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On the semigroup B
Fn
ω , which is generated by the family Fn of

finite bounded intervals of ω

Gutik O.V., Popadiuk O.B.

We study the semigroup B
Fn
ω , which is introduced in the paper [Visnyk Lviv Univ. Ser. Mech.-

Mat. 2020, 90, 5–19 (in Ukrainian)], in the case when the ω-closed family Fn generated by the set
{0, 1, . . . , n}. We show that the Green relations D and J coincide in B

Fn
ω , the semigroup B

Fn
ω is

isomorphic to the semigroup I n+1
ω (−−→conv) of partial convex order isomorphisms of (ω,6) of the

rank 6 n + 1, and B
Fn
ω admits only Rees congruences. Also, we study shift-continuous topologies

on the semigroup B
Fn
ω . In particular, we prove that for any shift-continuous T1-topology τ on the

semigroup B
Fn
ω every non-zero element of B

Fn
ω is an isolated point of (B

Fn
ω , τ), B

Fn
ω admits the

unique compact shift-continuous T1-topology, and every ωd-compact shift-continuous T1-topology
is compact. We describe the closure of the semigroup B

Fn
ω in a Hausdorff semitopological semi-

group and prove the criterium when a topological inverse semigroup B
Fn
ω is H-closed in the class

of Hausdorff topological semigroups.
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1 Introduction, motivation and main definitions

We shall follow the terminology of [11, 14, 15, 17, 36]. By ω we denote the set of all non-
negative integers.

Let P(ω) be the family of all subsets of ω. For any F ∈ P(ω) and n, m ∈ ω we put
n − m + F = {n − m + k : k ∈ F} if F 6= ∅ and n − m +∅ = ∅. A subfamily F ⊆ P(ω) is
called ω-closed if F1 ∩ (−n + F2) ∈ F for all n ∈ ω and F1, F2 ∈ F .

We denote [0; 0] = {0} and [0; k] = {0, . . . , k} for any positive integer k. The set [0; k], k ∈ ω,
is called an initial interval of ω.

A partially ordered set (or shortly a poset) (X,≦) is the set X with the reflexive, antisymmetric
and transitive relation ≦ . In this case the relation ≦ is called a partial order on X. A partially
ordered set (X,≦) is linearly ordered or is a chain if x1 ≦ x2 or x2 ≦ x1 for any x1, x2 ∈ X. A map
f from a poset (X,≦) onto a poset (Y,0) is said to be an order isomorphism if f is bijective
and x ≦ y if and only if f (x) 0 f (y). A partial order isomorphism f from a poset (X,≦) into
a poset (Y,0) is an order isomorphism from a subset A of a poset (X,≦) into a subset B of a
poset (Y,0). For any elements x of a poset (X,≦) we denote

↑≦x = {y ∈ X : x ≦ y} and ↓≦x = {y ∈ X : y ≦ x}.
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A semigroup S is called inverse if for any element x ∈ S there exists a unique x−1 ∈ S such
that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of x ∈ S. If S is an
inverse semigroup, then the mapping inv: S → S which assigns to every element x of S its
inverse element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is
an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as
a band (or the band of S). Then the semigroup operation on S determines the following partial
order 4 on E(S): e 4 f if and only if e f = f e = e. This order is called the natural partial order

on E(S). A semilattice is a commutative semigroup of idempotents. By (ω, min) or ωmin we
denote the set ω with the semilattice operation x · y = min{x, y}.

If S is an inverse semigroup, then the semigroup operation on S determines the following
partial order 4 on S: s 4 t if and only if there exists e ∈ E(S) such that s = te. This order is
called the natural partial order on S [40].

For semigroups S and T, a map h : S → T is called a homomorphism if h(s1 · s2) = h(s1) ·h(s2)

for all s1, s2 ∈ S.
A congruence on a semigroup S is an equivalence relation C on S such that (s, t) ∈ C implies

that (as, at), (sb, tb) ∈ C for all a, b ∈ S. Every congruence C on a semigroup S generates
the associated natural homomorphism C♮ : S → S/C which assigns to each element s of S its
congruence class [s]C in the quotient semigroup S/C. Also every homomorphism h : S → T of
semigroups S and T generates the congruence Ch on S: (s1, s2) ∈ Ch if and only if h(s1) = h(s2).

A nonempty subset I of a semigroup S is called a left ideal if SI ⊆ I, a right ideal if IS ⊆ I,
and a (two-sided) ideal if it is both a left and a right ideal. Every ideal I of a semigroup S

generates the congruence CI = (I × I) ∪ ∆S on S, which is called the Rees congruence on S.
Let Iλ denote the set of all partial one-to-one transformations of λ together with the fol-

lowing semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ dom α : yα ∈ dom β} for α, β ∈ Iλ.

The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see [14]). For
any α ∈ Iλ the cardinality of dom α is called the rank of α and it is denoted by rank α. The
symmetric inverse semigroup was introduced by V.V. Wagner [40] and it plays a major role in
the theory of semigroups.

