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On the semigroup B.", which is generated by the family .7, of
finite bounded intervals of w

Gutik O.V., Popadiuk O.B.

We study the semigroup B, which is introduced in the paper [Visnyk Lviv Univ. Ser. Mech.-
Mat. 2020, 90, 5-19 (in Ukrainian)], in the case when the w-closed famlly /n generated by the set
{0,1,...,n}. We show that the Green relations 2 and _¢# coincide in BJ", the semigroup B/ is
1somorph1c to the semlgroup 1 (conV) of partial convex order 1somorphlsms of (w, <) of the
rank < n 41, and Bw admits only Rees congruences. Also, we study shift-continuous topologies
on the sem1group B)". In particular, we prove that for any shift-continuous T;-topology T on the
semigroup B every non-zero element of B, 7 is an isolated point of (Bj”, T), B admits the
unique compact shift-continuous Tj-topology, and every wop-compact shift-continuous T;-topology
is compact. We describe the closure of the semigroup BJ"ina Hausdorff semitopological semi-
group and prove the criterium when a topological inverse semigroup B is H-closed in the class
of Hausdorff topological semigroups.
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1 Introduction, motivation and main definitions

We shall follow the terminology of [11, 14, 15,17,36]. By w we denote the set of all non-
negative integers.

Let #Z(w) be the family of all subsets of w. For any F € #(w) and n,m € w we put
n—m+F={n—m+k:ke€F}if F# @andn—m+ @ = &. Asubfamily # C Z(w) is
called w-closed if FfN (—n+ F,) € % foralln € wand F, F, € %.

We denote [0;0] = {0} and [0;k] = {0, ..., k} for any positive integer k. The set [0; k|, k € w,
is called an initial interval of w.

A partially ordered set (or shortly a poset) (X, <) is the set X with the reflexive, antisymmetric
and transitive relation <. In this case the relation < is called a partial order on X. A partially
ordered set (X, £) is linearly ordered or is a chain if x; < xp or xp < x for any x1, x, € X. A map
f from a poset (X, <) onto a poset (Y, €) is said to be an order isomorphism if f is bijective
and x < yif and only if f(x) € f(y). A partial order isomorphism f from a poset (X, <) into
a poset (Y, <€) is an order isomorphism from a subset A of a poset (X, <) into a subset B of a
poset (Y, €). For any elements x of a poset (X, <) we denote

tex={yeX:x=y} and |cx={yeX:y=ux}
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A semigroup S is called inverse if for any element x € S there exists a unique x~! € S such
that xx 'x = x and x'xx~! = x~1. The element x ! is called the inverse of x € S. If S is an
inverse semigroup, then the mapping inv: S — S which assigns to every element x of S its
inverse element x ! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is
an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as
a band (or the band of S). Then the semigroup operation on S determines the following partial
order < on E(S): e < fif and only if ef = fe = e. This order is called the natural partial order
on E(S). A semilattice is a commutative semigroup of idempotents. By (w, min) or wmin we
denote the set w with the semilattice operation x - y = min{x, y}.

If S is an inverse semigroup, then the semigroup operation on S determines the following
partial order < on S: s < t if and only if there exists e € E(S) such that s = fe. This order is
called the natural partial order on S [40].

For semigroups S and T,amap h: S — T is called a homomorphism if b(s1 -s2) = h(s1) - h(s2)
forall s1,s, € S.

A congruence on a semigroup S is an equivalence relation € on S such that (s, f) € € implies
that (as,at), (sb,tb) € € for all a,b € S. Every congruence ¢ on a semigroup S generates
the associated natural homomorphism €°: S — S/€ which assigns to each element s of S its
congruence class [s]¢ in the quotient semigroup S/¢€. Also every homomorphism h: S — T of
semigroups S and T generates the congruence ¢, on S: (s1,s2) € € if and only if h(s1) = h(s2).

A nonempty subset I of a semigroup S is called a left ideal if SI C 1, a right ideal if IS C I,
and a (two-sided) ideal if it is both a left and a right ideal. Every ideal I of a semigroup S
generates the congruence €; = (I x I) UAg on S, which is called the Rees congruence on S.

Let .7, denote the set of all partial one-to-one transformations of A together with the fol-
lowing semigroup operation:

x(aB) = (xa)p if x € dom(af) = {y € doma: ya € dom B} for a,pe 9.

The semigroup .#) is called the symmetric inverse semigroup over the cardinal A (see [14]). For
any a € .#, the cardinality of doma is called the rank of « and it is denoted by ranka. The
symmetric inverse semigroup was introduced by V.V. Wagner [40] and it plays a major role in
the theory of semigroups.

Put /7' = {a € J): ranka < n} forn € {1,2,3,...}. Obviously, .#]" are inverse semi-
groups, ;' is an ideal of .#, for each n € {1,2,3,...}. The semigroup .#} is called the sym-
metric inverse semigroup of finite transformations of the rank < n [26]. By

<x1 Xy o xn>

Yyiy2 - Yn

we denote a partial one-to-one transformation which maps x; onto y1, xp onto y», ..., and x,
onto y,. Obviously, in such case we have x; # X; and y; # Y; fori #j,i,j € {1,2,3,...,n}.
The empty partial map @: A — A is denoted by 0. It is obvious that 0 is zero of the semi-
group 7"

For a partially ordered set (P, <), a subset X of P is called order-convex, if x < z < y and
{x,y} C Ximplies thatz € X forall x,y,z € P [31]. It is obvious that the set of all partial order
isomorphisms between convex subsets of (w, <) under the composition of partial self-maps
forms an inverse subsemigroup of the symmetric inverse semigroup .#, over the set w.
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We denote this semigroup by .7, (conv). We put .#/(conv) = .7, (conv) N .#" and it is
obvious that f[,’(coﬂ) is closed under the semigroup operation of .7/, and the semigroup
71 (conV) is called the inverse semigroup of convex order isomorphisms of (w, <) of the rank < n.

The bicyclic monoid € (p,q) is the semigroup with the identity 1 generated by two ele-
ments p and g subjected only to the condition pg = 1. The semigroup operation on €(p, q) is
determined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7mir\{l,m}.
It is well known that the bicyclic monoid % (p, q) is a bisimple (and hence simple) combina-
torial E-unitary inverse semigroup and every non-trivial congruence on % (p,q) is a group
congruence [14].
On the set B, = w x w we define the semigroup operation

“ 7

in the following way

N (i1 — 1 +iz 2), if j1 <ip
i1, 1) - (ia, o) = A G
() o) = { (22Tl B
It is well known that the semigroup B,, is isomorphic to the bicyclic monoid by the mapping
h: €(p,q) — Bw, 4p' — (k,1) (see [14, Section 1.12] or [35, Exercise IV.1.11(ii)]).
By R and w, we denote the set of real numbers with the usual topology and the infinite

countable discrete space, respectively.
Let Y be a topological space. A topological space X is called:

* compact if any open cover of X contains a finite subcover;
* countably compact if each closed discrete subspace of X is finite;
* Y-compact if every continuous image of X in Y is compact.

A topological (semitopological) semigroup is a topological space together with a continuous
(separately continuous) semigroup operation. If S is a semigroup and 7 is a topology on S
such that (S, 7) is a topological semigroup, then we shall call T a semigroup topology on S, and
if T is a topology on S such that (S, T) is a semitopological semigroup, then we shall call T a
shift-continuous topology on S. An inverse topological semigroup with the continuous inversion
is called a topological inverse semigroup.

Next we shall describe the construction which is introduced in [23].

Let B, be the bicyclic monoid and .% be an w-closed subfamily of &2 (w). On the set By, X .7
we define the semigroup operation “-” in the following way

(h —j1+i2jo, (1 —i2+ F)NE), if j1 <ip;

Gt F) (o B2) = { (L —i+jp, AN (2 —j1 +B)), if 1 >0

In [23] it is proved that if the family .# C Z(w) is w-closed then (B, x .Z,-) is a semi-
group. Moreover, if an w-closed family .# C #(w) contains the empty set @ then the set
I ={(i,j,2):i,j € w} is an ideal of the semigroup (B, X .%,-). For any w-closed family
F C P (w) the following semigroup

g7 _ [ BoxZ,)/1, if €7
© =\ BoxZF,), ifo¢F
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is defined in [23]. The semigroup B;, generalizes the bicyclic monoid and the countable semi-
group of matrix units. It is proved in [23] that B, is a combinatorial inverse semigroup and
Green'’s relations, the natural partial order on Bf; and its set of idempotents are described. The
criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup B;, and when
B has the identity, is isomorphic to the bicyclic semigroup or the countable semigroup of
matrix units are given. In particular, in [23] it is proved that the semigroup B, is isomorphic
to the semigrpoup of wxw-matrix units if and only if .% consists of a singleton set and the
empty set.

