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A note on normal maximal subgroups
in Mal’cev-Neumann division rings
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The aim of this paper is to describe normal maximal subgroups of the unit groups of Mal’cev-

Neumann division rings. As a corollary, we affirmatively answer the conjecture posed in [Akbari S.,

Mahdavi-Hezavehi M. On the existence of normal maximal subgroups in division rings. J. Pure Appl.

Algebra 2002, 171 (2–3), 123–131] regarding Mal’cev-Neumann division rings of noncyclic free

groups.
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1 Introduction

Let G be a group with a total order �. If for a, b and c in G, the condition a � b implies

ca � cb and ac � bc, then G is called an ordered group. It is well known that a free group is

an ordered group with the Magnus order (see, e.g., [5]). A subset S of an ordered group G is

called well-ordered (WO for short) if every nonempty subset of S has a least element. We denote

min(S) the least element of a WO subset S in case S is nonempty.

Let K be a division ring, G an ordered group, and ω : G → Aut(K), g 7→ ωg a group

morphism. Here Aut(K) is the automorphism group of K. For a (formal) sum α = ∑
g∈G

agg

with ag ∈ K, the support of α is defined as supp(α) = {g ∈ G : ag 6= 0}. Put

K
(

(G, ω)
)

=

{

α = ∑
g∈G

agg : supp(α) is WO

}

.

For every α = ∑
g∈G

agg and β = ∑
g∈G

bgg in K
(

(G, ω)
)

, we define

α + β = ∑
g∈G

(

ag + bg

)

g

and

αβ = ∑
u∈G

(

∑
gh=u

agωg (bh)

)

u.
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These operators are well-defined and K
(

(G, ω)
)

is a division ring (see [13, Theorem 14.21]).

The division ring K
(

(G, ω)
)

is called the Mal’cev-Neumann division ring of G over K with

respect to ω.

The Mal’cev-Neumann division rings were first introduced in [14] and up to now, they

have many applications. Noncrossed product division rings in [6, 11, 12] are constructed by

using special cases of the Mal’cev-Neumann division rings over certain groups. The Mal’cev-

Neumann division rings are also recently used to construct some examples on division rings

which satisfy certain properties (see [1, 7–9] in detail). There are many papers which describe

properties of Mal’cev Neumann division rings and their special cases (see, e.g., [10, 15, 17]).

The aim of this paper is to describe normal maximal subgroups of the unit group of

Mal’cev-Neumann division rings. Among results, we show that if the ordered group G con-

tains a normal maximal subgroup, then so does the unit group
(

K
(

(G, ω)
))∗

. As a corollary,

we affirmatively answer the conjecture posed in [3] regarding Mal’cev-Neumann division rings

of noncyclic free groups.

2 Main results

We begin this section with the following lemma.

Lemma 1. Let G be an ordered group, K be a division ring, ω : G → Aut(K) be a group mor-

phism, and D = K
(

(G, ω)
)

be the Mal’cev-Neumann division ring of G over K with respect

to ω. Then the map v : D∗ → G, α 7→ min
(

supp(α)
)

is a surjective group homomorphism.

Proof. This lemma is just a corollary of [1, Lemma 2.5].

In this paper, the morphism v as in Lemma 1 is fixed and used frequently. Lemma 1 has a

corollary as follows.

Corollary 1. Let the assumptions of Lemma 1 hold and the surjective group homomorphism

v as above. Assume that M is a maximal subgroup of D∗. Then either v(M) = G or v(M) is a

maximal subgroup of G. Moreover, if v(M) 6= G, then v(M) ⊆ M.

Proof. Assume that M is a maximal subgroup of D∗ and v(M) 6= G. For H ≤ G such that

v(M) ≤ H and v(M) 6= H, since M is maximal in D∗, v−1(H) = D∗. Then v(D∗) = H. Since

v is surjective, v (D∗) = G. Thus, G = H, and so v(M) is a maximal subgroup of G.

Now we prove the final assertion. Given the hypothesis v(M) 6= G, assume that v(M) 6⊆ M.

Let g ∈ v(M) \ M. Then, since M is maximal in D∗, 〈M, g〉 = D∗. Thus,

v (〈M, g〉) = v (D∗) = G.

