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For the operator A and u ∈ Qr, we have

Au(r2)− Au(r1) = A(µ, ν)(r2)− A(µ, ν)(r1)

= (A2µ(r2), A1ν(r2))− (A2µ(r1), A1ν(r1))

= (A2µ(r2)− A2µ(r1), A1ν(r2)− A1ν(r1)),

then

|Au(r2)− Au(r1)|X = |A(µ, y)(r2)− A(µ, y)(r1)|X
= |A1ν(r2)− A1ν(r2)|C + |A2µ(r2)− A2µ(r1)|C

= (k|ν| + φ∗
1)
(r

η
2 − r

η
1)

Γ(η + 1)
+ (a + br2)

(rσ
2 − r

σ
1 )

Γ(σ + 1)
.

As a result, the class of functions {Au} is equi-continuous on Qr. The operator A is compact

via the Arzela-Ascoli Theorem [5]. The continuity of A : Qr → Qr still needs to be proven. Let

un = (µn, νn) be a sequence in Qr with xn → µ and yn → y. Since φ2(r, µ(r)) is continuous in

C(I)× R, we obtain that φ2(r, µn(r)) converges to φ2(r, µ(r)), thus φ2(r, µn(ϕ(r))) converges to

φ2(r, µ(ϕ(r))). Using assumptions (iii)–(iv) and applying Lebesgue Dominated Convergence

Theorem, we get

lim
n→∞

∫

r

0

(r− ς)σ−1

Γ(σ)
φ2

(

ς, µn(ϕ(ς))
)

dς =
∫

r

0

(r− ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

dς,

then

lim
n→∞

A2µn(r) =
∫

r

0

(r− ς)σ−1

Γ(σ)
lim

n→∞
φ2

(

ς, µn(ϕ(ς))
)

dς

=
∫

r

0

(r− ς)σ−1

Γ(σ)
φ2

(

ς, µ(ϕ(ς))
)

ds = A2µ(r),

lim
n→∞

A1νn(r) = a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
lim

n→∞
φ1

(

ς, νn(ς)
)

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
lim

n→∞
φ1

(

ς, νn(ς)
)

dς

= a

(

x◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, ν(ς)
)

dς

= A1ν(r).

So,

lim
n→∞

Aun(r) = lim
n→∞

(A1νn(r), A2µn(r))

= ( lim
n→∞

A1νn(r), lim
n→∞

A2µn(r)) = (A1ν(r), A2µ(r)) = Au(r).

Therefore, Aun → Au as n → 1. The operator A is continuous as a result. While all criteria

of the Schauder fixed-point theorem are achieved, we get that A has a fixed point u ∈ Qr.

Hence, the system (11), (10) has at least one continuous solutions u = (µ, ν) ∈ Qr, µ; ν ∈ C(I).

Therefore, there is at least one solution µ ∈ C(I) to the functional integral equation (1).

2.1 Riemann-Stieltjes integral boundary conditions (2)

Let µ ∈ C(I) represent the mild solution to the non-local problem (1)–(4). Let us de-

note ak = h(rk) − h(rk−1). Note, that the function h is nondecreasing and τk ∈ (rk−1, rk) for
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0 = r0 < r1 < r2 < · · · < T. Then the nonlocal condition (4) take the following form

µ(0) +
m

∑
k=1

µ(τk)
(

h(rj)− h(rj−1)
)

= µ◦.

We derive from [15] the continuation of the solution of the nonlocal problem (1)–(4), i.e.

lim
m→∞

m

∑
k=1

µ(τk)
(

h(rj)− h(rj−1)
)

=
∫ T

0
µ(ς) dh(ς).

That is, the non-local conditions (4) is changed to Riemann-Steltjes integral condition

µ(0) + lim
m→∞

m

∑
k=1

µ(τk)
(

h(rj)− h(rj−1)
)

= µ(0) +
∫ T

0
µ(ς) dh(ς) = µ◦.

Theorem 2. Assume that assumptions (i)–(iv) hold and h : [0, T] → [0, T] is an increasing

function. Then the Riemann-Stieltjes functional integral condition (2) and the non-local prob-

lem (1) have a mild solution µ ∈ C(I) that is represented by

µ(r) =
1

1 + h(T) − h(0)

(

µ◦ −
∫ T

0

∫

r

0

(r− ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς dh(ς)

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2(ς, µ(ϕ(ς)))
)

ds.