The semigroup B, in the case when the family .7 consists of the empty set and some
singleton subsets of w is studied in [21]. It is proved that the semigroup B, is isomorphic to the
subsemigroup ., (Fmin) of the Brandt w-extension of the subsemilattice (F, min) of (w, min),
where F = |J.Z. Also topologizations of the semigroup B;, and its closure in semitopological
semigroups are studied.

For any n € w we put .%, = {@, [0;0],10;1],[0;2],..., [O;n]}. It is obvious that .%, is an
w-closed family of w.

In this paper, we study the semigroup B.". We show that the Green relations 2 and A
coincide in B}", the semigroup BJ" is isomorphic to the semigroup .7/ ! (m), and B ad-
mits only Rees congruences. Also, we study shift-continuous topologizations of the semigroup
B.". In particular, we prove that for any shift-continuous T;-topology T on the semigroup B)"
every non-zero element of B." is an isolated point of (BJ",T), B admits the unique compact
shift-continuous T;-topology, and every wy-compact shift-continuous T;-topology is compact.
We describe the closure of the semigroup B." in a Hausdorff semitopological semigroup and
prove the criterium when a topological inverse semigroup B." is H-closed in the class of Haus-
dorff topological semigroups.

2 Algebraic properties of the semigroup B."

An inverse semigroup S with zero is said to be 0-E-unitary if 0 # e < s, where e is an
idempotent in S, implies that s is an idempotent [32]. The class of 0-E-unitary semigroups
was first defined by Maria Szendrei [37], although she called them E*-unitary. The term 0-E-
unitary appears to be due to J. Meakin and M. Sapir [33].

In the following proposition we summarise properties which follow from properties of
the semigroup B;, in the general case. These properties are corollaries of the results of the
paper [23].

Proposition 1. For any n € w the following statements hold:

(1) BJ" is an inverse semigroup, namely 0~! = 0 and (4,7, [0;k]) 1= (j,1,[0;k]), for any
i,j,k € w;

(2) (i,j,[0;k)) € BJ" is an idempotent if and only if i = j;
(3) (in,i1, [0:k1)) < (i2 i2, 03 ko)) in E (Bfn) if and only if iy > ip and iy + k1 < i» + ko and

this natural partial order on E <Bf ") is presented on Figure 1;

(4) (i,1,[0;n]) is a maximal idempotent of E <Bf”) foranyi € w;
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(0,0, [omn\u:, [0;7]) 22, [Om])\i,s, [omn\(t;, [0;»1{A (i,i,[0; * i+1, 0 n)
(0,0, [0;n—1]) (1,1,[0;n—1}) (2,2,[0;n-1]) (3,3,[0;n—-1]) (4,4,[0;n-1)) (1,4,[0;n—1)) (i+1,i+1,[0;n—1])
| ! } IS I ~ I

Figure 1. The natural partial order on the band E(BZ")

(5) (i,1,[0;0]) is a primitive idempotent of E <Bf”> foranyi € w;
(6) (i1, j1, [0;k1)) % (ia, ja, [0;k2)) in B if and only if iy = iy and ky = k;
(7) (il,jl, 0; kl])f(iz,jz, [0; kz]) in Bf" ifand only if j; = j, and ky = ky;
(8) (i1, 1, [0; k1)) (i, o, [0; k2] ) in B if and onlyif iy =iy, j1 = joiky = ko,
9) (il,jl, 0; kl]) 9(1‘2,]'2, [0; kz]) in B’f” if and only if ki = ky;
(10) 2 = 7 in B

(11) (il,jl, [O;kl]) < (iz,jz, [O;kz]) in Bf” if and only if iy > iy, i1 —j1 = ip — j» and
i1 +ky <ix+k;

(12) B/ is a 0-E-unitary inverse semigroup.

Proof. Statements (1)—(5) are trivial. Statements (6)—(8) follow from [32, Proposition 3.2.11]
and corresponding statements of [23, Theorem 2].

(9) (=) Let (i1, j1, [0;k1]) 2 (i, jo, [0;k2]) in B, Then there exists (iy, jo, [0;ko]) €B" such

that (i1, j1, [0;k1])-Z (io, jo, [0; ko]) and (io, jo, [0; ko])Z (i2, jo, [0; k2] ). By statement (6) we have
that ip = i and kg = ky, and by (7) we get that jo = j; and k; = ko. This implies that k1 = k;.
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(<) Let (i1, j1,[0;k]) and (i, jo, [0;k]) be elements of BJ". By statements (6) and (7)
we have that (i1, j1,[0;k])Z (i1, j, [0, k]) 2 (i2, j2, [0;k]) and hence (i1, f1,[0;k]) 2(iz, j2, [0;k])
in B

(10) It is obvious that the Z-class of the zero 0 coincides with {0}. Also the _#-class of the
zero 0 coincides with {0}.

Fix an arbitrary non-zero element (iy,jo,[0; ko]) of B.". By (9) the Z-class of (i,jo,[0; ko))
is the following set D = { (i, ], [0;ko]): i,j € w}. By (3) every two distinct idempotents of the
set D are incomparable, and hence every idempotent of the Z-class of (i, jo, [0; ko] ) is minimal
with the respect to the natural partial order on BJ". By [32, Proposition 3.2.17], if the Z-class
Dy has a minimal element then D, = ], and hence the Z-class of (io, jo, [0; ko]) coincides with
its _#-class. Therefore we obtain that ¥ = _# in B’f”.

(11) By [23, Proposition 2], the inequality (i1, j1, [0;k1]) < (i2, j2, [0; k2]) is equivalent to the
conditions

[O;kl] Cir—i1+ [O;kz] = jz — 71+ [O}kz]r

which are equivalent to
ip—ip=J2—j1 <0 and ki <ip—ip+kp.
It is obvious that the last conditions are equivalent to
i1 = iy, ih—j1=i—j and  i1+k <ix+ky,

which completes the proof of the statement.
Statement (12) follows from (11). O

Lemma 1. Letn € w. Then 1< (i, jo, [0; ko]) and | < (io, jo, [0; ko)) are finite subsets of the semi-
group B for any its non-zero element (io, jo, [0; ko)), io, jo € w, ko € {0,...,n}.

Proof. By Proposition 1(11) there exist finitely many i,j € w and k € {0,...,n} such that
(1,7, [0;k]) < (io, jo, [0; ko)) for some i,j € w and hence the set |.< (i, jo, [0; ko)) is finite.

The inequality k < n and Proposition 1(11) imply that there exist finitely many i,j € w and
k € {0,...,n} such that (ip, jo, [0;ko]) < (7,7, [0;k]), and hence the set 1< (io, jo, [0; ko)) is finite,
too. U

Lemma 2. Ifn € w then forany«, € B/ the seta - B - B is finite.

Proof. The statement of the lemma is trivial when o« = 0 or = 0.
Fix arbitrary non-zero-elements & = (iy,ja, [0;k]) and p = (iﬁ,j/;, 0; kﬁ]) of Bf”. If
i2ju+n+1lorj>ig+n+1thenforanyk € {0, ...,n} we have that

(iay jur [0 ka]) - (1,7, [0:K]) = (i,x et i (ja—i+[0k]) N [o;k]) -
and

Hence there exist only finitely many (,j,[0;k]) € BJ" such that a - (i,],[0;k]) - B # 0. This
implies the statement of the lemma. O
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Lemma 3. Let n € w. Then for any non-zero elements (il,jl, 0; kl]) and (iz,jz, 0; kz]) of BZ%;”
the sets of solutions of the following equations

(i1,j1,[0;k1]) - x = (i2, j, [0; k2)) and  x- (i1, j1,[0;k1]) = (i2, 2, [0; k2])
in the semigroup B." are finite.