Observe that v
(

〈M, g〉
)

=
〈

v(M), v(g)
〉

= v(M). Consequently, v(M) = G, a contradic-

tion. Hence, v(M) ⊆ M.

Let G be a group and H its subgroup. The core of H in G is the subgroup

CoreG(H) =
⋂

g∈G

gHg−1.

The core of H is the largest normal subgroup of G contained in H. Moreover, one has the

following property.
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Lemma 2 ([16, 3.3.5]). Let G be a group and H a subgroup of G. If the index of H in G is finite,

then G/CoreG(H) is a finite group.

Now we show the first main result of this paper.

Theorem 1. Let G be an ordered group, K be a division ring, ω : G → Aut(K) be a group mor-

phism, and D = K
(

(G, ω)
)

be the Mal’cev-Neumann division ring of G over K with respect

to ω.

1. If G has a maximal subgroup, which is normal in G, then D∗ also has a normal maximal

subgroup of prime index.

2. If G has a maximal subgroup of finite index n, then D∗ also has a maximal subgroup of

index n.

Proof. 1. Assume that M is a maximal subgroup of G which is normal. Then G/M is a simple

group and G/M has only two subgroups which are 〈1〉 and G/M. This leads to the fact

that G/M = 〈g0〉 for some g0 ∈ G \ M. Since G/M is simple, it must be a cyclic group of

prime degree. Put ϕ to be the surjective group morphism ϕ : G → G/M, g 7→ g. Then

the composition v ◦ ϕ : D∗ → G/M is a surjective group morphism, where v is the group

morphism as defined in Lemma 1. Therefore, the quotient group D∗/ ker(v ◦ ϕ) is a cyclic

group of prime degree. Hence, ker(v ◦ ϕ) is a normal maximal subgroup of prime index of D∗.

2. Assume that M is a maximal subgroup of G of index n. By Lemma 2, the quotient group

G/CoreG(M) is finite. Using the same group morphism ϕ : G → G/CoreG(M), g 7→ g, and

v : D∗ → G as Case 1. Then the composition v ◦ ϕ : D∗ → G/CoreG(M) is also a surjective

group morphism. This follows that

D∗/ ker(v ◦ ϕ)
v◦ϕ
∼= G/CoreG(M).

Then there exists a subgroup H of D∗ such that

H/ ker(v ◦ ϕ)
v◦ϕ
∼= M/CoreG(M),

that is, H/ ker(v ◦ ϕ) is a maximal subgroup of D∗/ ker(v ◦ ϕ). Clearly, H is a maximal sub-

group of index n of D∗.

The previous result seems to be interesting because the existence of normal maximal sub-

groups in K
(

(G, ω)
)

does not depend on the base division ring K and the morphism ω.

Moreover, by applying the previous theorem, we answer affirmatively a conjecture on the exis-

tence of maximal subgroups in division rings. More precisely, the following conjecture posed

in [3].

Conjecture 1 ([3, Conjecture]). Let D be a noncommutative division rings. The unit group D∗

contains a maximal subgroup.

This conjecture holds for some certain classes of division rings (see [2–4]). However, it is

still open in general. In this paper, we show this conjecture holds for the Mal’cev-Neumann

division rings of free groups. We note that almost all division rings mentioned in [3] for which

the conjecture holds are finite dimensional over its center. The following corollary is an infinite-

dimensional case.
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Corollary 2. Let G be a noncyclic free subgroup, K be a division ring, ω : G → Aut(K) be

a group morphism, and D = K
(

(G, ω)
)

be the Mal’cev-Neumann division ring of G over K

with respect to ω. Then D∗ contains infinitely many normal maximal subgroups.

Proof. Assume that the free group G has the rank at least two. Select a generator x of G. Let

Cp be the cyclic group of prime order p. Assume that Cp = 〈c〉. Define a map ϕ : G → Cp

as follows: x 7→ c and y 7→ 1 for any generator y of G such that y 6= x. According to the

universal property of the free group, the map ϕ is a group morphism. Moreover, ϕ is surjective.

Hence, since Cp is simple, the kernel ker(ϕ) is a normal maximal subgroup of index p of G.