Put I n
λ = {α ∈ Iλ : rank α 6 n} for n ∈ {1, 2, 3, . . .}. Obviously, I n

λ are inverse semi-
groups, I n

λ is an ideal of Iλ for each n ∈ {1, 2, 3, . . .}. The semigroup I n
λ is called the sym-

metric inverse semigroup of finite transformations of the rank 6 n [26]. By

(
x1 x2 ··· xn
y1 y2 ··· yn

)

we denote a partial one-to-one transformation which maps x1 onto y1, x2 onto y2, . . ., and xn

onto yn. Obviously, in such case we have xi 6= xj and yi 6= yj for i 6= j, i, j ∈ {1, 2, 3, . . . , n}.
The empty partial map ∅ : λ ⇀ λ is denoted by 0. It is obvious that 0 is zero of the semi-
group I n

λ .
For a partially ordered set (P,≦), a subset X of P is called order-convex, if x ≦ z ≦ y and

{x, y} ⊂ X implies that z ∈ X for all x, y, z ∈ P [31]. It is obvious that the set of all partial order
isomorphisms between convex subsets of (ω,6) under the composition of partial self-maps
forms an inverse subsemigroup of the symmetric inverse semigroup Iω over the set ω.
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We denote this semigroup by Iω(
−−→conv). We put I n

ω(
−−→conv) = Iω(

−−→conv) ∩ I n
ω and it is

obvious that I n
ω(

−−→conv) is closed under the semigroup operation of I n
ω and the semigroup

I n
ω(

−−→conv) is called the inverse semigroup of convex order isomorphisms of (ω,6) of the rank 6 n.
The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two ele-

ments p and q subjected only to the condition pq = 1. The semigroup operation on C (p, q) is
determined as follows:

qk pl · qm pn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple) combina-
torial E-unitary inverse semigroup and every non-trivial congruence on C (p, q) is a group
congruence [14].

On the set Bω = ω × ω we define the semigroup operation “·” in the following way

(i1, j1) · (i2, j2) =

{
(i1 − j1 + i2, j2), if j1 6 i2;
(i1, j1 − i2 + j2), if j1 > i2.

It is well known that the semigroup Bω is isomorphic to the bicyclic monoid by the mapping
h : C (p, q) → Bω, qk pl 7→ (k, l) (see [14, Section 1.12] or [35, Exercise IV.1.11(ii)]).

By R and ωd we denote the set of real numbers with the usual topology and the infinite
countable discrete space, respectively.

Let Y be a topological space. A topological space X is called:

• compact if any open cover of X contains a finite subcover;

• countably compact if each closed discrete subspace of X is finite;

• Y-compact if every continuous image of X in Y is compact.

A topological (semitopological) semigroup is a topological space together with a continuous
(separately continuous) semigroup operation. If S is a semigroup and τ is a topology on S

such that (S, τ) is a topological semigroup, then we shall call τ a semigroup topology on S, and
if τ is a topology on S such that (S, τ) is a semitopological semigroup, then we shall call τ a
shift-continuous topology on S. An inverse topological semigroup with the continuous inversion
is called a topological inverse semigroup.

Next we shall describe the construction which is introduced in [23].
Let Bω be the bicyclic monoid and F be an ω-closed subfamily of P(ω). On the set Bω ×F

we define the semigroup operation “·” in the following way

(i1, j1, F1) · (i2, j2, F2) =

{ (
i1 − j1 + i2, j2, (j1 − i2 + F1) ∩ F2

)
, if j1 6 i2;(

i1, j1 − i2 + j2, F1 ∩ (i2 − j1 + F2)
)
, if j1 > i2.

In [23] it is proved that if the family F ⊆ P(ω) is ω-closed then (Bω × F , ·) is a semi-
group. Moreover, if an ω-closed family F ⊆ P(ω) contains the empty set ∅ then the set
I = {(i, j,∅) : i, j ∈ ω} is an ideal of the semigroup (Bω × F , ·). For any ω-closed family
F ⊆ P(ω) the following semigroup

B
F
ω =

{
(Bω ×F , ·)/I, if ∅ ∈ F ;
(Bω ×F , ·), if ∅ /∈ F
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is defined in [23]. The semigroup B
F
ω generalizes the bicyclic monoid and the countable semi-

group of matrix units. It is proved in [23] that B
F
ω is a combinatorial inverse semigroup and

Green’s relations, the natural partial order on B
F
ω and its set of idempotents are described. The

criteria of simplicity, 0-simplicity, bisimplicity, 0-bisimplicity of the semigroup B
F
ω and when

B
F
ω has the identity, is isomorphic to the bicyclic semigroup or the countable semigroup of

matrix units are given. In particular, in [23] it is proved that the semigroup B
F
ω is isomorphic

to the semigrpoup of ω×ω-matrix units if and only if F consists of a singleton set and the
empty set.