(12)

Proof. The non-local problem (1)–(4) will have the following solution as m → ∞:

µ(r) = lim
m→∞

1

1 + ∑
m
k=1 ak

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

=
1

1 + h(T)− h(0)

(

µ◦ − lim
m→∞

m

∑
k=1

(

h(rk)− h(rk−1)
)

×
∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

=
1

1 + h(T) − h(0)

(

µ◦ −
∫ T

0

∫

r

0

(r− ς)η−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς dh(ς)

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς.

As a result, the mild solution µ ∈ C(I) of the first-order nonlinear differential equation (1)

with the Riemann-Stieltjes integral condition (2) is represented by (12).

Consequently, there exist at least one mild solution µ ∈ C(I) of the nonlocal problem of

functional differential inclusion (1)–(2).
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2.2 Infinite-point boundary condition (3)

Take into account that µ ∈ C(I) is the mild solution to the non-local problem presented by

(1) and (3).

Theorem 3. Assume that assumptions (i)–(iv) hold and let B−1
m = 1 + ∑

m
k=1 ak be convergent

sequence. Then the non-local problem (1)–(3) represented by the integral equation

µ(r) = Bmµ◦ − Bm

m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

(13)

has at least one mild solution µ ∈ C(I).

Proof. Let µ ∈ C(I) be a solution of the infinite point BVP (1) and (3) provided by (6). Let

µm(r) =
1

1 + ∑
m
k=1 ak

(

x◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(β)
φ1

(

ς, Iσ f2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)β−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µm(ϕ(ς))
))

dς.

(14)

Consider the limit in (14) as m → ∞, we obtain

lim
m→∞

µm(r)

= lim
m→∞

[

1

1 + ∑
m
k=1 ak

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µm(ϕ(ς))
))

dς

]

= lim
m→∞

1

1 + ∑
m
k=1 ak

[

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

ds

]

+ lim
m→∞

∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µm(ϕ(ς))
))

dς.

(15)

Now, we have |akµ(τk)| ≤ |ak|‖µ‖, so, using a comparison test, we get that

m

∑
k=1

akµ(τk)

is convergent.

Also
∣

∣

∣

∣

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

∣

∣

∣

∣

≤
∫ τk

0

(τk − ς)β−1

Γ(η)

(

k
∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)
∣

∣+ φ∗
1

)

ds

≤ k
∫ τk

0

(τk − ς)η−1

Γ(η)

[

Iσa(ς) + b
∫ ς

0

(ς − θ)σ−1

Γ(σ)
|µ(ϕ(θ))| dθ

]

dς + k
∫ τk

0

(τk − ς)η−1

Γ(η)
φ∗

1 ds

≤ k
∫ τk

0

(τk − ς)β−1

Γ(η)

[

Iσ−γIγa(ς) + br2

∫ ς

0

(ς − θ)σ−1

Γ(σ)
dθ

]

dς + k φ∗
1

Tβ

Γ(β + 1)



670 Al-Issa Sh.M., Kaddoura I.H., Hamzae H.M.

≤ kM
∫ τk

0

(τk − ς)β−1

Γ(β)

∫ ς

0

(ς − θ)σ−γ−1

Γ(σ − γ)
dθ ds

+ k br2

∫ τk

0

(τk − ς)β−1

Γ(β)

∫ ς

0

(ς − θ)σ−1

Γ(σ)
dθ dς +

kφ∗
1 Tη

Γ(η + 1)

≤ Tβ

Γ(β + 1)

[

kMTσ−γ+1

Γ(σ − γ + 1)
+

k br2Tσ+1

Γ(σ + 1)
+ k φ∗

1

]

≤ N,

therefore

|ak|
∣

∣

∣

∣

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

∣

∣

∣

∣

≤ |ak| N,

and by the comparison test

m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

is convergent.

