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Analytical investigation of a boundary value problem for
functional differential inclusion
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This paper investigates the existence of mild solutions for an initial value problem involv-
ing fractional-order differential inclusions with nonlocal boundary conditions, specifically infinite-
point or Riemann-Stieltjes integral conditions. We establish sufficient conditions for the uniqueness
of the solution and examine its continuous dependence on the given data. To demonstrate the prac-
tical applicability of our findings, we conclude with two illustrative examples.
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1 Introduction

Differential and integral equation models have been instrumental in modeling various phe-
nomena across physical sciences and applied mathematics, particularly in boundary value
problems (BVPs) involving fractional differential equations (see [1,12]). Fractional differen-
tial equations have gained significant attention in recent years due to their ability to model
memory and hereditary properties in diverse systems, which classical integer-order differen-
tial equations cannot effectively describe [14,15].

Traditionally, boundary conditions in such problems are imposed locally. However, non-
local conditions are increasingly being utilized because of their precision and applicability in
real-world problems. Nonlocal conditions often provide more accurate measurements com-
pared to local ones, as they incorporate global information about the state of the system across
the domain rather than at discrete points [2,5]. This shift has led to extensive research on
fractional boundary value problems with nonlocal and resonant boundary conditions.

One key area of interest is the study of fractional BVPs at resonance, where fruitful re-
sults have emerged [4,6]. In [7], it is examined a class of fractional differential equations with
m-point boundary conditions, and similar work was extended in [8], where fractional-order
three-point BVPs in resonant cases were investigated. Despite these advances, there remains a
scarcity of studies concerning fractional boundary value problems involving Riemann-Stieltjes
integrals, which are important for modeling more complex, real-world systems, where inte-
gration with respect to non-differentiable functions is required. H.M. Srivastava et. al. [16]
explored the Riemann-Stieltjes integral in the context of multi-point boundary conditions, fur-
ther demonstrating its versatility in mathematical modeling.
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Additionally, some authors have examined boundary value problems involving nonlo-
cal, integral, and infinite-point boundary conditions, which expand the scope of applicabil-
ity for fractional differential equations [13,17]. For example, H.M. Srivastava et. al. [16] ad-
dressed nonlinear BVPs for arbitrary fractional-order differential equations with Riemann-
Stieltjes functional integral and infinite-point boundary conditions, providing a robust frame-
work for solving such problems.

In this paper, we extend these developments by studying the existence of mild solutions for
a functional integro-differential inclusion of the form

DI(x) € 1 (v, 19 (v, 1(9(x)))), 1€ (0,1), v (0,T], M

equipped with Riemann-Stieltjes integro boundary conditions

T
u(0) + / u(g)dh(g) = po, h:[0,T] — Ris a nondecreasing function, (2)
0

or infinite-point boundary conditions given by

u(0) + Y ey () = po, ax >0, i € (0,T]. 3)
k=1

Here, DY is the Caputo fractional derivative, and ®; : [0, T] x R — P(IR) is a set-valued
mapping, where P(IR) denotes the family of nonempty subsets of R. The function (¢) plays a
critical role in defining the nonlocal boundary conditions via the Riemann-Stieltjes integral.

Our approach focuses on reformulating the functional integro-differential inclusion into a
coupled system under several appropriate assumptions for the set-valued function ®;. We will
first address the continuous solution of problem (1) with the m-point boundary conditions

u(0) + Y axp(te) = po,  ax >0, 7 € [0,1]. 4)
k=1

We then explore the solutions for BVPs involving the Riemann-Stieltjes integral given by
(1) and (2), as well as BVPs with infinite-point boundary conditions provided by (1) and (3).
Using Schauder’s fixed point theorem, we establish sufficient conditions for the existence of at
least one continuous solution. Notably, our work extends previous results by applying fixed
point theorems in the context of nonlinear fractional differential equations, which have been
widely used in the literature for proving existence and uniqueness of solutions (see [3,9-11]).

The structure of this paper is as follows. In Section 2, we present our main findings for
the problem (1)—(4), followed by an investigation of BVPs given by (1)-(2) and (1)—(3). We
demonstrate sufficient conditions for the existence of solutions under both Riemann-Stieltjes
functional integral boundary conditions and infinite-point boundary conditions. In Section 3,
we discuss the continuous dependence and uniqueness of solutions. Several examples are
provided in Section 4 to illustrate the application of our findings. Finally, Section 5 concludes
the paper with a summary of our contributions and potential directions for future work.
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2 Existence of a continuous solution to (1) using the m-point boundary con-
ditions (4)

Take into account the following assumptions.

(i) The set-valued map ®; : I x R — 2R is continuous and Lipschitzian set-valued map
with a nonempty compact convex subset of 2R" with a Lipschitz constant k > 0, such
that

Hy (P (v, 1) — D1(v,v)) < klu—v|.
Note. The set of Lipschitz selections for ®; is not empty and by [1, Section 9, Chapter 1,
Theorem 1] there exists ¢; € ®1 such that

[p1(t, 1) — Pp1(v,v)| < k|p—v|.