The semigroup B
F
ω in the case when the family F consists of the empty set and some

singleton subsets of ω is studied in [21]. It is proved that the semigroup B
F
ω is isomorphic to the

subsemigroup B�
ω(Fmin) of the Brandt ω-extension of the subsemilattice (F , min) of (ω, min),

where F =
⋃

F . Also topologizations of the semigroup B
F
ω and its closure in semitopological

semigroups are studied.
For any n ∈ ω we put Fn =

{
∅, [0; 0], [0; 1], [0; 2], . . . , [0; n]

}
. It is obvious that Fn is an

ω-closed family of ω.
In this paper, we study the semigroup B

Fn
ω . We show that the Green relations D and J

coincide in B
Fn
ω , the semigroup B

Fn
ω is isomorphic to the semigroup I n+1

ω (−−→conv), and B
Fn
ω ad-

mits only Rees congruences. Also, we study shift-continuous topologizations of the semigroup
B

Fn
ω . In particular, we prove that for any shift-continuous T1-topology τ on the semigroup B

Fn
ω

every non-zero element of B
Fn
ω is an isolated point of (B

Fn
ω , τ), B

Fn
ω admits the unique compact

shift-continuous T1-topology, and every ωd-compact shift-continuous T1-topology is compact.
We describe the closure of the semigroup B

Fn
ω in a Hausdorff semitopological semigroup and

prove the criterium when a topological inverse semigroup B
Fn
ω is H-closed in the class of Haus-

dorff topological semigroups.

2 Algebraic properties of the semigroup B
Fn

ω

An inverse semigroup S with zero is said to be 0-E-unitary if 0 6= e 4 s, where e is an
idempotent in S, implies that s is an idempotent [32]. The class of 0-E-unitary semigroups
was first defined by Maria Szendrei [37], although she called them E∗-unitary. The term 0-E-
unitary appears to be due to J. Meakin and M. Sapir [33].

In the following proposition we summarise properties which follow from properties of
the semigroup B

F
ω in the general case. These properties are corollaries of the results of the

paper [23].

Proposition 1. For any n ∈ ω the following statements hold:

(1) B
Fn
ω is an inverse semigroup, namely 0−1 = 0 and

(
i, j, [0; k]

)−1
=

(
j, i, [0; k]

)
, for any

i, j, k ∈ ω;

(2)
(
i, j, [0; k]

)
∈ B

Fn
ω is an idempotent if and only if i = j;

(3)
(
i1, i1, [0; k1]

)
4

(
i2, i2, [0; k2]

)
in E

(
B

Fn
ω

)
if and only if i1 > i2 and i1 + k1 6 i2 + k2 and

this natural partial order on E
(

B
Fn
ω

)
is presented on Figure 1;

(4)
(
i, i, [0; n]

)
is a maximal idempotent of E

(
B

Fn
ω

)
for any i ∈ ω;
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0

(0, 0, [0; 0]) (1, 1, [0; 0]) (2, 2, [0; 0]) (3, 3, [0; 0]) (4, 4, [0; 0]) · · ·

· · ·

(i, i, [0; 0]) (i+1, i+1, [0; 0]) · · ·

· · ·

(0, 0, [0; 1]) (1, 1, [0; 1]) (2, 2, [0; 1]) (3, 3, [0; 1]) (4, 4, [0; 1]) · · · (i, i, [0; 1]) (i+1, i+1, [0; 1]) · · ·

(0, 0, [0; 2]) (1, 1, [0; 2]) (2, 2, [0; 2]) (3, 3, [0; 2]) (4, 4, [0; 2]) · · · (i, i, [0; 2]) (i+1, i+1, [0; 2]) · · ·

(0, 0, [0; 3]) (1, 1, [0; 3]) (2, 2, [0; 3]) (3, 3, [0; 3]) (4, 4, [0; 3]) · · · (i, i, [0; 3]) (i+1, i+1, [0; 3]) · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

(0, 0, [0; n−1]) (1, 1, [0; n−1]) (2, 2, [0; n−1]) (3, 3, [0; n−1]) (4, 4, [0; n−1]) · · · (i,i,[0; n−1]) (i+1,i+1,[0; n−1]) · · ·

(0, 0, [0; n]) (1, 1, [0; n]) (2, 2, [0; n]) (3, 3, [0; n]) (4, 4, [0; n]) · · · (i, i, [0; n]) (i+1, i+1, [0; n]) · · ·

Figure 1. The natural partial order on the band E
(

B
Fn
ω

)

(5)
(
i, i, [0; 0]

)
is a primitive idempotent of E

(
B

Fn
ω

)
for any i ∈ ω;

(6)
(
i1, j1, [0; k1]

)
R
(
i2, j2, [0; k2]

)
in B

Fn
ω if and only if i1 = i2 and k1 = k2;

(7)
(
i1, j1, [0; k1]

)
L

(
i2, j2, [0; k2]

)
in B

Fn
ω if and only if j1 = j2 and k1 = k2;

(8)
(
i1, j1, [0; k1]

)
H

(
i2, j2, [0; k2]

)
in B

Fn
ω if and only if i1 = i2, j1 = j2 i k1 = k2;

(9)
(
i1, j1, [0; k1]

)
D
(
i2, j2, [0; k2]

)
in B

Fn
ω if and only if k1 = k2;

(10) D = J in B
Fn
ω ;

(11)
(
i1, j1, [0; k1]

)
4

(
i2, j2, [0; k2]

)
in B

Fn
ω if and only if i1 > i2, i1 − j1 = i2 − j2 and

i1 + k1 6 i2 + k2;

(12) B
Fn
ω is a 0-E-unitary inverse semigroup.