Proof. Suppose that x is a solution of the equation (i1, j1, [0;k1]) - x = (i2, j2, [0;k2]). The def-
inition of the semigroup operation on the semigroup B;," implies that x # 0 and k; > k.
Assume that x = (i,],[0;k]) for somei,j € w, k € {0,1,...,n}. Then we have that

(12,12, [0; ka]) = (i1, /1, [0; k1)) - (i, ], [0;K])
<i1 —j1+i7 (i —i+[0k]) N [O;k]), if j1 < i;
= ¢ (i1, [0; k1] N [0;K]), if j; = i;
(i =i+ (k] 0 =i+ [0K) ), i ja >
We consider the following cases.

1 Ifj; <itheni =iy —i1+j1,j =jo, k > kyand
n—itki=jp—ib+tih—jitki=i—ib+k >k
2. Ifjy =ithenj=j,and k > k.
3. Ifjl > itheni = iz,j:jz—jl—{—i :jZ_j1+i2 andi—j1+k: in —jl +k > ky.
Since k < 1 the above considered cases imply that the equation (i1, j1, [0;k1]) - x=(i2, j2, [0; k2])

has finitely many solutions.

The proof of the statement that the equation x - (i1, 1, [0;k1]) = (i2, 2, [0; k2]) has finitely
many solutions is similar. O

Theorem 1. For an arbitrary n € w the semigroup BJ" is isomorphic to an inverse subsemi-
group of 1, namely B,," is isomorphic to the semigroup .#/*+1(conv).

Proof. We define a map J: B.," — .#/+1 by the formulae 3(0) = 0 and
30, 0;K]) = (Ji i)
foralli,j € wand k € {0,1,...,n}.

It is obvious that so defined map J is injective.
Next we shall show that J: BJ" — .7/ isa homomorphism.
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It is obvious that

3(0- (ij,[0:K) ) =3(0) =0 =0- (1127 1) = 3(0) - 3(i,j, [0:K),
and

3((1',]', [0;K]) -o) ~3(0)=0= (;i;iﬂ - ;iji) -0=73(i,j,[0;K]) - 3(0)

for any non-zero element (i, j, [0; k]) of the semigroup B,".
Fix arbitrary 1,1, j1,j» € w and k1, ky € {0, ..., n}. In the case when k; < k; we have that

3(ir = j1 + iz o, (j1 = i2 + [0 ]) N[0 Ka) ), if <o
3<(i1,j1,[0; k1)) - (2, j2, [0; kz]))z J(i1, 72, [0; k1] N [0; k2)), if j1=ip;
3(ir,j1 = ia + o [0 KtV (i = o + [0 Ka]) ), i o>
( 3(0), ifj; <ip and j; —ip+k; <O0;
j(ll—]1—|—12,]2, [O 0]) ifj; <ip and j; —ip+k; =0;
j(ll —]1+12,]2, [O ]1 —12+k1]) ifjl < i2 and 1 < ]1 —12+k1 kz,
_ I (i1, j2, [0 k1)), if j1 = ip;
3(11,]1—12 +]2, [O kl]) ifjl >i2 and kl gil—j1+k2;
3(11,]1 —ip 42, (0,0 — 1 + kz]) ifj; >ip and ky > i1 —j1 +ko;
3(11,]1—12 + j2, [0; 0]) ifj1 >ip and j; =iy +ky;
\ 3(0), ifj; >ip and j; > i+ ko
(0, ifj1 <ip and j; —ix+k <O0;
ll‘;ﬁ) , ifjy <iy and ji —ip+k =0
A o
5 ﬁ+12 ]‘2+;'1J—ri21+k1> , if n<i and 1 < ]1 — i+ kl ko;
_ aoae), if j1 = iz;
e i), i > and Ky < — i+
i TR iy >0y and Ky > i — i+ Ko;
0, if jl > i, and jl > ir + ko
(0, ifj1 <ip and j; —ix+k <O0;
lljz"l), ifjy <iy and j1 —ir+k =0;
i1— gﬂz ]2+;+Zl+k1> ifj1 <ip and 1< j;—ip+ky <ky;
) (hhie) if j1 = in;
G i), i > and Ky <da— 1+ ko
iy IR iy >0y and Ky > i — i+ ko;
0, if jl > 1 and jl > iy +ky
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and

j(illjll [0/ kl]) : 3(12/]2/ [O/ kZ])

_ (i btk ) | (2 itk
“\ e itk j2 - jatke

(0, ifj) <ip and j;+ky <ip;
("), ifj <iy and i +ki = i;
(" ), i <i and ik > i

) (k) it = i
<]'172+]'2 o Zigﬂq) , ifjp>1 and j1+k <ip+ky;
(joi,, 20 it > i and ji+ki > itk
(5 ) ifj; >i, and j, =i+ ky;
0, ifj; >i, and j, > ip+ k.

\

In the case when k; > k, we have that

3((i1, j1,[0; k11)- (i, 2, [0; k2]))

]
J(i1 — j1 + i, jo, (1 — 2+ [0;k1])N[0; ko)), if j1<ia;
=< J(i1, 2, [0;k1]N[0; k2]), if jy=ip;
L (i, j1 — i + 2, [0 k1N (i — j1 + [0;k2])), if j1>i
3(0), ifj; <ip and j1 —ix+k <O;
J3(iy — j1 + 12, j2,[0;0]), ifj1 <ip and j; —ip+k; =0;
J(iy — 1 +1i2,j2,[0; 1 —ip + k1)), ifj1 <ip and 1< ji+ky <ip+ky;
_ J(i1 — j1 + 12, j2, [0; k2]), ifj1 <ip and j; +ky >ip+ky;
| 3672 [0:ka), if j1 = ia;
J(i1, 1 — 2+ jo, [0;ia — j1 + k2]), ifj1 >ip and ip —j1 +ky > 0;
J(i1, j1 — iz + j2,[0;0]), ifjy >ip and ip—j1+ky =0;
[ 3(0), ifj; >i and ip —j1+ky <0

ifj; <ip and j; —ip+k; <0;

N

0

(“gﬁ) ifjy <ir and ji —ir+k = 0;

(fpre ) iR < and i+ < btk
_ <i17g+i2 iliﬁﬂzjkz) , ifjy <ip and j; +ky > ip +ky;

(o ) it = i

<]-1,2+]-2 iligﬂfjkz) , ifj1 >ip and i —j1 +ky > 0;

<]-172+]-2>, ifj; >i and i —j;1 +ky =0;

0

ifj;>i and ip —j1 +k <0

~
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(0, ifj; <ip and j; —ip+k; <O0;
il}zkl), ifj; <ip and j; —ip+k; =0;
ot ), i <i and ji+k <otk

L) (R TR i <y and itk > i+ ko;
Lk tiw
]'1—2+jz ngﬂ‘zjkz) , ifj1>i and j; <ip+ky;
) ifji >i and ji =i +ky
0, ifjl > i, and jl > ip + ko

and

— — i itk s otk
3(i1, j1, [0 k1)) - 3(iz, o, [0; ko)) = <;i ;iki) : <;§_ ;iiki)

0, ifj1 <ip and j1+k <ip;

ilgkl), ifj1 <ip and ji+ky = ia;

ot ), it <ioand ik <h+ky;
) (MR TR i <y and it > itk

noaey, ifj = iy

o TR if > i and i <o+ ko

e ) ifji > i and ji =i +ky

0, ifjl > 1, and jl > iy + kp.