(ii) The function ¢ : I — [ is continuous.

(iii) The Caratheodory requirement is satisfied for function ¢ : I x R — R, i.e. ¢, is measur-
able in t for any # € R and continuous in y for almost all t € I. There exists a function
a(t) that is measurable, bounded and there is a positive constant b > 0 such that

|pa(v, 1) <a(r)+0blp| Yrel and x € R.

(iv) The following statement is true

m bT? ;
S ) < < >
[ﬂ<|ﬂo|+2|ﬂk|) +1]kT< 1, NCESY <1, and IJa()<M Vy<o, ¢c>0.

k=1

Note. Using hypothesis (i), we can infer that the set S¢, is nonempty and that there is a
Lipschitzian function ¢; € ®; such that |¢1 (v, #) — p1(r,v)| < k |y — v|, which implies

D'u(x) = 41 (5, I°9a(x, u(9(x)))), o € (0,1), ve L. )

Then the solution of the single-valued problem (5)—(4) is a solution of the inclusion prob-
lem (1)-(4).

Lemma 1. The integral representation of the mild solution of the single-valued problem (5)
with the non-local condition (4) is given by

_ 1 L T (T B g)qil o
p(v) —m(% —k;lﬂk/o '}Tqbl(g,l ¢2(€/V(§0(€))))d€> o

t(p — -1
+/o %4’1(9 17¢2(c, 1n(9(c)))) de.

Proof. We begin by considering the problem (5) with m-point boundary conditions (4). Inte-
grating both sides of (5), we obtain

u(v) = p(0) + Iy (v, "2 (v, u(9(x))) )
When we substitute the value of 3(0) from (4), we get

m v (e — -1
) = o~ L o) + [ LB (6 (e 9(6)) e 7



664 Al-Issa Sh.M., Kaddoura I.H., Hamzae H.M.

In fact, when we set t = 7 € [0, T] in (7), we obtain

m T (7, — -1
i) = o= Lo + ML e P no@)) a6
So, we have
K (Tk - g)r]—l o
pw) = e) + [ (6 1°02(6 1(p(6))) ds )
9
v(p— -1
—/O %%(Q,I%(g,u@(g))))dg-
Substituting (9) in (7), we get
m T (7, — -1
) = o= Lo+ [ P (6 (e o() e
t (e — -1
—/O %4)1(9 I”¢z(€,u(¢(€))))d5>
t(p— -1
+/O %%(9 ¢ (g, 1(9(c)))) de.
As a result, we obtain
m m T (1, — -1
(14 5 ot = - o [ PGS (e Foalen(o(6)) de
m t (e — -1
+ <1+k§“’<)/0 %%(9 17 (6, 1(9(c))) ) dg,
which is equivalent to (6). O

It is obvious from assumption (i), that the mild solution of the single-valued integral equa-
tion (6), where ¢; € S, is a solution to the inclusion (1) with p(0) 4+ Y/ axx (k) = po.

It should be noticed that ¢, met the Lipschitz selection |¢; (v, u) — ¢1 (v, v)| < k|u — v|. Note
that g1 (x, 4)| < Klu| + 97, where 9 = sup,_ 7/ 15, 0).

Let us go on to the next step. Leta = (1 + Y/~ ; a;) ! and

v(¥) = Fa (s, uo(x)), el (10)

Thus, the nonlinear functional integral equation (6) can be expressed as

SOANC T

_ Nt i
ur) = a(uo —k;ak/o 1) e d€> +/O Ty Mlevle)de an

for v € I. As a result, the coupled system (10) and (11) and the functional integral equation (6)
are equal.

Now, we investigate the existence of a continuous solution of (6), by obtaining the continu-
ous solution of the coupled system (10) and (11).

Now for the existence of at least one solution, u = (y,v), pr, v € C(I), of the coupled system
(10), (11) we have the following theorem.
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Theorem 1. Assume that assumptions (i)—(iv) hold. Then the coupled system (10), (11) has at
least one continuous solution u = (yu,v), u,v € C(I).