Proof. Statements (1)–(5) are trivial. Statements (6)–(8) follow from [32, Proposition 3.2.11]
and corresponding statements of [23, Theorem 2].

(9) (⇒) Let
(
i1, j1, [0; k1]

)
D
(
i2, j2, [0; k2]

)
in B

Fn
ω . Then there exists

(
i0, j0, [0; k0]

)
∈B

Fn
ω such

that
(
i1, j1, [0; k1]

)
L

(
i0, j0, [0; k0]

)
and

(
i0, j0, [0; k0]

)
R
(
i2, j2, [0; k2]

)
. By statement (6) we have

that i0 = i2 and k0 = k2, and by (7) we get that j0 = j1 and k1 = k0. This implies that k1 = k2.
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(⇐) Let
(
i1, j1, [0; k]

)
and

(
i2, j2, [0; k]

)
be elements of B

Fn
ω . By statements (6) and (7)

we have that
(
i1, j1, [0; k]

)
L

(
i1, j2, [0; k]

)
R
(
i2, j2, [0; k]

)
and hence

(
i1, j1, [0; k]

)
D
(
i2, j2, [0; k]

)

in B
Fn
ω .

(10) It is obvious that the D-class of the zero 0 coincides with {0}. Also the J -class of the
zero 0 coincides with {0}.

Fix an arbitrary non-zero element (i0,j0,[0; k0]) of B
Fn
ω . By (9) the D-class of (i0,j0,[0; k0])

is the following set D =
{(

i, j, [0; k0]
)

: i, j ∈ ω
}

. By (3) every two distinct idempotents of the
set D are incomparable, and hence every idempotent of the D-class of (i0, j0, [0; k0]) is minimal
with the respect to the natural partial order on B

Fn
ω . By [32, Proposition 3.2.17], if the D-class

Dy has a minimal element then Dy = Jy and hence the D-class of
(
i0, j0, [0; k0]

)
coincides with

its J -class. Therefore we obtain that D = J in B
Fn
ω .

(11) By [23, Proposition 2], the inequality
(
i1, j1, [0; k1]

)
4

(
i2, j2, [0; k2]

)
is equivalent to the

conditions
[0; k1] ⊆ i2 − i1 + [0; k2] = j2 − j1 + [0; k2],

which are equivalent to

i2 − i1 = j2 − j1 6 0 and k1 6 i2 − i1 + k2.

It is obvious that the last conditions are equivalent to

i1 > i2, i1 − j1 = i2 − j2 and i1 + k1 6 i2 + k2,

which completes the proof of the statement.

Statement (12) follows from (11).

Lemma 1. Let n ∈ ω. Then ↑4
(
i0, j0, [0; k0]

)
and ↓4

(
i0, j0, [0; k0]

)
are finite subsets of the semi-

group B
Fn
ω for any its non-zero element

(
i0, j0, [0; k0]

)
, i0, j0 ∈ ω, k0 ∈ {0, . . . , n}.

Proof. By Proposition 1(11) there exist finitely many i, j ∈ ω and k ∈ {0, . . . , n} such that(
i, j, [0; k]

)
4

(
i0, j0, [0; k0]

)
for some i, j ∈ ω and hence the set ↓4

(
i0, j0, [0; k0]

)
is finite.

The inequality k 6 n and Proposition 1(11) imply that there exist finitely many i, j ∈ ω and
k ∈ {0, . . . , n} such that

(
i0, j0, [0; k0]

)
4

(
i, j, [0; k]

)
, and hence the set ↑4

(
i0, j0, [0; k0]

)
is finite,

too.

Lemma 2. If n ∈ ω then for any α, β ∈ B
Fn
ω the set α · B

Fn
ω · β is finite.

Proof. The statement of the lemma is trivial when α = 0 or β = 0.
Fix arbitrary non-zero-elements α = (iα, jα, [0; kα]) and β =

(
iβ, jβ, [0; kβ]

)
of B

Fn
ω . If

i > jα + n + 1 or j > iβ + n + 1 then for any k ∈ {0, . . . , n} we have that

(
iα, jα, [0; kα]

)
·
(
i, j, [0; k]

)
=

(
iα − jα + i, j,

(
jα − i + [0; kα]

)
∩ [0; k]

)
= 0

and (
i, j, [0; k]

)
·
(
iβ, jβ, [0; kβ]

)
=

(
i, j − iβ + jβ, [0; k] ∩

(
iβ − j + [0; kβ]

))
= 0.

Hence there exist only finitely many
(
i, j, [0; k]

)
∈ B

Fn
ω such that α ·

(
i, j, [0; k]

)
· β 6= 0. This

implies the statement of the lemma.
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Lemma 3. Let n ∈ ω. Then for any non-zero elements
(
i1, j1, [0; k1]

)
and

(
i2, j2, [0; k2]

)
of B

Fn
ω

the sets of solutions of the following equations

(
i1, j1, [0; k1]

)
· χ =

(
i2, j2, [0; k2]

)
and χ ·

(
i1, j1, [0; k1]

)
=

(
i2, j2, [0; k2]

)

in the semigroup B
Fn
ω are finite.