Using assumptions (i)–(iii) and applying Lebesgue Dominated Convergence Theorem [12],

from (15) we obtain (13). Furthermore, from (13), we have

(

1 +
m

∑
k=1

ak

)

µ(τk) = B−1
m Bmx◦ − B−1

m Bm

m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

+
(

1 +
m

∑
k=1

ak

)

∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς,

µ(τk) +
m

∑
k=1

akµ(τk) = x◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

+
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

+
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς,

m

∑
k=1

akµ(τk) = µ◦ − µ(τk) +
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς. (16)

From (6), we obtain

µ(0) = a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

ds

)

and

µ(τk) = a

(

x◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

)

+
∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς.

So

µ(0) = µ(τk)−
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

s, µ(ϕ(ς))
))

dς.

Going back to (16), we obtain infinite-point boundary condition (3). Consequently, the nonlocal

problem of functional differential inclusion (1)–(3) has at least one mild solution µ ∈ C(I).
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3 Existence of unique solutions to (1) with the m-point boundary condi-

tions (4)

In this section, the necessary condition for the uniqueness result for non-local problem

(1)–(4) is provided. Assume the following assumption.

(iii)∗ Suppose that φ2 : I × R → R is a continuous function that satisfies the Lipschitz condi-

tion |φ2(r, µ)− φ2(r, ν)| ≤ c |µ − ν|.

Theorem 4. Assume that the conditions of Theorem 1 hold, with condition (iii) replaced

by (iii)∗ . If
kc (a ∑

m
k=1 ak + 1) Tη+σ+2

Γ(η + 1)Γ(σ + 1)
< 1,

then the non-local problem (1)–(4) has a unique solution x ∈ C(I).

Proof. Let µ1(r) and µ2(r) be two solutions of the functional integral equation (6). Then

µ1(r)−µ2(r) = a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

dς

− a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)β−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

dς

)

−
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

dς,

|µ1(r)−x2(r)| ≤ a

∣

∣

∣

∣

m

∑
k=1

ak

(

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

dς

−
∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

dς

)
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

(t − ς)η−1

Γ(η)

[

φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))]

dς

∣

∣

∣

∣

≤ a
m

∑
k=1

ak

(

∫ τk

0

(τk−ς)β−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

−φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))
∣

∣dς

)

+
∫

r

0

(r− ς)β−1

Γ(β)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))
∣

∣ dς.

Lipschitz condition for φ1 allows us to obtain

|µ1(r)− µ2(r)| ≤ a
m

∑
k=1

akk
∫ τk

0

(τk − ς)β−1

Γ(η)

∣

∣Iσφ2

(

ς, µ1(ϕ(ς))
)

− Iσφ2

(

ς, µ2(ϕ(ς))
)∣

∣ dς

+ k
∫ t

0

(t − ς)β−1

Γ(β)

∣

∣Iσφ2

(

ς, µ1(ϕ(ς))
)

− Iσφ2

(

ς, µ2(ϕ(ς))
)∣

∣ dς

≤ a
m

∑
k=1

akk
∫ τk

0

(τk−ς)η−1

Γ(η)

∫ ς

0

(ς−τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ1(ϕ(τ))
)

−φ2

(

τ, µ2(ϕ(τ))
)
∣

∣ dτ dς

+ k
∫

r

0

(r− ς)β−1

Γ(β)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ1(ϕ(τ))
)

− φ2

(

τ, µ2(ϕ(τ))
)
∣

∣ dτ dς.
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Lipschitz condition for φ2 allows us to obtain

|µ1(r)− µ2(r)| ≤ a
m

∑
k=1

akkc
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣µ1(ϕ(τ))− µ2(ϕ(τ))
∣

∣ dτ dς

+ kc
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣µ1(ϕ(τ))− µ2(ϕ(τ))
∣

∣ dτ dς

≤ a
m

∑
k=1

akkc‖µ1 − µ2‖
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

+ kc‖µ1 − µ2‖
∫ t

0

(t − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς,

‖µ1 − µ2‖ ≤ (a ∑
m
k=1 ak + 1)Tη+1Tσ+1kc

Γ(η + 1)Γ(σ + 1)
‖µ1 − µ2‖.

Hence
(

1 − kc(a ∑
m
k=1 ak + 1)Tη+σ+2

Γ(η + 1)Γ(σ + 1)

)

‖µ1 − µ2‖ ≤ 0.