Proof. Let the set Q, be defined by
Qr={u=(uwv) € R |ull <7},
where

alpo| + [0 T3y lax| + AT pTe N\l MTTT
1— [ay)y lag| +1]kT < _1"((7+1)> [(o—v+1)
It is clear that the set Q, is nonempty, bounded, closed and convex.
Afterwards, let us indicate by A the operator defined on the space C(I) by

Au(c) = A(p,v)(r) = (Arv(v), Azp(v)),

r=1r1+1r=

where

m T (1, — -1 t(p — -1
Apv(e) = a(uo - Zak/o %4’1(9”(@)) dg) +/0 %4& (c,v(g)ds, rel,

k=1

Aop(e) = [ %@(g (0(0) de, tel

Hence, according to u = (y,v) € Q,, we have

m T — _ 1
|A1V(t)| = ﬂ(l’lo _kzlak/0 ( k (17377 4)1(g,v(g)) dg) +/O %4)1(9 ( )) dg
1
<ol a3 a [T LS o) e+ [ ) s
§a|yo|+{ Z|a|+1]%
Therefore
klv| +¢7)TT
20 < alpel + [ o bl +1] e IO =
. alpo| + [azk_l o] + 1] s
1—[ayql lal +1] ¢ kT”)
Also
Aap(v)] = %@(g (¢ <>>)dg\

t—¢ v — c—1
S/O (7\4)2(9 (g)))}dgg/o %[a(dw}u(?(g))ﬂdg.

Taking supremum over t € I, we obtain
-1 oc—1

el < [ ot ST~ et [(ntp@)EE— de

o E (t_ g)gil o—YT1Y (o
<I%(t)+bry | —=5—dc <177 "I"a(r) + brI°(x)
0

(o)
T — (T v—1 T (t _ g)(7—1 Meo 7 e
< (Gl T Y / dc < b
M/ cHon o TI(o) g_r(0_7+1)+ rzl"((r+1)
MTo=7 brzTU ( bT® )1 MTo=7
< + =7, rn=\(1-
I'lc—y+1) T(c+1) I'(c+1) I'(c—vy+1)
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Now
[Aullx = [|Arvlc + [|Azpllc <1 +rz

<“|VO|+[”Zk1|ak|+1] ;m) b N\ MTOT
fe+1)) T( -

1—-[ay) 1\ak]+1} /3+1) c+1 c—vy+1)
Hence, the class {Au}, u € Qy, is uniformly bounded for AQ, C Q.

Currently, for u = (u,v) € Q,, forall 6 > 0 and for each vy, vy € [0,T], r7 < tp, such that
[to —t1] < 6, we get

|Aqv(t2) —Aqv(v)]

- T B -1 © (ty — -1
< ,{Z1 / : (2;11 ¢1(5,v(¢)) dg /O (21“(;(;))}7 fi(g,v(g)) dg

+
m _ -1 Y (g — -1
- ﬂ(]/lo - Z ak/o (Tkl—-(;;r] ()bl (g,l/((;)) dg) +/O ( ! r(;;’? (Pl (Q,V(€>) dg'

k=1

and
| Ao (ta) —Ap(ty)|

0 (¢ c—1 U (o — _
S/O (e (f,)) ¢2(€/P‘(90(€)))d€—/ (1r(§) ¢z(gfu(qv(g)))dg'

v —c) 1 t (py — )01

/0 (Zr((gr)) ¢z(gru(¢(€)))dg—/ (zr(?) <p2(g,y(q)(g)))dg'
v (ty — )71 o (v — )01

+/0 (zr(g)) ¢z(g,u(¢(€)))dg—/ (1r(§>) <p2(g,y((/’(g)))dg'

<

0 (ty — )01
= /tl (Zr(ii ¢2(€rﬂ(¢(€)))dg‘+

v (pq — c—1
| (1r(f,)) 92(c, V(qv(g)))dg‘

S/: (tzr ™ a6, 1m(9(0))) | e +/0t1 (r2 _Q)U;(_Ugtl =" g (e, u(p(c)) | de
< /12 [a+blu(o(c))]] (tzf(?;_l dg +/0t1 2+ blun(o(s)] 2= €>U_r1(;§tl_ A
<(a+bry) /12 (x> r—(gal ds + (a + brp) /0” (v2 — Q)U;(_U)(tl —97

<l br2) fe P+ ) (T R T )

<(a+bry) (rtéj:g .
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For the operator A and u € Q,, we have

Au(rz) — Au(vr) = A(p,v)(v2) = A(p, v)(v1)

= (Azp(r2), Arv(v2)) — (Azp(ra), Arv(vr))

= (Azp(v2) — Azpi(r1), Arv(r2) — Aqv(ra)),
then

| Au(ez) — Au(rr)[x = |A(p y) (v2) — AG ) (v1)]x
= |Arv(r2) — Arv(e2)[c + [Aap(x2) — Azp(r)lc

(v7 — ) (v —f)
I'(n+1) [lc+1)
As a result, the class of functions {Au} is equi-continuous on Qr. The operator A is compact
via the Arzela-Ascoli Theorem [5]. The continuity of A : Qr — Qr still needs to be proven. Let
un = (Un, vn) be a sequence in Qr with x, — p and y, — y. Since ¢ (¢, u(r)) is continuous in
C(I) x R, we obtain that ¢, (¢, 4, (t)) converges to ¢ (t, u(r)), thus ¢a(t, un(@(r))) converges to
¢2(t, u(¢(r))). Using assumptions (iii)—(iv) and applying Lebesgue Dominated Convergence
Theorem, we get