Proof. Suppose that χ is a solution of the equation
(
i1, j1, [0; k1]

)
· χ =

(
i2, j2, [0; k2]

)
. The def-

inition of the semigroup operation on the semigroup B
Fn
ω implies that χ 6= 0 and k1 > k2.

Assume that χ =
(
i, j, [0; k]

)
for some i, j ∈ ω, k ∈ {0, 1, . . . , n}. Then we have that

(
i2, j2, [0; k2]

)
=

(
i1, j1, [0; k1]

)
·
(
i, j, [0; k]

)

=





(
i1 − j1 + i, j,

(
j1 − i + [0; k1]

)
∩ [0; k]

)
, if j1 < i;

(
i1, j, [0; k1] ∩ [0; k]

)
, if j1 = i;(

i1, j1 − i + j, [0; k1] ∩
(
i − j1 + [0; k]

))
, if j1 > i.

We consider the following cases.

1. If j1 < i then i = i2 − i1 + j1, j = j2, k > k2 and

j1 − i + k1 = j1 − i2 + i1 − j1 + k1 = i1 − i2 + k1 > k.

2. If j1 = i then j = j2 and k > k2.

3. If j1 > i then i = i2, j = j2 − j1 + i = j2 − j1 + i2 and i − j1 + k = i2 − j1 + k > k2.

Since k 6 n the above considered cases imply that the equation
(
i1, j1, [0; k1]

)
· χ=

(
i2, j2, [0; k2]

)

has finitely many solutions.

The proof of the statement that the equation χ ·
(
i1, j1, [0; k1]

)
=

(
i2, j2, [0; k2]

)
has finitely

many solutions is similar.

Theorem 1. For an arbitrary n ∈ ω the semigroup B
Fn
ω is isomorphic to an inverse subsemi-

group of I n+1
ω , namely B

Fn
ω is isomorphic to the semigroup I n+1

ω (−−→conv).

Proof. We define a map I : B
Fn
ω → I n+1

ω by the formulae I(0) = 0 and

I
(
i, j, [0; k]

)
=

(
i i+1 ··· i+k
j j+1 ··· j+k

)
,

for all i, j ∈ ω and k ∈ {0, 1, . . . , n}.

It is obvious that so defined map I is injective.

Next we shall show that I : B
Fn
ω → I n+1

ω is a homomorphism.
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It is obvious that

I(0 · 0) = I(0) = 0 = 0 · 0 = I(0) · I(0),

I
(

0 ·
(
i, j, [0; k]

))
= I(0) = 0 = 0 ·

(
i i+1 ··· i+k
j j+1 ··· j+k

)
= I(0) · I

(
i, j, [0; k]

)
,

and

I
((

i, j, [0; k]
)
· 0

)
= I(0) = 0 =

(
i i+1 ··· i+k
j j+1 ··· j+k

)
· 0 = I(i, j, [0; k]) · I(0)

for any non-zero element (i, j, [0; k]) of the semigroup B
Fn
ω .

Fix arbitrary i1, i2, j1, j2 ∈ ω and k1, k2 ∈ {0, . . . , n}. In the case when k1 6 k2 we have that

I
((

i1, j1,[0; k1]
)
·
(
i2, j2, [0; k2]

))
=





I
(

i1 − j1 + i2, j2,
(

j1 − i2 + [0; k1]
)
∩[0; k2]

)
, if j1<i2;

I
(
i1, j2, [0; k1] ∩ [0; k2]

)
, if j1=i2;

I
(

i1, j1 − i2 + j2, [0; k1]∩
(
i2 − j1 + [0; k2]

))
, if j1>i2

=





I(0), if j1 < i2 and j1 − i2 + k1 < 0;
I
(
i1 − j1 + i2, j2, [0; 0]

)
, if j1 < i2 and j1 − i2 + k1 = 0;

I
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;

I
(
i1, j2, [0; k1]

)
, if j1 = i2;

I
(
i1, j1 − i2 + j2, [0; k1]

)
, if j1 > i2 and k1 6 i1 − j1 + k2;

I
(
i1, j1 − i2 + j2, [0; i2 − j1 + k2]

)
, if j1 > i2 and k1 > i1 − j1 + k2;

I
(
i1, j1 − i2 + j2, [0; 0]

)
, if j1 > i2 and j1 = i2 + k2;

I(0), if j1 > i2 and j1 > i2 + k2

=





0, if j1 < i2 and j1 − i2 + k1 < 0;(
i1−j1+i2

j2

)
, if j1 < i2 and j1 − i2 + k1 = 0;(

i1−j1+i2 ··· i1+k1
j2 ··· j2+j1−i2+k1

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;(

i1 ··· i1+k1
j2 ··· j2+k1

)
, if j1 = i2;(

i1 ··· i1+k1
j1−i2+j2 ··· j1−i2+j2+k1

)
, if j1 > i2 and k1 6 i2 − j1 + k2;(

i1 ··· i1+i2−j1+k2
j1−i2+j2 ··· j2+k2

)
, if j1 > i2 and k1 > i2 − j1 + k2;(

i1
j1−i2+j2

)
, if j1 > i2 and j1 = i2 + k2;

