References

  1. Achari J. Non-unique fixed points in \(L\)-spaces. Publ. Inst. Math. (Beograd) (N.S.) 1977, 21 (33), 5–7.
  2. Agarwal R.P., Meehan M., O'Regan D. Fixed Point Theory and Applications. In: Bertoin J. (Ed.) Cambridge Tracts in Mathematics, 141. Cambridge Univ. Press, Cambridge, 2001.
  3. Amini-Harandi A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, article number 204 (2012). doi:10.1186/1687-1812-2012-204
  4. Babenko V., Babenko V., Kovalenko O. Fixed points theorems in Hausdorff M-distance spaces. 2021. arXiv: 2103.13914. doi:10.48550/arXiv.2103.13914
  5. Cho Y.J., Jleli M., Mursaleen M., Samet B., Vetro C. (Ed.) Advances in metric fixed point theory and applications. Springer, Singapore, 2021.
  6. Ćirić Lj.B. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.) 1971, 12 (26),–26.
  7. Ćirić Lj.B. On contraction type mappings. Math. Balkanica (N.S.) 1971, 1, 52–57.
  8. Ćirić Lj.B. A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 1974, 45 (2), 267–273. doi:10.2307/2040075
  9. Debnath P., Konwar N., Radenović S. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Forum for Interdisciplinary Mathematics, Springer Nature, Singapore, 2022.
  10. Fréchet M. Les espaces abstraits. The Mathematical Gazette, Gauthier-Villars, 1928.
  11. Granas A., Dugundji J. Fixed Point Theory. Springer Science & Business Media, 2003.
  12. Hitzler P., Seda A.K. Dislocated topologies. J. Electr. Eng. 2000, 51 (12), 3–7.
  13. Irwin J.M., Kent D.C. Sequential Cauchy spaces. Math. Slovaca 1979, 29 (2), 117–130.
  14. Kasahara S. On some generalizations of the Banach contraction theorem. Publ. RIMS, Kyoto Univ. 1976, 12 (2), 427–437.
  15. Kelley J.L. General Topology. Graduate Texts in Mathematics, Springer, New York, 1975.
  16. Kirk W., Shahzad N. Fixed Point Theory in Distance Spaces. Springer, New York, 2014.
  17. Kirk W.A., Shahzad N. Generalized metrics and Caristi's theorem. Fixed Point Theory Appl. 2013. doi:10.1186/1687-1812-2013-129
  18. Matthews S.G. Partial metric topology. General Topology and Applications 1994, 728 (1), 183–197. doi:10.1111/j.1749-6632.1994.tb44144.x
  19. Meir A., Keeler E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. doi:10.1016/0022-247X(69)90031-6
  20. Nieto J.J., Pouso R.L., Rordríguez-López R. Fixed point theorems in ordered abstract spaces. Proc. Amer. Math. Soc. 2007, 135 (8), 2505–2518. doi:10.1090/S0002-9939-07-08729-1
  21. Novák J. On some problems concerning multivalued convergences. Chechoslovak Math. J. 1964, 14 (89), 548–561.
  22. O'Neill S.J Partial metric, valuations and domain theory. Ann. N. Y. Acad. Sci 1996, 806 (1), 304–315. doi:10.1111/j.1749-6632.1996.tb49177.x
  23. Petrusel A., Rus I. Fixed point theorems in ordered \(L\)-spaces. Proc. Amer. Math. Soc. 2006, 134 (02), 411–418. doi:10.1090/S0002-9939-05-07982-7
  24. Roldan A., Shahzad N. Fixed point theorems by combining Jleli and Samet's, and Branciari's inequalities. J. Nonlinear Sci. Appl. 2016, 9 (6), 3822–3849. doi:10.22436/jnsa.009.06.31
  25. Taylor W.W. Fixed-point theorems for nonexpansive mappings in linear topological spaces. J. Math. Anal. Appl. 1972, 40 (1), 164–173.
  26. Wilson W.A. On semi-metric spaces. Amer. J. Math. 1931, 53 (2), 361–373. doi:10.2307/2370790
  27. Zorich V.A. Mathematical Analysis I. Universitext, Springer Berlin Heidelberg, 2016.