= (kJv| +¢1) + (a+bry)

v(p— oc—1 ¢ (p— o—1
am, J %%(Q,un(fp(m)dngo %@(w((p(g)))dg,
then
vy — c—1
A, Azpin(x) :/0 %,}g’gﬂz(grun(@(g))) dg

= [T o nl9() ds = At
0 T(0) 2(6, H(PLG))) as 2pT),

lim Aqvy,(v) = a<uo - i a / (T — o)1t lim 1 (¢, vu(c)) dg)

n—00 =1 0 r(ﬁ) n—o00

t (e — )1
+/() % lim 4)1(Q,Vn(g)) dg

L)  nme
B m Tk (T _ g)qfl v (t _ g)qfl
= a<xo —k;ﬂk/o krT(Pl (6,v(5)) dG) +/O Wﬁbl (6,v(¢)) dg
= A11/(t).

So,
lim Au,(v) = J%(Alvn(t),Azyn (v))

= (lim Ayvy(v), lim Azjen (1)) = (Arv(e), Agp(x) = Au(v).

Therefore, Au, — Au as n — 1. The operator A is continuous as a result. While all criteria
of the Schauder fixed-point theorem are achieved, we get that A has a fixed point u € Q.
Hence, the system (11), (10) has at least one continuous solutions u = (y,v) € Qy, ;v € C(I).
Therefore, there is at least one solution p € C(I) to the functional integral equation (1). O

21 Riemann-Stieltjes integral boundary conditions (2)

Let p € C(I) represent the mild solution to the non-local problem (1)-(4). Let us de-
note ay = h(ry) — h(tx_1). Note, that the function / is nondecreasing and 7 € (t;_1,tx) for
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0 =19 <1ty <ty <---<T.Then the nonlocal condition (4) take the following form

m

#(0) + Y p(e) (h(xj) — h(xj—1)) = po-

k=1

We derive from [15] the continuation of the solution of the nonlocal problem (1)—(4), i.e.

m T
tim Y u(m) ((sy) —hei-1) = [ (o) dn(e).
1

m—00
k=

That is, the non-local conditions (4) is changed to Riemann-Steltjes integral condition

0) + Jimy 3 ) () = sy-0) = ) + [ te) dhte) = e

m~>oo

Theorem 2. Assume that assumptions (i)—(iv) hold and h : [0,T] — [0, T] is an increasing
function. Then the Riemann-Stieltjes functional integral condition (2) and the non-Ilocal prob-
lem (1) have a mild solution y € C(I) that is represented by

v — -1
u(x) = 1+h(T1) ) (ﬂo —/T/ ¢¢1(€/10¢2(9#(€0(€)))) dgdh(@))

_ 1
+/ 57) $1(5, I7¢2(s, n(9(g)))) ds.

(12)

Proof. The non-local problem (1)—(4) will have the following solution as m — co:

m T (17 — p—1
Yo [ S e (e ule0) )

[ %@(Q,m(ww(g»))d@

“1+h Tl) —h(0) <P‘° - ,%1330:21 (h(tk) = h(te-1))

(
(1 — )1
< O e 1l o) e

1
i /0 57))” (e 170 (c, n(p <g>>>)d<;

= (e [ SR e e utole)) deantc)
+ /Ot%qbl(g,l%z(g (9 (g))))dg-

(v) = lim ;< -
H m%ool—l—zk 1 Ak fo

O

As a result, the mild solution u € C(I) of the first-order nonlinear differential equation (1)
with the Riemann-Stieltjes integral condition (2) is represented by (12).

Consequently, there exist at least one mild solution u € C(I) of the nonlocal problem of
functional differential inclusion (1)—(2).
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2.2 Infinite-point boundary condition (3)
Take into account that u € C(I) is the mild solution to the non-local problem presented by
(1) and (3).

Theorem 3. Assume that assumptions (i)—(iv) hold and let B,,' = 1+ Y}*.; a; be convergent
sequence. Then the non-local problem (1)—(3) represented by the integral equation

m . — -1
) = Bates B 1 o [ 0 (6 (e o(6)) e

k=
t (e — 1
/O ( gq; ¢1(c, 2 (g, 1(9(c)))) dg

has at least one mild solution p € C(I).

(13)

Proof. Let y € C(I) be a solution of the infinite point BVP (1) and (3) provided by (6). Let

_ 1 L T (Tk - g)ﬁil o
i (v) = m(xo —k;ak/() 1 Mo ne() dg) o

+ [T 6 (e nl0(6)))) de
Consider the limit in (14) as m — 0o, we obtain

Jim g (v)
B 1 mo (g — )Pt -
n%llgo {m <,uo — Zﬂk/ kl—.Tqbl(g/I 4)2(g/l’l(90(g))))dg>
+ /O %sbl(g,l”sbz(g,um(@(@)))dG] (15)

m T (1, — -1
= lim ;[;{o - Zak/ qul (¢ 104’2(9#(9"(6))))‘15]

m—>ool—|—2k 1 Ak

m—eo Jo r(ﬂ) ¢1(g,1‘7¢2(g,ym((p(g))))dg.