Since
kc(a ∑

m
k=1 ak+1)Tη+σ+2

Γ(η+1)Γ(σ+1)
< 1, we get µ1(r) = µ2(r) and the solution of the integral equation

(6) is unique. As a result, this establishes the existence of unique solution to the non-local

problem (1)–(4).

Corollary 1. Assume that assumptions of Theorem 4 hold. Then the solution of the non-local

problem (1)–(4) is continuously dependent on the set SΦ1
of all Lipschitzian selections of Φ1.

Proof. Let φ1(r, µ(r)) and φ∗
1(r, µ(r)) be two separate Lipschitzian selections of Φ1(r, µ(r)), so

that

|φ1(r, µ(r))− φ∗
1(r, µ(r)| < ǫ, ǫ > 0, r ∈ I.

Then for two related solutions µφ1(r) and µφ∗
1
(r) of (6) we have the following

|µφ1(r) − µ∗
φ1
(r)|

=

∣

∣

∣

∣

a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)

[

φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ∗
1

(

r, Iσφ2

(

ς, µ∗(ϕ(ς))
))]

ds

+
∫

r

0

(r− ς)η−1

Γ(β)

[

φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ∗
1

(

r, Iσφ2

(

ς, µ∗(ϕ(ς))
))]

ds

∣

∣

∣

∣

≤ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(β)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ∗
1

(

r, Iσφ2

(

ς, µ∗(ϕ(ς))
))
∣

∣ dς

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))

− φ∗
1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))

∣

∣ dς

≤ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))∣

∣ dς

+ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ1

(

ς, µ∗(ϕ(ς))
))

− φ∗
1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))∣

∣ dς

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))
∣

∣ ds

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ1

(

ς, µ∗(ϕ(ς))
))

− φ∗
1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))

∣

∣ dς
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≤ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)

(∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))∣

∣+ δ
)

dς

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))∣

∣ dς +
∫

r

0

(r− ς)η−1

Γ(η)
δ dς

≤ a
m

∑
k=1

akk

(

∫

rk

0

∣

∣Iσφ2

(

r, µ(ϕ(r))
)

− Iσφ2

(

r, µ∗(ϕ(r))
)
∣

∣ ds + δ
Tη

Γ(η + 1)

)

+ k
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣Iσφ2

(

r, µ(ϕ(r))
)

− Iσφ2

(

r, µ∗(ϕ(r))
)
∣

∣ ds +
δTη

Γ(η + 1)

≤ a
m

∑
k=1

akk

(

∫ τk

0

(τk−ς)η−1

Γ(η)

∫ ς

0

(ς−τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

−φ2

(

τ, µ∗(ϕ(τ))
)
∣

∣ dτ dς +
δTη

Γ(η +1)

)

+ k
∫

r

0

(r− ς)η−1

Γ(β)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

− φ2

(

τ, µ∗(ϕ(τ))
)
∣

∣ dτ dς +
δTη

Γ(η + 1)

≤ a
m

∑
k=1

akkc

(

∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣µ(ϕ(ς)) − µ∗(ϕ(ς))
∣

∣ dτ dς +
δTη

Γ(η + 1)

)

+ kc
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣µ(ϕ(ς)) − µ∗(ϕ(ς))
∣

∣ dτ dς +
δTη

Γ(η + 1)

≤ ‖µ − µ∗‖
(

a
m

∑
k=1

akkc
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

+ kc
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

)

+ (a
m

∑
k=1

akkc + 1)
δTη

Γ(η + 1)
,

‖µφ1 − µφ∗
1
‖ ≤ (a ∑

m
k=1 ak + 1)kcTσ+η

Γ(η + 1)Γ(σ + 1)
‖µφ1 − µφ∗

1
‖+ (a

m

∑
k=1

akkc + 1)
δTη

Γ(η + 1)
,

‖µφ1 − µφ∗
1
‖ ≤

(

1 −
(

a ∑
m
k=1 ak + 1

)

kcTσ+η

Γ(η + 1)Γ(σ + 1)

)−1
(

a
m

∑
k=1

akkc + 1
) δTη

Γ(η + 1)
= ǫ.

Hence, ‖µφ1 − µφ∗
1
‖ ≤ ǫ. It demonstrates that the solution on the set SΦ1

of all Lipschitzian

selection of Φ1 is continuous dependence.