0, if j1 > i2 and j1 > i2 + k2

=





0, if j1 < i2 and j1 − i2 + k1 < 0;(
i1+k1

j2

)
, if j1 < i2 and j1 − i2 + k1 = 0;(

i1−j1+i2 ··· i1+k1
j2 ··· j2+j1−i2+k1

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;(

i1 ··· i1+k1
j2 ··· j2+k1

)
, if j1 = i2;(

i1 ··· i1+k1
j1−i2+j2 ··· j1−i2+j2+k1

)
, if j1 > i2 and k1 6 i2 − j1 + k2;(

i1 ··· i1+i2−j1+k2
j1−i2+j2 ··· j2+k2

)
, if j1 > i2 and k1 > i2 − j1 + k2;(

i1
j2+k2

)
, if j1 > i2 and j1 = i2 + k2;

0, if j1 > i2 and j1 > i2 + k2
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and

I
(
i1, j1, [0; k1]

)
· I

(
i2, j2, [0; k2]

)

=
(

i1 ··· i1+k1
j1 ··· j1+k1

)
·
(

i2 ··· i2+k2
j2 ··· j2+k2

)

=





0, if j1 < i2 and j1 + k1 < i2;
(

i1+k1
j2

)
, if j1 < i2 and j1 + k1 = i2;

(
i1−j1+i2 ··· i1+k1

j2 ··· j2+j1−i2+k1

)
, if j1 < i2 and j1 + k1 > i2 + 1;

(
i1 ··· i1+k1
j2 ··· j2+k1

)
, if j1 = i2;

(
i1 ··· i1+k1

j1−i2+j2 ··· j1−i2+j2+k1

)
, if j1 > i2 and j1 + k1 6 i2 + k2;

(
i1 ··· i1−j1+i2+k2

j1−i2+j2 ··· j2+k2

)
, if j1 > i2 and j1 + k1 > i2 + k2;

(
i1

j2+k2

)
, if j1 > i2 and j1 = i2 + k2;

0, if j1 > i2 and j1 > i2 + k2.

In the case when k1 > k2 we have that

I((i1, j1,[0; k1])·(i2, j2, [0; k2]))

=





I(i1 − j1 + i2, j2, (j1 − i2 + [0; k1])∩[0; k2]), if j1<i2;

I(i1, j2, [0; k1]∩[0; k2]), if j1=i2;

I(i1, j1 − i2 + j2, [0; k1]∩(i2 − j1 + [0; k2])), if j1>i2

=






I(0), if j1 < i2 and j1 − i2 + k1 < 0;

I(i1 − j1 + i2, j2, [0; 0]), if j1 < i2 and j1 − i2 + k1 = 0;

I(i1 − j1 + i2, j2, [0; j1 − i2 + k1]), if j1 < i2 and 1 6 j1 + k1 6 i2 + k2;

I(i1 − j1 + i2, j2, [0; k2]), if j1 < i2 and j1 + k1 > i2 + k2;

I(i1, j2, [0; k2]), if j1 = i2;

I(i1, j1 − i2 + j2, [0; i2 − j1 + k2]), if j1 > i2 and i2 − j1 + k2 > 0;

I(i1, j1 − i2 + j2, [0; 0]), if j1 > i2 and i2 − j1 + k2 = 0;

I(0), if j1 > i2 and i2 − j1 + k2 < 0

=





0, if j1 < i2 and j1 − i2 + k1 < 0;
(

i1−j1+i2
j2

)
, if j1 < i2 and j1 − i2 + k1 = 0;

(
i1−j1+i2 ··· i1+k1

j2 ··· j1−i2+j2+k1

)
, if j1 < i2 and j1 + k1 6 i2 + k2;

(
i1−j1+i2 ··· i1−j1+i2+k2

j2 ··· j2+k2

)
, if j1 < i2 and j1 + k1 > i2 + k2;

(
i1+k2 ··· i1+k2
j2+k2 ··· j2+k2

)
, if j1 = i2;

(
i1 ··· i1−j1+i2+k2

j1−i2+j2 ··· j2+k2

)
, if j1 > i2 and i2 − j1 + k2 > 0;

(
i1

j1−i2+j2

)
, if j1 > i2 and i2 − j1 + k2 = 0;

0, if j1 > i2 and i2 − j1 + k2 < 0
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=





0, if j1 < i2 and j1 − i2 + k1 < 0;(
i1+k1

j2

)
, if j1 < i2 and j1 − i2 + k1 = 0;(

i1−j1+i2 ··· i1+k1
j2 ··· j1−i2+j2+k1

)
, if j1 < i2 and j1 + k1 6 i2 + k2;(

i1−j1+i2 ··· i1−j1+i2+k2
j2 ··· j2+k2

)
, if j1 < i2 and j1 + k1 > i2 + k2;(

i1 ··· i1+k2
j2 ··· j2+k2

)
, if j1 = i2;(

i1 ··· i1−j1+i2+k2
j1−i2+j2 ··· j2+k2

)
, if j1 > i2 and j1 < i2 + k2;(

i1
j2+k2

)
, if j1 > i2 and j1 = i2 + k2;