Now, we have |axp(ti)| < |ag|||u]|, so, using a comparison test, we get that

Y an(ti)
k=1

is convergent.
Also

/OTk(Tk;Tqbl ¢2 (s, 1(9(c)))) dQ‘

©
< /O< (% (K79 (c, u(p(c))) | + ¢7) ds

1 _pgyo-1 % (1 — )11
<k/ ;3’7 [zaa(g)wfogi(gr(?) |y(q)(9))|de]dg+k/0 7(kr(;§’7 ¢! ds
)
(17)

p—1 _py-1 B
< k/ ; {I"W%(g) + bry /Og %d@] dg + kgbfﬁ
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T _ ~\p—-1 c _ n\o—7r—1
0 0

IN()) I(c—7)
% (g —g)Pt e (g—6)! ki T
+kbr2/0 6 /0 L +r(;71+1)

TP [kMT‘T“Y“ +kbr2T‘7“+ k<p*} N
“T(B+1) |[T(c—v+1)  T(c+1) =
therefore

||

and by the comparison test

T —¢)P1
Yo [ S e rale (o) e

T (7. — -1
/0 %4)1(9'104’2(9#(90@))))dg‘ < |ag| N,

is convergent.

Using assumptions (i)—(iii) and applying Lebesgue Dominated Convergence Theorem [12],

from (15) we obtain (13). Furthermore, from (13), we have
-1

<1+Zak) (k) = By Buxo — By, 1BmZ / T"_ s 91(6 72 (6, 1(9(c))) ) dg

AV
<1+Z )/ %ﬁbl(@l%(g/u((l)(d)))d(;,

1 T (T — -1
)+ L ounm) = xo = L o [ T8 (6 (e o(6)) e

T (1. — -1
+ %%(g,mz(w(qo(g))))dg
1

# Yoo [ B e ale n(010) s

3 o) = oo — () + [ “"r(gi 01(6.192(c,nl9(c))) de.

- n
From (6), we obtain

0 =a( = 3o [ LS 6 (e () )
and
() _”<x° i”k/o Tk_ (€r1‘7¢z(g/u(¢(g>>))d€>
_ ~\p-1
+ [T e (e n(p(©) de
So

T (1, — -1
0) = () = [ O I 6 a5, 1(p(6))) e

(16)

Going back to (16), we obtain infinite-point boundary condition (3). Consequently, the nonlocal

problem of functional differential inclusion (1)—(3) has at least one mild solution u € C(I).

O
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3 Existence of unique solutions to (1) with the m-point boundary condi-
tions (4)

In this section, the necessary condition for the uniqueness result for non-local problem
(1)—(4) is provided. Assume the following assumption.

(iii)* Suppose that ¢ : I x R — R is a continuous function that satisfies the Lipschitz condi-
tion |2 (v, 1) — pa(v,v)| < cfu—vl.

Theorem 4. Assume that the conditions of Theorem 1 hold, with condition (iii) replaced
by (iii)*. If
ke (a Y )| ap + 1) TIHo+2

<1,
I'n+1)T(c+1)
then the non-local problem (1)—<(4) has a unique solution x € C(I).

Proof. Let p1(t) and uz(tr) be two solutions of the functional integral equation (6). Then
pa(r)—pa(r) =a <ﬂo Ya /Tk T (e 1 0(c)) dg)
=1 0 L(1)
v (e _ ~\y—1
+/0 %4)1(9 1"<Pz(<;,m(<v(<;))))dg
~oio = Lo [ S ol aole))

-/, %% (6. 192 (c, ma(9(c)))) de,
(0 —x02(0)] < a

m -1

k;ﬂk ( /OTk %% (6, 126, 12(9(c))) ) dg

1

—/0 u F(E;W ¢1(€,1"¢z(9u1(¢(€))))dg)‘
(t—g) ! . .,

" /o Ty e (e me(©) ~ di(e ] sbz(g,uz(fp(g))))}dg'

<“Z“ </0Tkm(7§7}4’1(91"¢2(w2(¢( ) —1(s, I (s, 11 (o(s ))\dg>

r—c)f
+ /0 %}%(g,l%z(g,m((l’(@))) 91(s, 172(c, 12(9(6))) ) | de.