By [35, Lemma I1.1.10] the homomorphic image J(B.") is an inverse subsemigroup
of #1T1,

It is obvious that J(0) is the empty partial self-map of w and it is by the assumption is an
order convex partial isomorphism of (w, <). Also the image

30,7, 0:K) = (§ 753 )

is an order convex partial isomorphism of (w, <) foralli,j € wand k € {0,1,...,n}. The defi-
nition of J: B;," — .#/'+1 implies that its co-restriction on the image .#/ 1 (con@) is surjective,
and hence 3: BJ" — /"1 (conv) is an isomorphism. O

Remark 1. Observe that the image J (BJ") does not contain all idempotents of the semigroup
I, especially (J3) ¢ 3 <Bf"> for any n > 1. But by [23, Proposition 4], the semigroup

B_," is isomorphic to the semigroup of wx w-matrix units, and hence B is isomorphic to the
semigroup ¥}

A subset D of a semigroup S is said to be w-unstable if D is infinite and for any 2 € D and
an infinite subset B C D, we have aB U Ba g D [20]. A basic example of w-unstable sets is
given in [20]: for an infinite cardinal A the set D = .#/* \ .#/"~! is an w-unstable subset of .7/".
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For any n € w the definition of the semigroup operation on B implies that its subsemi-
group B.* is an ideal of B,," for any k € {0,...,n}. Also, since .Zk+1(conv) \ 7k (conv) is
an infinite subset of .71 (conv) for any k € {0,...,n}, the above arguments and Theorem 1
imply the following assertion.

Lemma 4. For an arbitrary n € w the subsets B\ {0} and B/ \ B! are w-unstable of BL"
foranyk € {1,...,n}.

Proof. We shall show that the set B/ \ B! is w-unstable, and the proof that the set B\ {0}
is w-unstable is similar. _
Fix an arbitrary distinct (il, 71, 10; k] ) , (iz, 2, [0; k]) € Bk \ Bjk’l. The definition of the semi-
group operation of B;" implies that for any (i, , [0;k]) € BJ*\ B.)*! we have that
(i =i+ ips s (= ip + [0:K) N [03K]), i j < i
(i1, [0:K]) - (i, [0K]) = (i, [0:K] NV [0: ), if j = ip;
(ir = i+ jp [0:K] 1 (ip =+ [0:K]) ), i > i
for p € {1,2}. In the case when iy # i; we obtain that

(i, 10:K1) - { (in, ju, [0:K]), (i o, [0 K1) § 2B\ B
In the case when j; # j, the proof is similar. O
Definition 1 ([20]). An ideal series for a semigroup S is a chain of ideals
hchCh<C - Cly=5S.

This ideal series is called tight if I is a finite set and Dy = I} \ I;_1 is an w-unstable subset for
eachk € {1,...,m}.

Lemma 4 implies the next result.

Proposition 2. For an arbitrary n € w the following ideal series
{0} B CBJ C.- CBI ' C B
is tight.

Proposition 3. For any non-negative integer n and arbitrary p € {0,1,...,n — 1} the map
bp: B." — B." defined by the formulae by(0) = 0 and

oo [0, ifke{0,1,...,p};
by (i, ], [0;k]) _{ (1,j, [0;k—p—1]), ifke{p+1,...,n}

. . . . 7, . . Fn—p—1
is a homomorphism which maps the semigroup B,," onto its subsemigroup B,," """

Proof. First we shall show that the map by: B." — B defined by the formulae hy(0) = 0 and

o [, ifk=0;
bo(i, j, [0;K]) = { (i,j, [0k —1]), ifke{1,...,n}
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is a homomorphism.
It is obvious that

h0(0) - bo(,7,[0]) =0-0=ho(0) = bho(0- (3], [0]))
and
00 (i,7,0]) - bo(0) = 00 = tp(0) = bo( (i, 0]) -0)

foranyi,j € w.
Fix arbitrary iy, iy, j1,j2 € w and positive integers k1 and kp. In the case when k; < kp we
have that

bo (i1, j1, [0;k1]) - bo (2, 2, [0; k2] )
= (illjll [O/ kl - 1]) : (i2/j2/ [O/ k2 - 1])
( <i1 —j1+i2, g2, (1 —i2 + [0k1 — 1]) N [0; Ky — 1]>, if j1 <ip;

= (il,jz, [O;kl — 1] N [O;kz — 1]), ifjl =1y
(ivj1 = 2+ o, [0k = 1] 0 (12 = ju + [0k = 1]) ), if jo > i
0, ifj1<i2 and jl — i+ ki — 1<0;
(11 —]1 + 12,]2, [O ]1 — 12 +k1 — 1]) ifj1<i2 and 0<]1 — i2 + kl — 1<k2 —1;
_ ) (2 [0k = 1), if j1=ia;
- (11,]1 — 12 —|—]2, [O k1 ]) ifj1>i2 and k1 — 1<i1 —jl + kz -1
(z =i+ o, [0l — 1+ ko —1]), ifji>ip and ky — 1> — ji +kp — 120;
0, ifj1>i2 and k1 — 1>0; _jl +ky —1<0
( 0, ifj1<i2 and jl—i2+k1 <1,
(11—]1+12,]2,[0 ]1—12+k1—1]) ifjl <i2 and 1<j1—i2—}—k1<k2;
. (11,]2, O k1 ]) ifjl = iz;
N (11,]1 — 12 —{—]2, [O k1 ]) ifjl > iz and kl < iz —jl +k2;
(Z 1—12—{—]2,[0 12—]1+k2—1]) ifj1>i2 and k1>i2—j1+k2>1;

0

\ 4

ifji >ip and k1 >ip —j1+ky <1,

and

hO((illjll[O; kl]) ’ (iZ’jZI [0/ kz]))

ho(il —j1+i2, jo, (h—i2+[0;k1]) N[0 ko)), if j1<ip;
— 11,]2, [0 kl] [O kz]) ifjlziz;
\ (l ,j1—i2+j2, [0; k1 ]N (12—j1+[0;k2])>, if j1>ip
( 0(0), ifjj <ip and j; —ip+k <O
(11 — 1+ 12,2, [0 O] [0 kz]) ifjj <ip and j; —ix+k =0;
(11 —]1 + 12,]2, [0 ]1 — 1 —}—kﬂ) ifjl <ip and 1< ]1 — i +k1 kz,
= (11,]2, 0 kl ) ifjl = iz,
bo (i1, j1 — i + jo, [0 k1)), ifji >i and ky <ip—j1+ko;
(11,]1—12+]2,[ ,kl]ﬂ[O;O]), ifj1>i2 and kl >i2—j1+k220;
L () ifj1>i2 and k1>i2—j1+k2<0
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In the case when k; >

0),
i1 — j1+i2,72,10;0]),

i1, 1 — 2 + j2,[0;0]),
bo(0),

0,
0,

0,
\ 0’

0,

(
(11,]2, O k1 — 1])
(i
(

bo(

bo (i

bo(in — j1+ 12, 2, [0; 1 — iz + Kq]),
= (11,]2, 0 kl )

bo (i

bo (i1

bo(

111]1 - 12 +]2/ [0 kl])

bo(i1 — j1 + 2, 2, [0;1 — i + k1),
=< bo(ir, j2, [0 k1)),
bo(i1,j1 — iz + jo, [0; k1)),

i1, 1 — iz + jo, [0;k1 — 1),
11,]1—12+]2,[0 12—]1—{—]{2—1]) ifj1 >1, and ky >i2—j1+k2>1;

k>, we have that

ifj1<i2 and jl—i2+k1<0;

ifj1<i2 and jl—i2+k1—0

ifj1 <ip and 1< j3—ip+ky <ky;

if 1 = ip;

ifjl >1 and k; < iz—j1+k2;

ifj; >ip and ky > i —j1+ky=0;

ifj; >1 and ky >ip —j1+k2 <O

ifj1<i2 and jl—i2+k1<0;

ifj1<i2 and jl—i2+k1—0

ifj1 <ip and 1< j;—ip+ky <ky;

if j1 = ip;

ifjl > iy and k; < iz—jl + ko;

ifj; >ip and ky > i —j1+ky=0;

ifj; >i and ky >ip —j1+k2 <O
ifj1<i2 and jl—i2+k1<1

i —j1+i2, o, (01 —ia4+ ki —1]), ifj1 <ip and 1<ji3 —ir+ki <ko;

if j1 = in;
ifj1 >ip and kg <ip —j1 +ko;

ifj; >ip and ky >ip—j1+ky <1

bo (i1, 71, (05 k1]) - bo (2, j2, [0; ka]) = (i1, 1, [0 k1 — 1]) - (i2,j2, [0;k2 — 1])

and

\

( <i1 —j1+i2, 2, (1 — i+ [0;ky —

(il,jz, [O;kl — 1] N [O;kz —1

/N

0,

i1—j1+ia, 2, [0;0)N[0; kp — 1]),

1) N[0k —1]), ifjr < i

if j1 = 1p;