Corollary 2. Assume that assumptions of Theorem 4 hold. Then the solution of the non-local

problem (1)–(4) depends continuously on the Lipschitz function φ2.

Proof. Let φ2(r, µ(r)) and φ∗
2(r, µ(r)) be two different Lipschitz functions such that

|φ2(r, µ(r))− φ∗
2(r, µ(r)| < δ, δ > 0, r ∈ I.

Then for two corresponding solutions µ and µ∗ of (6), we have

|µ(r) − µ∗(r)|

≤ a
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

− φ1

(

ς, Iσφ∗
2

(

ς, µ∗(ϕ(ς))
))∣

∣ ds

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ1(ϕ(ς))
))

− φ1

(

ς, Iσφ∗
2

(

ς, µ∗(ϕ(ς))
))∣

∣ dς

≤ a
m

∑
k=1

akk
∫

rk

0

(τk − ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)

− Iσφ∗
2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς

+ k
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ∗(ϕ(ς))
)

− Iσφ∗
2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς
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≤ a
m

∑
k=1

akk
∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)

− Iσφ2

(

ς, µ∗(ϕ(ς))
)∣

∣ dς

+ a
m

∑
k=1

akk
∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ∗(ϕ(ς))
)

− Iσφ∗
2

(

ς, µ∗(ϕ(ς))
)∣

∣ dς

+ k
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)

− Iσφ2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς

+ k
∫

r

0

(r− ς)η−1

Γ(β)

∣

∣Iσφ2

(

ς, µ∗(ϕ(ς))
)

− Iσφ∗
2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς

≤ a
m

∑
k=1

ak

[

k
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

− φ2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dτ dς

+
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ∗(ϕ(τ))
)

− φ∗
2

(

τ, µ∗(ϕ(τ))
)
∣

∣ dτ dς

]

+ k

[

∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

− φ2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dτ dς

+
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ∗(ϕ(τ))
)

− φ∗
2

(

τ, µ∗(ϕ(τ))
)∣

∣ dτ dς

]

≤ a
m

∑
k=1

akkc
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

[

|µ(ϕ(τ)) − µ∗(ϕ(τ))| + kδ
]

dτ dς

+ kc
∫

r

0

(r− ς)β−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

[

|µ(ϕ(τ)) − µ∗(ϕ(τ))| + kδ
]

dτ dς

≤ a
m

∑
k=1

ak

[

kc‖µ − µ∗‖+ kδ
]

∫ τk

0

(τk − ς)β−1

Γ(β)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

+
[

kc‖µ − µ∗‖+ kδ
]

∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

≤ a
m

∑
k=1

akk
[

c‖µ − µ∗‖+ δ
] Tσ+η

Γ(σ + 1)Γ(η + 1)
+ k

[

c‖µ − µ∗‖+ δ
] Tσ+η

Γ(σ + 1)Γ(η + 1)
.

Taking supremum over t ∈ I, we get

‖µ − µ∗‖ ≤ (a ∑
m
k=1 ak + 1)kcTσ+η

Γ(σ + 1)Γ(η + 1)
‖µ − µ∗‖+ (a ∑

m
k=1 ak + 1)kcTσ+η

Γ(σ + 1)Γ(β + 1)
,

‖µ − µ∗‖ ≤
(

1 −
(

a ∑
m
k=1 ak + 1

)

kcTσ+η

Γ(σ + 1)Γ(η + 1)

)−1 (a ∑
m
k=1 ak + 1

)

kcTσ+η

Γ(σ + 1)Γ(η + 1)
= ǫ.

Hence, ‖µ − µ∗‖ ≤ ǫ, which proves the continuous dependence of the solution on the

Lipschitz function φ2.

Corollary 3. Let the assumptions of Theorem 4 be satisfied. Then the solution of the non-local

problem (1)–(4) depends continuously on initial data µ◦.

Proof. The solution of the integral inclusion (6) depends continuously on initial data µ◦, if for

all ǫ > 0 there exists δ(ǫ) such that |µ◦ − µ∗
◦| < δ implies ‖µ − µ∗‖ < ǫ.