Lipschitz condition for ¢; allows us to obtain

() = puale |<a2ak/ O 1, (p1e)) — 19l alp(6))) | dg

+k/ \I”qbz(g,m () — 1792(c, 12(9(5))) | dg

<aY ok / L g (r p0() (o))
<odook | [t '

vy — B—1 . oc—1
+k/0 ( r(gﬁ)) /0g = F(Z)) |92(T, 11 (9(7))) — d2(T, p2(o(7))) | dT de.
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Lipschitz condition for ¢, allows us to obtain

- Ky K N (e i
() = )] <0 ) agke [ [P in(o(0) — alp(0)] drds

(1)
t(e—c)r1! _ o1
+kc/0 ( T(gﬁ); /og s r(?) m1(@(7)) — p2(@(7))| dTdg
1 —T oc—1
<a Zakkcnﬂl }l2||/ ; )"~ /Og (g 1“((7)> drdc

= c—1)7!
kel — / /( dr dc,
C”]’ll ]’12” 0 r ) 0 r(O') G
(aXpqap + )T ITO ke

I —wall < —=F0 " yre ey I el
Hence L . Ly
(1R I Yl =l <0
Since K@ 4t DTV 1, we get y1(v) = p2(r) and the solution of the integral equation

I'(y+1)I'(c+1)
(6) is unique. As a result, this establishes the existence of unique solution to the non-local

problem (1)—(4). O

Corollary 1. Assume that assumptions of Theorem 4 hold. Then the solution of the non-local
problem (1)—(4) is continuously dependent on the set S, of all Lipschitzian selections of ®;.

Proof. Let ¢1(t, u(r)) and ¢ (¢, u(r)) be two separate Lipschitzian selections of @ (¢, y(t)), so
that

|91(v, p(v) — @1 (v, u(x)| <€, €>0, vel
Then for two related solutions jg, () and jiy: (v) of (6) we have the following

gy (v) — g, ()]

T _ -1
= a};ak/o %[%(91%(9#(@(9)))) — 1 (v I2(c, 1™ (9(c))))] ds

+/0 M[% (6, 172 (6, 1(9(6)))) — @5 (v, ¢, 1" (9(c))) )] ds

r'(p)
<a Y [" O g e (e (€)1 (e Fnle (pl6) de
=R N (:) ' ' B ’
v(e — -1
+ [ e enlen (900)) ~ 91 (6 I palen (900)) |
< aéak /OTk %\4& (6 17¢2(c, n(9(6)))) = d1(c, 17¢2(c, 1™ (9(c))) )| ds
m Ty _ -1
+ak§ak/0 %}%(91%1(9#*(?(9)))) — 91 (6 1792(c, 1" (9(6))) ) | dg

- /0 %\4’1 (6 192 (6, 1(9(6)))) — #1 (5, I (¢, 1™ (9(5))) )| ds

T Tt — -1
* /0 %\% (6 101 (6 1 (9(c)))) — 1 (6, 172 (¢, 1" (9(6))) ) | d
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<aZak/ \qbl(g,l $2(c, 1(9(6)))) — 1 (s, 792(6, 1w (9(6)))) | +9) dg

+ /0 3 ;57; [#1(c, 1702(c, 1(9(6)))) = (e, I92(c, 1" (9(6))
<a i akk( / 172l l(61) = 7galon (p(61) ds 40 s )

I'(n+1)
+ / i }10<P2 v pu(e(x)) — 1o (v, 17 ( (t>>)}ds+r(2i}z1)
T—c)! -1 (c—1)7~ 1 . oT"
<“Z”"(/ ) /0 oy 25 M0 ~0n (") e + )
v—¢ 1 c—1
YR /O e e lo(o) 2(r, 0 (p(0) | drde + s
o L g—T . ST
< ak;akkc</ /O ¢(g)) — (@(9))\dfdg+m>
vy — 1 — 1)~ 1
e /0 s = }V(GD(Q))—V*(GD(Q))}deHF(iTl)
_ _ \o—1
< Hu—u”‘l!( Zakkc/o Tkr(%’7 /Og € r(?) atdg
Fe—g) g7t 3 ot
+kc/0 ) /0 (o) deg) ak;akkc—{—l)r(ﬂ_i_l),
(aYpqax + 1)kcT7 1 " ST

— < < — * —_—

e, = oill < ey e~ pel e ke D Ty
(a Xl ap + 1) keToOHI\ 71, ST

_ || < — _ =
o =l < (- ) (s ke +1) £,

Hence, ||pg, — pp:|| < €. It demonstrates that the solution on the set S¢, of all Lipschitzian
selection of @4 is continuous dependence. O

Corollary 2. Assume that assumptions of Theorem 4 hold. Then the solution of the non-local
problem (1)—(4) depends continuously on the Lipschitz function ¢;.