0, if j1 > i2 and j1 > i2 + k2

and

I(i1, j1, [0; k1]) · I(i2, j2, [0; k2]) =
(

i1 ··· i1+k1
j1 ··· j1+k1

)
·
(

i2 ··· i2+k2
j2 ··· j2+k2

)

=





0, if j1 < i2 and j1 + k1 < i2;(
i1+k1

j2

)
, if j1 < i2 and j1 + k1 = i2;(

i1−j1+i2 ··· i1+k1
j2 ··· j2+j1−i2+k1

)
, if j1 < i2 and j1 + k1 6 i2 + k2;(

i1−j1+i2 ··· i1−j1+i2+k2
j2 ··· j2+k2

)
, if j1 < i2 and j1 + k1 > i2 + k2;(

i1 ··· i1+k2
j2 ··· j2+k2

)
, if j1 = i2;(

i1 ··· i1−j1+i2+k2
j1−i2+j2 ··· i2+k2

)
, if j1 > i2 and j1 < i2 + k2;(

i1
j2+k2

)
, if j1 > i2 and j1 = i2 + k2;

0, if j1 > i2 and j1 > i2 + k2.

By [35, Lemma II.1.10] the homomorphic image I(B
Fn
ω ) is an inverse subsemigroup

of I n+1
ω .

It is obvious that I(0) is the empty partial self-map of ω and it is by the assumption is an
order convex partial isomorphism of (ω,6). Also the image

I
(
i, j, [0; k]

)
=

(
i i+1 ··· i+k
j j+1 ··· j+k

)

is an order convex partial isomorphism of (ω,6) for all i, j ∈ ω and k ∈ {0, 1, . . . , n}. The defi-
nition of I : B

Fn
ω → I n+1

ω implies that its co-restriction on the image I n+1
ω (−−→conv) is surjective,

and hence I : B
Fn
ω → I n+1

ω (−−→conv) is an isomorphism.

Remark 1. Observe that the image I(B
Fn
ω ) does not contain all idempotents of the semigroup

I n+1
ω , especially

(
0 2
0 2

)
/∈ I

(
B

Fn
ω

)
for any n > 1. But by [23, Proposition 4], the semigroup

B
F0
ω is isomorphic to the semigroup of ω×ω-matrix units, and hence B

F0
ω is isomorphic to the

semigroup I 1
ω.

A subset D of a semigroup S is said to be ω-unstable if D is infinite and for any a ∈ D and
an infinite subset B ⊆ D, we have aB ∪ Ba * D [20]. A basic example of ω-unstable sets is
given in [20]: for an infinite cardinal λ the set D = I n

ω \I n−1
ω is an ω-unstable subset of I n

ω .
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For any n ∈ ω the definition of the semigroup operation on B
Fn
ω implies that its subsemi-

group B
Fk
ω is an ideal of B

Fn
ω for any k ∈ {0, . . . , n}. Also, since I k+1

ω (−−→conv) \ I k
ω(

−−→conv) is
an infinite subset of I n+1

ω (−−→conv) for any k ∈ {0, . . . , n}, the above arguments and Theorem 1
imply the following assertion.

Lemma 4. For an arbitrary n ∈ ω the subsets B
F0
ω \ {0} and B

Fk
ω \ B

Fk−1
ω are ω-unstable of B

Fn
ω

for any k ∈ {1, . . . , n}.

Proof. We shall show that the set B
Fk
ω \ B

Fk−1
ω is ω-unstable, and the proof that the set B

F0
ω \ {0}

is ω-unstable is similar.
Fix an arbitrary distinct

(
i1, j1, [0; k]

)
,
(
i2, j2, [0; k]

)
∈ B

Fk
ω \B

Fk−1
ω . The definition of the semi-

group operation of B
Fn
ω implies that for any

(
i, j, [0; k]

)
∈ B

Fk
ω \ B

Fk−1
ω we have that

(
i, j, [0; k]

)
·
(
ip, jp, [0; k]

)
=






(
i − j + ip, jp,

(
j − ip + [0; k]

)
∩ [0; k]

)
, if j < ip;

(
i, jp, [0; k] ∩ [0; k]

)
, if j = ip;(

i, j − ip + jp, [0; k] ∩
(
ip − j + [0; k]

))
, if j > ip

for p ∈ {1, 2}. In the case when i1 6= i2 we obtain that

(
i, j, [0; k]

)
·
{(

i1, j1, [0; k]
)
,
(
i2, j2, [0; k]

)}
*B

Fk
ω \ B

Fk−1
ω .

In the case when j1 6= j2 the proof is similar.

Definition 1 ([20]). An ideal series for a semigroup S is a chain of ideals

I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Im = S.