i1,j1 — 12 + J2, [O;kl —1] N (iz—h + [O;kz—l])), ifj1 > i

ifj1<i2 and jl—i2+k1—1<0;
ifj1<i2 and jl—i2+k1—120;

i1—j1+i2,j2, [O,’jl—iz—}—kl—l]ﬂ[O,’kz—l]), ifj1<i2 and 1<j1—i2—}—k1 — 1<k2—1,’

iller [Or kl - 1]m[01 kZ - 1])/
i1, 1 — 2+ jo, [0;i — j1 + ko — 1]),

(
(
Eil —j1 +i2, o, [0 — 1]),
(

4

4

i1 — j1+12,72,0;0]),

i1 —j1+1i2, 2, [0; 1 — 2 + k1 — 1)),

(
(
(ih — j1 + 12,2, [0; k2 — 1]),
Eilf]'zr [0;ka — 1]),

i1, 1 — 2+ jo, [0;i — j1 + ko — 1]),

0,

if 1<ip and ko—1<j1—ip+k1—1;
if j1=i;
ifj1>ip and i —j1+ka—12=0;
ifj1>ip and ip —j1+kr—1<0
ifj1<i2 and jl—i2+k1<1;
ifj1<i2 and jl—i2+k1:1;
ifj1<i2 and 1<j1—i2—{—k1—1<k2—1,'
ifjl <ip and kz <j1 —i2+k1;
if j1 = ip;
ifjg; >ip and ip —j1 +ky > 1;
ifj; >ip and ip —j1 +ky <1
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o(il —j1+i2, o, (h—i2+[0;k1]) N[0 ko)), if j1<ip;

11, ]1—12+]2,[0 12—]1—|—k2]) ifj1 >ip and 1<ip —j1 +ko;
0), if jl >1i and 0=1ip, — j1 + kp;
Ho(0), ifjij >ip and ip —j1 +ky <0

hO((illjll [0; k1)) - (12, o, [O;kz])) = { bo(ir,j2, [0 k1 ]N[0; K2]), if j1=iz;
bo <11,]1—12+]2, [0; k1]N (12—j1+[0;k2])>, if j1>1ip
(0), lfjl <1 and jl —ip+k <O
hO(Zl —]1 + 12,]2, [0 O]) ifjl < i2 and jl — iz + kl =0
bo(ih —j1+i2, jo, [0 h —ia+ki]), ifj1 <ip and kp > j1 —ia+k > 1;
_ hO(Zl —]1 + 12,]2, [0 kz]) ifjl < i2 and k2 < jl — iz +k1 >1;
bo (11/]2/ O k2 ) 1f]1 = 1p;
f)o(ll,jl—lz + J2, [0 12—]1—|—k2]) ifj; >ip and 1<ip—j1 +ko;
(l JJ1— 12+ 2, [0 O]) ifj1 >ip and 0 =1y, —j1 + ko,
Ho(0), ifji >ip and ip —j1 +ky <0
(0) if jl <1 and jl —ip+k <O
(0) if jl <1 and jl —ip+k =0
bo(ih —j1+i2, jo, [0 h —ia+ki]), ifj1 <ip and kp > j1 —ia+k > 1;
_ f)()(ll —]1 + 12,]2, [0 kz]) ifjl < iz and kz < jl — iz + k1 > 1;
rJo(11,]2, 0; k2]), if j1 =1p;
bo (i
bo(
bo(

0, ifjl <1 and jl—i2+k1 <0;
i1—j1+i2,j2,[0'j1—i2+k1—1]), ifjj<ip and kp =21 —ip+k 2 1;
11—]1+12,]2,[0 ky, — ]) ifj) <ip and kp <j1—ip+k; > 1;
i1, j2, [0 ko — 1]), if j1 = 1p;

1 ]1—12—|—]2,[0 12—]1+k2—1]) ifjg >ip and 1< i —j1 +ko;

0, ifj; >ip and ip —j; +k <O.

(
)
(
(i

Next observe that by induction we obtain that

by =hoo---obhy =it

p+ 1-times

forany p € {1,...,n—1}.
Simple verifications show that the homomorphism b, : B.," — B_," maps the semigroup

B onto its subsemigroup By, Fn-p-1, O

Proposition 4. For any positive integer n every congruence on the semigroup fd}(con@) is
Rees.

Proof. First we observe that since the semigroup .7, (m) has the zero 0 the identity con-
gruence on .7 (conv) is Rees, and it is obvious that the universal congruence on .#/(conv) is
Rees, too.

By induction we shall show the following: if € is a congruence .#(conv) such that
for some k < n there exist two distinct €-equivalent elements a, § € .Zk(conv) with
max{rank a, rank B} = k, then all elements of subsemigroup .#% (m) are equivalent.
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In the case when k = 1 then it is obvious that the semigroup fj,(coﬁ) is isomorphic to
the semigroup .#} which is isomorphic to the semigroup %, of wx w-matrix units. Since the
semigroup %, of wXxw-matrix units is congruence-free (see [24, Corollary 3]), the statement
that any two distinct elements of the semigroup f(},(m) are C-equivalent implies that all
elements of .#) (m) are C-equivalent. Hence the initial step of induction holds.

Next we shall show the step of induction: if ¢ is a congruence .#/} (m) such that there
exist two distinct €-equivalent elements «, € .#X*1(conv) with max{rank a, rank f} = k +1,
then the statement that all elements of the subsemigroup 7k (conv) are C-equivalent implies
that all elements of the subsemigroup .75t (conv) are €-equivalent, as well.

Next we consider all possible cases.
(I) Suppose that & = <Z Zﬂ o ZL’E), B = 0 and a€p. Since C is a congruence on .#/; (COI’I%),

for any element y = <2 gi} B flilzi ) of the subsemigroup .#f+1(conv), where k; < k+ 1, we
have that

— (cetlo otk ) L (Db btk
T=\aat1 - ath d d41 - dik,

(cc+1 c+k1> 0. (b b+1 - b+k1) —0

is ¢-equivalent to

@ a+l - atk dd+1 - d+k
and hence 0.
(I1) Suppose that & = <Z Zﬂ - Zf]i) and B = (Z Zﬁ - Ziﬁ) are non-zero €-equivalent

idempotents of the subsemigroup .#X(con¥) such that k; < k and B < a. In this case we have
that [b; b+ ki C [a;a + k|. We put

atl-atk) ifa=b;

a+1 - a+k
€= ca+k—1 .
oo gk ) fatk=b+k

and 7y = <Hilgiéj:j ui’,ﬁﬁ) ifa<bandb+ky <a-+k

In the case when either 2 = b or a + k = b+ k; we obtain that ex and ¢p are distinct
C-equivalent idempotents of the subsemigroup f(ﬁ_l(m) and hence by the assumption of
induction all elements of .#X~1(conv) are ¢-equivalent.

In the case when a < band b+ k; < a + k we obtain that yay~! and By~ are distinct
¢-equivalent idempotents of the subsemigroup .7% (conv'), because they have distinct rank < k.
Hence by the assumption of induction all elements of .#X (conv) are ¢-equivalent.

In both above cases we get that x€0, which implies that case (I) holds.

1

(IT) Suppose that « and B are distinct incomparable non-zero ¢-equivalent idempotents of
the subsemigroup .#X(conv) of .#/"(conV) such that ranka = k + 1. Then & = aa€ap and
ap < a which implies that either case (II) or case (I) holds.

(IV) Suppose that « and f are distinct non-zero ¢-equivalent elements of the subsemigroup
7k (conv) of .7 (conV) such that rank & = k + 1. Then at least one of the following conditions
aa~l # BB! or a 'a # BB holds, because by Proposition 1(8) and Theorem 1 all .-
classes in fcﬁ(m) are singletons. By [32, Proposition 2.3.4(1)], aa~'¢BB~! and a~'a€p~1B,
and hence at least one of cases (II) or (III) holds. O

Theorem 1 and Proposition 4 imply the description of all congruences on the semi-
group BJ".
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Theorem 2. For an arbitrary n € w the semigroup B_," admits only Rees congruences.

Theorem 3. Let n be a non-negative integer and S be a semigroup. For any homomorphism
h: B," — S the image h(B_") is either isomorphic to B_,* for some k € {0,1,...,n}, orisa
singleton.