Then for two corresponding solutions µ(r) and µ∗(r) of the integral equation (6) we obtain
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|µ(r) − µ∗(r)|

=

∣

∣

∣

∣

a

(

µ◦ −
m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ2(ϕ(ς))
))

dς

)

+
∫

r

0

(r− ς)η−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

dς

− a

(

µ∗
◦ −

m

∑
k=1

ak

∫ τk

0

(τk − ς)η−1

Γ(β)
φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))

dς

)

−
∫

r

0

(r− ς)η−1

Γ(η)
φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))

dς

∣

∣

∣

∣

≤ a|µ◦−µ∗
◦|+a

m

∑
k=1

ak

∫ τk

0

(τk−ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2(ς, µ(ϕ(ς)))
)

−φ1

(

ς, Iσφ2(ς, µ∗(ϕ(ς)))
)
∣

∣dς

+
∫

r

0

(r− ς)η−1

Γ(η)

∣

∣φ1

(

ς, Iσφ2

(

ς, µ(ϕ(ς))
))

− φ1

(

ς, Iσφ2

(

ς, µ∗(ϕ(ς))
))
∣

∣ dς

≤ aδ + a
m

∑
k=1

akk
∫ τk

0

(τk − ς)η−1

Γ(η)

∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)

− Iσφ2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς

+ k
∫

r

0

(r− ς)β−1

Γ(η)

∣

∣Iσφ2

(

ς, µ(ϕ(ς))
)

− Iσφ2

(

ς, µ∗(ϕ(ς))
)
∣

∣ dς

≤ aδ + a
m

∑
k=1

akk
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

− φ2

(

τ, µ∗(ϕ(τ))
)∣

∣ dτ dς

+ k
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)

∣

∣φ2

(

τ, µ(ϕ(τ))
)

− φ2

(

τ, µ∗(ϕ(τ))
)
∣

∣ dτ dς

≤ aδ + a
m

∑
k=1

akkc
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
|µ(ϕ(τ)) − µ∗(ϕ(τ))| dτ dς

+ kc
∫

r

0

(r− ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
|µ(ϕ(τ)) − µ∗(ϕ(τ))| dτ dς

≤ aδ + a
m

∑
k=1

akkc‖µ − µ∗‖
∫ τk

0

(τk − ς)η−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς

+ kc‖µ − µ∗‖
∫

r

0

(r− ς)β−1

Γ(η)

∫ ς

0

(ς − τ)σ−1

Γ(σ)
dτ dς.

Taking supermum over r ∈ I, we get

‖µ − µ∗‖ ≤ aδ +

[

a ∑
m
k=1 ak + 1

]

kcTσ+η

Γ(σ + 1)Γ(η + 1)
‖µ − µ∗‖,

‖µ − µ∗‖ ≤
(

1 −
[

a ∑
m
k=1 ak + 1

]

kcTσ+η

Γ(σ + 1)Γ(η + 1)

)−1

aδ = ǫ.

Hence, ‖µ − µ∗‖ ≤ ǫ. Thus, the integral equation (6) has a continuous dependence on µ◦. So

for the the non-local problem (1)–(4) its solution depends continuously on initial data µ◦.

4 Illustrative examples

We provide some examples in this section to demonstrate our findings.
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Example 1. Consider the following nonlinear integro-differential inclusion

cDηµ(r) ∈ Φ1(r, Iσφ2(r, µ(ϕ(r))), r ∈ [0, 1], η, σ ∈ (0, 1), (17)

with infinite point boundary condition

µ(0) +
∞

∑
k=1

1

k2
µ
(k − 1

k

)

= µ◦. (18)

We choose Φ1 : [0, 1]× R → 2R
+

as

Φ1

(

r, I
1
4 φ2(r, µ(r))

)

=

[

0, r2 + r+ 1 +
∫

r

0

(r− ς)−
3
4

2Γ(3
4 )

(

sin µ(ς) +
µ(ς)

eς

)

ds

]

.

Set

φ2(r, µ(r)) =
1

2

(

sin µ(ς) +
µ(ς)

eς

)

.

Define a continuous map φ1 : [0, 1]× R → R. Note that φ1 ∈ SΦ1
. Then we have

∣

∣φ1

(

r, I
1
4 φ2

(

r, µ(ϕ(r))
))

− φ1

(

r, I
1
4 φ2

(

r, ν(ϕ(r))
))∣

∣ ≤ 1 + e

2 e Γ(1
4 )
|µ − ν|

and
∣

∣φ2(r, µ(r))
∣

∣ ≤ 1

2
| cos(µ(r) + 1)|+ |µ(r)|

2e
.