According to Theorem 1, the multiplicative group D∗ also has a maximal subgroup of index p,

and obviously this subgroup is normal in D∗. Thus, D∗ has infinitely many normal maximal

subgroups.

Now, we will present a description of a normal maximal subgroup in the special case, when

the base division ring K is a field and ω is trivial, that is, ω(g) = IdK for every g ∈ G. In this

case, we write shortly K
(

(G)
)

for K
(

(G, ω)
)

. To show the next main result, we borrow the

following lemma.

Lemma 3. Let G be a noncyclic free group and F be a field. For every α ∈ F
(

(G)
)

with

y = v(α) > 1, there exists β ∈ F
(

(G)
)∗

such that

βαβ−1 =
∞

∑
i=n

aiy
i,

where n ∈ Z and ai ∈ F for every i ≥ n.

Proof. It follows from [1, Lemma 4.2].

Theorem 2. Let G be a noncyclic free group, F be a field and D = F
(

(G)
)

be the Mal’cev-

Neumann division ring of G over F. Assume that M is a normal maximal subgroup of D∗.

Then M is the normal closure in D∗ of the set

S :=

{

α =
∞

∑
i=n

aiy
i : α ∈ M, n ∈ Z, y > 1

}

.

Moreover, if v(M) 6= G, then M is the normal closure in D∗ of the set

{

α =
∞

∑
i=0

aiy
i : α ∈ M, y > 1

}

⋃

v(M).

Proof. Let N be the normal closure in D∗ of S. It is obvious that N ⊆ M. To show the reverse

inclusion, we may assume that α is an element of M. Put y = v(α).

Case 1. Let y > 1. By Lemma 3, there exists β ∈ D∗ such that βαβ−1 =
+∞

∑
i=n

aiy
i, where n ∈ Z

and ai ∈ F for every i > n, an ∈ F∗. Since α ∈ M and M is normal in F
(

(G)
)∗

, βαβ−1 ∈ M.

Since y > 1, we have βαβ−1 = ∑ aiy
i ∈ S ⊆ N. This leads to

α = β−1
(

∑ aiy
i
)

β ∈ N.
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Case 2. Let y < 1. Then v
(

α−1
)

> 1. By repeating the arguments in the proof of Case 1 for

α−1, one has α−1 ∈ N, which also deduces that α ∈ N.

Case 3. Let y = 1. By Corollary 1, either v(M) = G or v(M) is maximal in G. Since G is

a noncyclic free group, v(M) 6= {1}. Select β ∈ M such that v(β) 6= 1. Then αβ ∈ M and

v(αβ) 6= 1. According to the two above cases, αβ ∈ N and β ∈ N. Thus, α = (αβ)β−1 ∈ N.

The three cases prove that M = N, that is, M is the normal closure of S.

Now, assume that v(M) 6= G. Put

T =

{

α =
∞

∑
i=0

aiy
i : α ∈ M, y > 1

}

.

By Corollary 1, v(M) ⊆ M. Since M is normal in D∗, the normal closure of T ∪ v(M) is

contained in M. For α =
∞

∑
i=n

aiy
i ∈ S, we have

α =

(

∞

∑
i=0

ai+nyi

)

yn ∈
〈

T, v(M)
〉

.

It follows that 〈S〉 ≤ 〈T, v(M)〉. Since M is the normal closure of S, M is contained in the

normal closure of T ∪ v(M). Hence, M is the normal closure of T ∪ v(M).
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Метою цiєї роботи є опис нормальних максимальних пiдгруп одиничних груп кiлець з дi-

леннями Мальцева-Неймана. Як наслiдок, ми ствердно вiдповiдаємо на гiпотезу, висунуту в

[Akbari S., Mahdavi-Hezavehi M. On the existence of normal maximal subgroups in division rings. J.

Pure Appl. Algebra 2002, 171 (2–3), 123–131], стосовно кiлець з дiленнями Мальцева-Неймана

для нециклiчних вiльних груп.

Ключовi слова i фрази: кiльце з дiленням, кiльце з дiленням Мальцева-Неймана, максималь-

на пiдгрупа, нормальна максимальна пiдгрупа.