Proof. By Theorem 2 the homomorphism h generates the Rees congruence € on the semigroup
B;,". By Proposition 1(9) the following ideal series

2 F T Fy
{O}ngO;Bwlg”';Bwn 1235

is maximal in Bf", i.e. if ¢ is an ideal of Bf” then either # = {0} or 7 = Bf’” for some
m e {0,1,...,n}.
It is obvious that if # = {0} then the Rees congruence € , generates the injective homo-

morphism b¢ g and hence the image h¢ 4 <Bf"> is isomorphic to the semigroup Bf". Similar
in the case when ¢ = Bff " we have that the image b¢ > <Bf”) is a singleton.

Suppose that ¢ = BJ" for some m € {0,1,...,n —1}. Then the Rees congruence €
generates the natural homomorphism b: BJ" — B/ . It is obvious that a€ 4 if and
only if b, (a) = bu(B) for o, p € B, where by: B," — BJ" is the homomorphism de-

fined in Proposition 3. Then by Proposition 3 the image b <Bf ") is isomorphic to the semi-

group : O

3 On topologizations and closure of the semigroup B."

In this section, we establish topologizations of the semigroup B." and its compact-like
shift-continuous topologies.

Theorem 4. Let n be a non-negative integer. Then for any shift-continuous T;-topology T on

the semigroup B." every non-zero element of B." is an isolated point of <Bf ", T) and hence
every subset in <Bf”, T) which contains zero is closed. Moreover, for any non-zero element
(i,,[0;k]) of BJ" the set 1< (i, ], [0;k]) is open-and-closed in <Bf", T) .

Proof. Fix an arbitrary non-zero element (i, ], [0;k]) of the semigroup BJ", where i, j € w,
k € {0,...,n}. Proposition 3 and [20, Proposition 7] imply there exists an open neighbourhood

u(i,j,[o;k]) of the point (i, ,[0;k]) in <Bf”,r> such that
. U(i]_ ) C B \Bf;"*1 and (i, j, [0;k]) is an isolated point in B xifk € {1,...,n};
. U(ij ) C BJ"\ {0} and (i,7,10;k]) is an isolated point in B0 ifk = 0.

By separate continuity of the semigroup operation in <Bf”, T) there exists an open neighbour-

o C
hood V(z‘,j,[o;k]) of (i,],[0;k]) such that V(z‘,j,[o;k]) C u(z‘,j,[o;k]) and

(i/ i [O/' k]) ) V(i,j,[O;k]) ’ (j'j' [O; k]) < u(i,j,[O;k})'
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We claim that V( ; C 1<(i,7,[0;k]). Suppose to the contrary that there exists

i,7,[0;k]
(i1, 11, [0;k1]) € V(z‘,j,[o;k]) \ 1<(i,j, [0;k]). Then by [32, Lemma 1.4.6(4)] we have that

Since B.)* is an ideal of B the above inequality implies that
G 0K V(i 0s) * Urdr 0K U )

a contradiction. Hence V< C 1<(i,j,[0;k]). By Lemma 1 the set 1< (i, ], [0;k]) is finite,

i,,10))
which implies that (i, j, [0; k]) is an isolated point of (Bg " T) , because <B£ ", T) is a Tq-space.
The last statement follows from the equality

1<, [0:K) = {(a,b,10;p]) € BS*: (i,i, [0:K]) - (a,b,[0; p]) = (i,7, [0:K]) }
and the assumption that 7 is a shift-continuous T;-topology on the semigroup B_,". O
Recall [17], that a topological space X is called:
e scattered if X contains no non-empty subset which is dense-in-itself;

* 0-dimensional if X has a base which consists of open-and-closed subsets;

e collectionwise normal if for every discrete family {F; };c & of closed subsets of X there exists
a pairwise disjoint family of open sets {U; };c ~ such that F; C U; forall i € ..

Corollary 1. Let n be a non-negative integer. Then for any shift-continuous T;-topology T on

the semigroup B." the space <B£ , T) is scattered, 0-dimensional and collectionwise normal.

Proof. Theorem 4 implies that (Bf”, T) is a scattered, 0-dimensional space.
Let {Fs}sc.» be a discrete family of closed subsets of <Bf " T). By Theorem 4 every non-
zero element of B," is an isolated point of (Bf”, T). In the case when every element of the

family {F; }sc.» does not contain the zero 0 of B’f " by [17, Theorem 5.1.17] the space <B5 ", T) is

collectionwise normal. Suppose that 0 € F;, for some sy € .. Let U(0) be an open neighbour-
hood of the zero 0 of B.", which intersects at more one element of the family {F;}sc . Put
U, = U(0) UF;, and Us = F; forall s € .\ {s,}. Then U; N U; = @ for all distinct s, t € .

and hence by [17, Theorem 5.1.17] the space (Bf”, T) is collectionwise normal. O

Example 1. Let n be a non-negative integer. We define a topology Ta. on the semigroup
BJ" in the following way. All non-zero elements of the semigroup ;74

," are isolated points
of <B’f”,TAC> and the family #.(0) = {A CBJ":0€ AandB." \Ais finite} determines
the base of the topology Ta. at the point 0.

It is obvious that the topological space <Bf”, TAC> is homeomorphic to the Alexandroff

one-point compactification of the discrete infinite countable space, and hence <Bf " TAC) is a
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Hausdorff compact space. Then the space (Bf " TAC> is normal and since it has a countable

base, by the Urysohn Metrization Theorem (see [17, Theorem 4.2.9]) the space <Bf " TAC) is

metrizable.
Next we shall show that (Bf”, TAC> is a semitopological semigroup. Let « and B be non-

zero elements of the semigroup BJ". Since a and B are isolated points in (Bf;",TAC>, it is
sufficient to show how to find for a fixed open neighbourhood Uy open neighbourhoods Vy
and Wy of the zero 0 in (Bf”, TAC) such that

VQ-DéQUO and ﬁ-WQQU().

Since the space <Bf ", TAC> is compact, any open neighbourhood Uy of the zero 0 is cofinite

subset in B)". By Lemma 2,
V():{’)/EU()I’)/-DCGUO} and W():{’)/EUO:[S-’)/GUQ}

are cofinite subsets of Uy and hence by the definition of the topology Ta. the sets Vp and Wy

Fn

are required open neighbourhoods of the zero 0 in (Bw , TAC) :

Since all non-zero elements of the semigroup B are isolated points in (Bf”, TAC> and
every open neighbourhood Uy of the zero in <B’f”, TAC) has the finite complement in B.", the
inversion is continuous in <Bf”, TAC) .

The following theorem describes all compact-like shift-continuous T;-topologies on the
semigroup BJ".

Theorem 5. Let n be a non-negative integer. Then for any shift-continuous T;-topology T on
the semigroup B the following conditions are equivalent:
(1) (BJ",7) is a compact semitopological semigroup;

(2) (B, 7) is topologically isomorphic to <Bf ", TAC> ;

(3) (BJ",7) is a compact semitopological semigroup with continuous inversion;
(4) (BJ",7) is an wy-compact space.

Proof. Implications (1) = (4), (2) = (1), (2) = (3) and (3) = (1) are obvious. Since by Theo-
rem 4 every non-zero element of the semigroup B." is an isolated point in (BJ", ), statement
(1) implies (2).

(4) = (1) Suppose there exists a shift-continuous Ty-topology T on the semigroup B,
such that (Bf",r) is an wp-compact non-compact space. Then there exists an open cover
% = {Us} of (B’f”,r), which has no a finite subcover. Let Us, € % be such that Us, > 0.
Then BJ" \ Us, is an infinite countable subset of isolated points of (BJ",T). We enumerate
the set B, \ Us, by positive integers, i.e. B\ Us, = {a;: i € N}. Next we define a map
f: (BZ",T) = w, by the formula

0, ifa € Us,
i, ifa = a; forsomei € IN.

o) = {
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By Theorem 4 the set Us, is open-and-closed in <Bf ", T) , and hence so defined map f is con-

tinuous. But the image f <Bf ") is not a compact subset of wy, a contradiction. The obtained

contradiction implies the implication (4) = (1). O

The following proposition states that the semigroup B." has a similar closure in a
T;-semitopological semigoup as the bicyclic monoid (see [10, 16]), the A-polycyclic monoid [9],
graph inverse semigroups [7,34], McAlister semigroups [8], locally compact semitopological
0-bisimple inverse w-semigroups with a compact maximal subgroup [18], and other discrete
semigroups of bijective partial transformations [12,13,19,22,25,27-30].