So, conditions (i) and (iii) hold with k= 1+e
2eΓ( 1

4 )
≈0.1889 < 1, a(r)= 1

2 cos(µ(t)+ 1)∈ L1 [0, 1],

b = 1
2e and the series ∑

∞
k=1

1
k4 is convergent. Also,

[

a(|µ◦|+ ∑
m
k=1 |ak|) + 1

]

kT ≈ 0.6136 < 1

and bTσ

Γ(σ+1)
≈ 0.2029 < 1. We deduce from Theorem 1 that the nonlocal problem (17)–(18) has

at least one continuous solution.

Example 2. Consider the following nonlinear integro-differential inclusion

cDηµ(r) ∈ Φ1(r, Iσφ2(r, µ(ϕ(r))), r ∈ [0, 1], η, σ ∈ (0, 1), (19)

with infinite point boundary condition

µ(0) +
∞

∑
k=1

1

k4
µ
(k2 + k − 1

k2 + k

)

= µ◦. (20)

We choose Φ1 : [0, 1]× R → 2R
+

as follows

Φ1

(

r, I
1
2 φ2(r, µ(r))

)

=

[

0,
e−r

er + 5
+

∫

r

0

√

(r− ς)

2
√

πeς+1

(

2 + | sin µ(ς)|
1 + | sin µ(ς)|

)

dς

]

.

Set

φ2(r, µ(r)) =
1

2er+1

(

2 + | sin µ(r)|
1 + | sin µ(r)|

)

.

Define a continuous map φ1 : [0, 1]× R → R. Note that φ1 ∈ SΦ1
. Then we have

∣

∣φ1

(

r, I
1
2 φ2

(

r, µ(ϕ(r))
))

− φ1

(

r, I1/2φ2

(

r, ν(ϕ(r))
))
∣

∣ ≤ 1

2e2
√

π
|µ − ν|

and
∣

∣φ2(r, µ(r))− φ2(r, ν(r))
∣

∣ ≤ 1

2e2
|µ − ν|.

Thus conditions (i)–(iii)∗ are satisfied with k = 1
2e2

√
π

and c = 1
2e2 . The series ∑

∞
k=1

1
k3 is

convergent. Also
kc(a ∑

m
k=1 ak+1)Tη+σ+2

Γ(η+1)Γ(σ+1)
= 1

4e4π
< 1. We deduce from Theorem 1 that the nonlocal

problem (19)–(20) has a unique continuous solution.
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5 Conclusion

In this study, we have investigated the existence of mild solutions for functional integro-

differential inclusions involving fractional-order derivatives, under both Riemann-Stieltjes in-

tegral and infinite-point boundary conditions. By reformulating the original problem into a

coupled system, we successfully applied fixed point theorems to establish the existence of at

least one continuous solution. Furthermore, we extended the analysis by presenting sufficient

conditions for the uniqueness of these solutions.

Additionally, we explored the continuous dependence of the solution on initial data, show-

ing that small variations in initial conditions lead to controlled deviations in the solution. This

highlights the robustness of the proposed model in practical applications.

Finally, we provided two illustrative examples to demonstrate the applicability of our the-

oretical results. These examples serve to underline the effectiveness of the proposed approach

in handling complex boundary value problems, further expanding the scope of fractional dif-

ferential inclusions in various fields of study.
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У цiй статтi дослiджується iснування м’яких розв’язкiв задачi Кошi, що мiстить диферен-

цiальнi включення дробового порядку з нелокальними крайовими умовами, зокрема умовами

з нескiнченною кiлькiстю точок або iнтегральними умовами типу Рiмана-Стiлтьєса. Встанов-

лено достатнi умови єдиностi розв’язку та дослiджено його неперервну залежнiсть вiд заданих

даних. Для демонстрацiї практичної застосовностi отриманих результатiв роботу завершено

двома iлюстративними прикладами.

Ключовi слова i фрази: функцiональне iнтегро-диференцiальне включення, теорема про не-

рухому точку, iнтегральна крайова умова Рiмана-Стiлтьєса, крайова умова з нескiнченною

кiлькiстю точок.