Proof. Let ¢ (v, u(r)) and ¢3 (¢, u(r)) be two different Lipschitz functions such that
|$2(x, 1 (x) — 2 (v, u(e)| <4, 6>0, vel

Then for two corresponding solutions y and u* of (6), we have

lu(x) —p*(v)]
T (1, — -1
<a Zak/O %\4& (6, 172 (g, 12(9(c)))) — 1 (¢, I3 (g, 1w (9(c))) ) | ds

' (t_g ’/_1 v O % *
+/o N0) |91(c, 72 (6, m1(9(6))) ) — d1(s, 1795 (6, 1™ (0(5))) ) | dg

m % (1 — -1
<a), akk/o %\I%(g,u@(g))) — 1795 (6, 1™ (9(c))) | dg

-1
(e (9(6) ~ 105 6 (9(0) | e
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<ﬂZakk/ (S 174, m(p(c))) — 1%9a(c, 1 (p(c) | dc
+a2akk / S g, gle)) — 1705 (e, ° (0(6))) | de
[ 6 1(p(0) ~ a1 (0(6)) |

sk [T g e (910)) — 73 (e (916)) | de

<QZ”"{ / Tkr_(%’7 1/0 : ;(?)0_1\9’)2@,#((/)(?))) —d2(6 17(9(¢))) | drdg
b [ [ D g 1 (0(0) — 3 (5 (o) ]
+k[/0t (t;(gq);l /Og( r?; 1\sbz(ffu(qo(ﬂ)) —¢a(c, 1 (9(g))) | dTdg
# [ T o (o) — g3 (e (o0 e
1

7)

m T (Tk _ g>17— c (Q _ T)(T—l i
<aYaske [ e [T (o) (9l 4] drde

v — B—1 _Ta—l
ke [TEL [T T (o)) — e (p(e)| + ko] e

I'(n) (o)
- gl [F @ e
Sakzzlak[kcﬂy—y H+kc5]/0 ) /0 (o) dtdg
T r— -1 B oc—1
el = ko] U [T g
To+1 To+1

m
< k —u*||+9
_ﬂk;”k el =+ s g+ 1

Taking supremum over t € I, we get

) +k[C”V — | +5] T(c+1)T(n+1)

(a0 ag + 1)kcT7
T(c+1)T(n+1)

(a0 ag + 1)kcTo*N
re+1)r(p+1) '

[ —p*|| < e — || +

I — ]| < ( B (aE;Z”_lakJrl)ch”’?)‘l (a Xy ap+1)keTo+T
HoR = T(oc+ O)I(y +1) T(o+ O)I(y +1)

Hence, ||u — u*|| < €, which proves the continuous dependence of the solution on the
Lipschitz function ¢,. O

Corollary 3. Let the assumptions of Theorem 4 be satisfied. Then the solution of the non-local
problem (1)—(4) depends continuously on initial data ..

Proof. The solution of the integral inclusion (6) depends continuously on initial data ., if for
all € > 0 there exists d(€) such that |y, — pf| < § implies ||y — u*| < e.

Then for two corresponding solutions y(t) and u*(t) of the integral equation (6) we obtain



Analytical investigation of a boundary value problem for functional differential inclusion 675

[i(e) — " (v)
L[ (=)

!
<yo —kZak/ "FT% (6, 17¢2(c, 12(9(5)))) dG)

0

1
1
[T e e o)) de
( fl /0%%(Q,I%(g’u*(@(g))))dg)

k=
T 1
/O ¢ r(f;; (e 1 <Pz(<;,u*(¢( ))))dg‘

< alpo— uo|+a>: AR g 1016 179ale, 19(0)))) ~ 1 (6 1l 1 (9(6))) s

+/0t e I"«pz( 1(9(e)))) = d1 (s 12 (o, 1" (9(c))) )| de

<ab+a 2 akk/ Tk _ \I" 26 1(9(6))) — I (6, 1 (9(c))) | dg

+k/

T _ -1 - T oc—1
< a5+a2ﬂkk/ T o /og s r(a)> |92(7, 1(9(1))) — (T, 1" (9(1))) | dT dg

}I" (6 1(9(c))) — I (g, 1* (9(c))) | dg

r— )l _
+k/ 5 / gr(fr)) |92 (T, 1(@(7))) = 92T, 1" (9(7))) [ dT dg
-1

(e—¢)"! [¢(c—7) .
gamk_zlakc/o T ey o) — o) e dg

v (e—¢)1! _ -1
+kc/0 ( T(gn); /og s r(?) 1(p(1)) — 1 (9(7))] dr dg

) : * T (lk g)r] tos (Q I)U !
< J—

/3 1 - c—1
cC—T
+ kel|lp — p H/ /0 ( F(U)) drdg.