Proposition 5. Let n be a non-negative integer. If S is a T;-semitopological semigroup, which

contains B,," as a dense proper subsemigroup, then I = <S \ Bf”) U {0} is an ideal of S.

Proof. Fix an arbitrary element v € I. If x-v = { & I for some x € B/, then there exists
an open neighbourhood U(v) of the point v in the space S such that {x} - U(v) = {{} C
B/ \ {0}. By Lemma 3 the open neighbourhood U(v) should contain finitely many elements
of the semigroup B/, which contradicts our assumption. Hence x - v € I forall x € B/ and
v € L. The proof of the statement that v - x € I forall x € B," and v € I is similar.

Suppose to the contrary that x - v = w ¢ I for some x,v € I. Then w € B." and the
separate continuity of the semigroup operation in S yields open neighbourhoods U()) and
U(v) of the points x and v in the space S, respectively, such that {x} - U(v) = {w} and
U(x) - {v} = {w}. Since both neighbourhoods U(x) and U(v) contain infinitely many ele-
ments of the semigroup B_,", equalities {x} - U(v) = {w} and U(x) - {v} = {w} do not hold,
because {x} - <U(v) N B ") C I. The obtained contradiction implies that x - v € I. O

Forany k € {0,1,...,n+ 1} we denote
Dy = {oc € .71 (conv): ranka = k} :

We observe that by Proposition 1(9) and Theorem 1, D = {Dy: k = 0,1,...,n+ 1} is the
family of all Z-classed of the semigroup .#/ 1 (conv ).

The following proposition describes the remainder of the semigroup B_," in a semitopo-
logical semigroup.

Proposition 6. Let n be a non-negative integer. If S is a T;-semitopological semigroup, which
contains B." as a dense proper subsemigroup, then x - x =0 forall x € S\ BJ".

Proof. We observe that 0 is zero of the semigroup S by [18, Lemma 4.4].

We shall prove the statement of the proposition for the semigroup .71 (coﬂ), which by
Theorem 1 is isomorphic to the semigroup BJ".

Fix an arbitrary x € S\ .#/"*1(conv) and any open neighbourhood U () of the point x in S.
Since B;," is a dense proper subsemigroup of S the set U () N (f;}“(m) \ {0}) is infinite.
Since the family D is finite, there exists i € {1,...,n + 1} such that the set U()) N D; is infinite.

This and the definition of the semigroup .#/"*!(conV) imply that at least one of the families

domD;U(x) = {doma:a € U(x)ND;}  or  ranD;U(x) = {rana:a € U(x) N D;}



350 Gutik O.V., Popadiuk O.B.

has infinitely many members. Assume that the family dom D;U(x) is infinite. Then the def-
inition of the semigroup operation on .#/1(conv) implies that there exist infinitely many
B € U(x) N .#i1(conv) such that 0 € - U(x), and since S is a Tj-space we have that
B - x = 0 for such elements B. Also, the infiniteness of dom D;U(x) and the semigroup op-
eration of .#/1*1(con¥) imply the existence infinitely many ¢ € U(x) N .#/**1(Gonv) such that
0 € U(x) - v, and since S is a Tj-space we have that x - ¢ = 0 for such elements <. In the
case when the family van D;U(x) is infinite similarly we obtain that there exist infinitely many
B,y € U(x) N .1+ (conV) such that - x = 0and y -7 = 0.

Thus we show that 0 € V(x) - x and 0 € x - V(x) for any open neighbourhood V() of
the point x in S. Since S is a Tj-space, this implies the required equality x - x = 0 for all
x €S\ B O

Let TG be a class of semitopological semigroups. A semigroup S € GTE® is called H-
closed in ©T&®, if S is a closed subsemigroup of any topological semigroup T' € GTE®, which
contains S both as a subsemigroup and as a topological space. H-closed topological semi-
groups were introduced by J.W. Stepp in [38], and there they were called maximal semigroups.
A semitopological semigroup S € GTE® is called absolutely H-closed in the class STE®, if any
continuous homomorphic image of S into T € GTS® is H-closed in GTS®. An algebraic
semigroup S is called:

* algebraically complete in GTG®, if S with any Hausdorff topology T such that (S, 1) €
GTG® is H-closed in 5TGE8;

* algebraically h-complete in TG, if S with discrete topology T is absolutely H-closed in
GTGG and (S, 1) € GTGS.

Absolutely H-closed topological semigroups and algebraically h-complete semigroups were
introduced by J.W. Stepp in [39], and there they were called absolutely maximal and algebraic
maximal, respectively. Other distinct types of completeness of (semi)topological semigroups
were studied by T. Banakh and S. Bardyla (see [1-6]).

Proposition 3 and [20, Proposition 10] imply the following theorem.

Theorem 6. For any n € w the semigroup BJ" is algebraically complete in the class of Haus-
dorff semitopological inverse semigroups with continuous inversion, and hence in the class of
Hausdortf topological inverse semigroups.

Theorem 7. Let n be a non-negative integer. If <Bf”, T) is a Hausdortf topological semigroup

with the compact band then <Bf”, T) is H-closed in the class of Hausdorff topological semi-
groups.
Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup T, which
contains (Bf ", T) as a non-closed subsemigroup. Since the closure of a subsemigroup of a
topological semigroup S is a subsemigroup of S (see [11, p. 9]), without loss of generality we
can assume that Bf” is a dense subsemigroup of T and T \ B’f "L . LetxeT)\ B’f ", Then 0
is the zero of the semigroup T by [18, Lemma 4.4], and x - x = 0 by Proposition 6.

Since 0- x = x -0 = 0 and T is a Hausdorff topological semigroup, for any disjoint open

neighbourhoods U(x) and U(0) of x and 0 in T, respectively, there exist open neighbour-
hoods V(x) C U(x) and V(0) C U(0) of x and 0 in T, respectively, such that V(0) - V(x) C



On the semigroup Bf”, which is generated by the family .#, of finite bounded intervals of w 351

U(0) and V(x) - V(0) C U(0). By Theorem 4 every non-zero element of B_," is an isolated
point in <B’f”, T) and by [17, Corollary 3.3.11] it is an isolated point of T, and hence the set

E <Bf”) \ V(0) is finite. Also Hausdorffness and compactness of E <Bf”) imply that with-
out loss of generality we may assume that V(x) N E <Bf”> = . Since the neighbourhood

V(x) contains infinitely many elements of the semigroup B.," and the set E <Bf”> \ V(0) is
finite, there exists (i, ], [0;k]) € V(x) such that either (i,1,[0;k]) € V(0) or (j,j, [0;k]) € V(0).
Therefore, we have that at least one of the following conditions holds:

(V) -Vix))nV(x) #2 and  (V(x)-V(0))NV(x) # 2.

Every of the above conditions contradicts the assumption that U(x) and U(0) are disjoint open
neighbourhoods of x and 0 in T. The obtained contradiction completes the proof. O

Since compactness preserves by continuous maps Theorems 3 and 7 imply the following
assertion.

Corollary 2. Let n be a non-negative integer. If < f",r) is a Hausdorff topological semi-

group with the compact band then ( Zn, ) is absolutely H-closed in the class of Hausdortf
topological semigroups.

Theorem 8. Let n be a non-negative integer and <Bf”, T) be a Hausdorff topological inverse
semigroup. If (Bf ", T) is H-closed in the class of Hausdorff topological semigroups then its
band E ( ) is compact.

Proof. We shall prove the statement of the proposmon for the semigroup .71 *1 (ﬁ) which
by Theorem 1 is isomorphic to the semigroup BJ".

Suppose to the contrary that there exists a Hausdorff topological inverse semigroup
(.£2+1(conv), T) with the non-compact band such that (.#/**!(conv), ) is H-closed in the
class of Hausdorff topological semigroups. By Theorem 4 every non-zero element of the semi-
group .#/"+1(conV) is an isolated point in (g1t (conv), 7). Hence there exists an open neigh-
bourhood U(0) of the zero 0 in (.#/*"!(conv), T) such that the set A = E (.#/1+(conv)) \ U(0)

is infinite and closed in (.#*!(conV), 7). Let k be the smallest positive integer < 1 + 1 such

that the set Ay = AN .Zk(conv) is infinite for the subsemigroup X (conv) of .#/"+!(conv).
Without loss of generality we may assume that there exists an increasing sequence of non-
negative integers {a]-}j <., Such thatag > n +1and

~ aj - ai+k—-1\ .

Ay = {(a; a;Jrkil) :]Ew} C Ay.
The continuity of the semigroup operation in (ﬂ(ﬁ*l(conv),rz implies that there exists an
open neighbourhood V(0) C U(0) of the zero 0 in (.#/"!(conv), T) such that V(0) - V(0) C
U(0). By the definition of the semigroup operation on .#/1(conv) we have that the neigh-
bourhood V(0) does not contain at least one of the points

aj -+ aj+n aj—n+k=2 - a;j+k-1
or .
aj -+ aj+n aj—n+k—2 - ai+k—1



352 Gutik O.V., Popadiuk O.B.

Since the both above points belong to .#/1(conv) \ .#/(conv ), without loss of generality we
may assume that there exists an increasing sequence of non-negative integers {b]-}j cw Such
that b; +n+1 < bj; foralli € w and

B ={ (i) in) i€w} 2 V(0).

Since (.#"1(conY), T) is a Hausdorff topological inverse semigroup, we conclude that the
maps f1: £+ (conv) — E (#7+1(conv)), arsaa~! and fp: £+ (conv) — E (£ (conv)),
& — &~ la are continuous, and hence the set S By =11 Y(By11) Uf,y 1(Bys) is infinite and open
in (.£2+1(con¥), 7).

Let x ¢ .#*(conv). Put S = .#/"*1(conv) U {x}. We extend the semigroup operation
from .#"+1(conv) onto S in the following way:

X-X=x-a=a-x=0 forall ac.Z'"(conv).

Simple verifications show that such defined binary operation is associative.
For any p € w we denote

O={(u?, ) izp}
We determine a topology 75 on the semigroup S in the following way:
(1) for every y € .#"*+1(conV) the bases of topologies T and Tg at 7 coincide;
(2) #(x) = {Uy(x) = {x} UTp: p € w} is the base of the topology Ts at the point x.

Simple verifications show that 75 is a Hausdorff topology on the semigroup .71 (conv).
For any p € w and any open neighbourhood V(0) C U(0) of the zero 0 in (.#"(conv), T)
we have that

V(0) - Up(x) = Up(x) - V(0) = Up(x) - Up(x) = {0} € V(0).

We observe that the definition of the set I', implies that for any non-zero element
Y= <§ o ;ﬁ) of the semigroup .7/ 1 (Conz) there exists the smallest positive integer j, such
that c +1 < by and d + 1 < by 11. Then we have that v - U; (x) = U; (x) - v = {0} € V(0).

Therefore (S, T5) is a topological semigroup, which contains (.#/2*1(conv), 7) as a dense

proper subsemigroup. The obtained contradiction implies that E <Bf ") is a compact subset
of (#1141 (con¥), 7). O

Theorem 9. Let n be a non-negative integer and <Bf”, T) be a Hausdorff topological inverse
semigroup. Then the following conditions are equivalent:

(1) <B’f”, T) is H-closed in the class of Hausdorff topological semigroups;
(2) <B’f”, T) is absolutely H-closed in the class of Hausdorff topological semigroups;

(3) the band E <Bf") is compact.
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Proof. Implication (2) = (1) is obvious. Implications (1) = (3) and (3) = (1) follow from
Theorems 8 and 7, respectively.

Since a continuous image of a compact set is compact, Theorem 3 implies that (3) = (2).
U

The following example shows that a counterpart of the statement of Theorem 8 does not
hold, when <Bg ", T) is a Hausdorff topological semigroup.

Example 2. On the semigroup .7} (conv) we define a topology T+ in the following way. All
non-zero elements of the semigroup .7 (conv) are isolated points of () (conv), 74) and the

family #+(0) = {U(0): k € w}, where U(0) = {0} U {(2l+1)' > k}, determines the base of
the topology T+ at the point 0. It is obvious that T+ is a Hausdorff topology on .#}; (con¥). Since
Ui(0) - Ux(0) = {0} for any k € w and Ug(0) - { ()} = {(7)} - Up(0) = {0} forany p,q € w,

(1 (conV), 74) is a topological semigroup.
Proposition 7. (.7} (conv), 74) is H-closed in the class of Hausdorff topological semigroups.

Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup T, which
contains (.} (m), T¢) as a non-closed subsemigroup. Since the closure of a subsemigroup
of a topological semigroup S is a subsemigroup of S (see [11, p. 9]), without loss of generality
we can assume that .7} (conv) is a dense proper subsemigroup of T. Let x € T\ .} (conv).
Then 0 is the zero of the semigroup T by [18, Lemma 4.4], and x - x = 0 by Proposition 6.

Fix disjoint open neighbourhoods U(x) and U,(0) of x and 0 in T. By Proposition 6,
E(T) = E(.#}(con¥)). By [11, Theorem 1.5], E(.#}(conV)) is a closed subset of T and hence
without loss of generality we can assume that U(x) N E (fal,(m)) = @. Then for any open
neighbourhoods V(x) € U(x) and U,(0) € U,(0) the infiniteness of V() and the definition
of the semigroup operation on .#}(¢onV) that imply that

Vi(x)- Uq(O) Q up(0> or Uq(O) -V(x) SZ UP(O)

which contradicts the continuity of the semigroup operation on T. O
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Mu BuBYaeMO HaiBrpyIry Bf” , SIKa TIpeACTaBA€eHa B cTaTTi [BicEmk AbBiB. yH-Ty. Cep. MeX.-MaT.
2020, 90, 5-19], y BUIIaAKy KOAM w-3aMKHeHa CiM'st %, 11 ypomKeHa muoxwunoo {0,1,...,n}. Mu ao-
BOAVIMO, IO BiaHOMIeHHs [ piHa #1 ¢ cniBnaaarors B B,", HaniBrpyma B‘j” isoMopdpHa HamiBrpyIi
f&“(ﬁ) YaCTKOBMX IIOPSIAKOBO-OIYKAMX i30MOpdpisMiB MHOXMEN (w, <) panry < n+ 1,1 Ha
B.)" icHytOTH Anie KoHrpyenuii Pica. Takox BMBUAIOThCSI TPAHCASLIHO HellepepBHi TOIOAOTII Ha
Hamnrgym B . 30xpema, AOBEAEHO, IO AAS AOBIAI)HOI TPaHCASIIIHO HerepepBHOi T -TonoaAorii
T Ha B,," KOXeH HEHYAbOBUI €AeMEHT HaiBrpyIna B, 7" € 130ABOBAHOK TOUKOIO B (BJ",7), Ha B, Zn
icHye eAMHa KOMIIaKTHA TPAHCASILINHO HermepepBHa T1-TOMOAOTiS, i KOXHa wp-KOMIIAKTHA TPaHCASI-
LiiHO HemlepepBHa Tj-Tomoaorist komnaxkTHa. OmicaHO 3aMMKaHHS HaIliBIpyTI B’f” B raycaopdo-
BiJi HAIIiBTOIIOAOTIUHIV HaIliBIPYIIi Ta AOBeAEHO KpuTepili H-3aMKHEHOCTi TOMOAOTiUHOI iHBePCHOI
HamiBrpymm Bff" B KAaci raycA0pdpoBMX TOIOAOTiUHNMX HaIliBIPYTL

Kontouosi cnosa i ¢ppasu: GIillMKAiUHe po3IIMpeHHs], KOHTpYyeHIis Pica, HamiBTomoAoriusa Haris-

rpyma, TOIOAOTiYHa HaIBrpyTIa, GillIKAIYHIIT MOHOIA, iHBepCHA HaMliBIPYIIa, (Wp-KOMITAKTHMI, KOM-
TIAKTHIM, 3aMIKaHHSL.