Taking supermum over v € I, we get
[a X0y ag + 1] keTot | |
fe+urg+n =+l
. ayY ™ ap 4 1]keTot1 !
-l < (1- LR 6o
T(c+1)T(n+1)

Hence, || — u*|| < €. Thus, the integral equation (6) has a continuous dependence on .. So
for the the non-local problem (1)—(4) its solution depends continuously on initial data p,. [

[ —p*|| <ad+

4 Illustrative examples

We provide some examples in this section to demonstrate our findings.
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Example 1. Consider the following nonlinear integro-differential inclusion

‘Du(r) € O1(t, I7¢a(t, u((r))), rve€0,1], n,0€(0,1), (17)
with infinite point boundary condition
=1 k-1
(0)+ ) ﬁ”(—k ) = e (18)
k=1

We choose @ : [0,1] x R — 2R" a5

(e e o) = [0.@ e+ [ETES

Set

ol () = 3 (sinp(c) + 1),

es
Define a continuous map ¢ : [0,1] x R — R. Note that ¢; € So,. Then we have

[1(x, Lo (5, 1(@(x)))) = 1 (5 Ligha (5, v((x))) )| < 21?(1)
4

|pa(t, pu(v))] < %\cos(y( )+ 1)+ 222 ‘P‘( )’

So, conditions (i) and (iii) hold withk= 235261) ~0.1889 < 1, a( )=1cos(u(t) +1)€L1[0,1],
1

b = 26 and the series Yi° | 7 is convergent. Also, [a(|po| + Ly ax]) + 1]kT ~ 0.6136 < 1
and (U +1) ~ 0.2029 < 1. We deduce from Theorem 1 that the nonlocal problem (17)—18) has
at least one continuous solution.

=

and

Example 2. Consider the following nonlinear integro-ditferential inclusion

“Dlu(c) € P1(v, (v, p(e(v))), ve[01], n,0€(0,1), (19)
with infinite point boundary condition
21 kP +k—1
)+ () = (20)

We choose ®; : [0,1] x R — 2R as follows

\/?<2+|smﬂ €)|> dg}_

@1 (v, 12¢a(t, pu(v))) = { , t_|_5 0 2v/mest1 \ 1+ |sin u(g)]
Set

1 2 sin u(t
¢2(v, u(v)) = 2et+1 <1 i ; sinﬁg ;D

Define a continuous map ¢ : [0,1] x R — RR. Note that ¢, € S¢,. Then we have

|1 (9124’2(‘5/#(?0(@))) —¢1(, 11/24’2(‘@1’(4"(@)))‘ < WW — v
and .
92l 1(2)) — 9ale, V()] < gzl — vl
Thus conditions (i)—(iii)* are sat1sf1ed with k = ﬁ and ¢ = ﬁ The series ) ;. 4 % is
ke o+ 1)TIHOF2 g

convergent. Also T et = dir < 1. We deduce from Theorem 1 that the nonlocal
problem (19)—<20) has a unique continuous solution.
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5 Conclusion

In this study, we have investigated the existence of mild solutions for functional integro-
differential inclusions involving fractional-order derivatives, under both Riemann-Stieltjes in-
tegral and infinite-point boundary conditions. By reformulating the original problem into a
coupled system, we successfully applied fixed point theorems to establish the existence of at
least one continuous solution. Furthermore, we extended the analysis by presenting sufficient
conditions for the uniqueness of these solutions.

Additionally, we explored the continuous dependence of the solution on initial data, show-
ing that small variations in initial conditions lead to controlled deviations in the solution. This
highlights the robustness of the proposed model in practical applications.

Finally, we provided two illustrative examples to demonstrate the applicability of our the-
oretical results. These examples serve to underline the effectiveness of the proposed approach
in handling complex boundary value problems, further expanding the scope of fractional dif-
ferential inclusions in various fields of study.
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Y 1iit cTaTTi AOCAIAXKYETHCS icHyBaHHS M'SIKMX pO3B’s13KiB 3aaaui Ko, mo Mictute andpepen-
IiaABHI BKAIOUEHHSI APOHOBOTO IIOPSIAKY 3 HEAOKAABHVIMM KPajfOBMMI YMOBaMI, 30KpeMa YMOBaMM
3 HeCKiHUeHHOIO KiABKICTIO TOUOK abo iHTerpaabHMMM yMoBamy Tvmry PiMaHa-CTiaTbeca. BeraHOB-
A€HO AOCTaTHi YMOBM €AMHOCTI PO3B’SI3KY Ta AOCAIAKEHO JIOro HellepepBHY 3aAeXHICTD BiA 3aAaHNMX
AQHMX. AAST AeMOHCTpail MpaKTHYHOI 3aCTOCOBHOCTi OTPMMAHMX Pe3yAbTaTiB POOOTY 3aBepIIeHO
ABOMa iAIOCTPATUBHMMM IPUKAAAAMIL

Kntouosi croea i ppasu: dpyHKIIiOHaAbHe iHTerpo-AndpepeHIliarbHe BKAIOUEHHSI, TeopeMa IIpo He-
pyXoMy TOUKYy, iHTerpasbHa KpalioBa ymopa Pimana-CriAnTbeca, xpaitoBa yMOBa 3 HeCKiHUeHHOIO
KiABKICTIO TOUOK.