This ideal series is called tight if I0 is a finite set and Dk = Ik \ Ik−1 is an ω-unstable subset for
each k ∈ {1, . . . , m}.

Lemma 4 implies the next result.

Proposition 2. For an arbitrary n ∈ ω the following ideal series

{0} ⊆ B
F0
ω ⊆ B

F1
ω ⊆ · · · ⊆ B

Fn−1
ω ⊆ B

Fn
ω

is tight.

Proposition 3. For any non-negative integer n and arbitrary p ∈ {0, 1, . . . , n − 1} the map
hp : B

Fn
ω → B

Fn
ω defined by the formulae hp(0) = 0 and

hp(i, j, [0; k]) =

{
0, if k ∈ {0, 1, . . . , p};(
i, j, [0; k − p − 1]

)
, if k ∈ {p + 1, . . . , n}

is a homomorphism which maps the semigroup B
Fn
ω onto its subsemigroup B

Fn−p−1
ω .

Proof. First we shall show that the map h0 : B
Fn
ω → B

Fn
ω defined by the formulae h0(0) = 0 and

h0(i, j, [0; k]) =

{
0, if k = 0;(
i, j, [0; k − 1]

)
, if k ∈ {1, . . . , n}
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is a homomorphism.
It is obvious that

h0(0) · h0
(
i, j, [0]

)
= 0 · 0 = h0(0) = h0(0 · (i, j, [0]))

and
h0
(
i, j, [0]

)
· h0(0) = 0 · 0 = h0(0) = h0

((
i, j, [0]

)
· 0

)

for any i, j ∈ ω.
Fix arbitrary i1, i2, j1, j2 ∈ ω and positive integers k1 and k2. In the case when k1 6 k2 we

have that

h0
(
i1, j1, [0; k1]

)
· h0

(
i2, j2, [0; k2]

)

=
(
i1, j1, [0; k1 − 1]

)
·
(
i2, j2, [0; k2 − 1]

)

=





(
i1 − j1 + i2, j2,

(
j1 − i2 + [0; k1 − 1]

)
∩ [0; k2 − 1]

)
, if j1 < i2;

(
i1, j2, [0; k1 − 1] ∩ [0; k2 − 1]

)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; k1 − 1] ∩
(
i2 − j1 + [0; k2 − 1]

))
, if j1 > i2

=






0, if j1<i2 and j1 − i2 + k1 − 1<0;(
i1 − j1 + i2, j2, [0; j1 − i2 + k1 − 1]

)
, if j1<i2 and 06j1 − i2 + k1 − 16k2 − 1;(

i1, j2, [0; k1 − 1]
)
, if j1=i2;(

i1, j1 − i2 + j2, [0; k1 − 1]
)
, if j1>i2 and k1 − 16i1 − j1 + k2 − 1;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1>i2 and k1 − 1>i1 − j1 + k2 − 1>0;

0, if j1>i2 and k1 − 1>i1 − j1 + k2 − 1<0

=





0, if j1 < i2 and j1 − i2 + k1 < 1;(
i1 − j1 + i2, j2, [0; j1 − i2 + k1 − 1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;(

i1, j2, [0; k1 − 1]
)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; k1 − 1]
)
, if j1 > i2 and k1 6 i2 − j1 + k2;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1 > i2 and k1 > i2 − j1 + k2 > 1;

0, if j1 > i2 and k1 > i2 − j1 + k2 < 1,

and

h0

((
i1, j1,[0; k1]

)
·
(
i2, j2, [0; k2]

))

=






h0(i1−j1+i2, j2,
(

j1−i2+[0; k1]
)
∩[0; k2]), if j1<i2;

h0
(
i1, j2, [0; k1]∩[0; k2]

)
, if j1=i2;

h0

(
i1, j1−i2+j2, [0; k1]∩

(
i2−j1+[0; k2]

))
, if j1>i2

=





h0(0), if j1 < i2 and j1 − i2 + k1 < 0;
h0
(
i1 − j1 + i2, j2, [0; 0] ∩ [0; k2]

)
, if j1 < i2 and j1 − i2 + k1 = 0;

h0
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;

h0
(
i1, j2, [0; k1]

)
, if j1 = i2;

h0
(
i1, j1 − i2 + j2, [0; k1]

)
, if j1 > i2 and k1 6 i2 − j1 + k2;

h0
(
i1, j1 − i2 + j2, [0; k1] ∩ [0; 0]

)
, if j1 > i2 and k1 > i2 − j1 + k2 = 0;

h0(0), if j1 > i2 and k1 > i2 − j1 + k2 < 0
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=






h0(0), if j1 < i2 and j1 − i2 + k1 < 0;
h0
(
i1 − j1 + i2, j2, [0; 0]

)
, if j1 < i2 and j1 − i2 + k1 = 0;

h0
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;

h0
(
i1, j2, [0; k1]

)
, if j1 = i2;

h0
(
i1, j1 − i2 + j2, [0; k1]

)
, if j1 > i2 and k1 6 i2 − j1 + k2;

h0
(
i1, j1 − i2 + j2, [0; 0]

)
, if j1 > i2 and k1 > i2 − j1 + k2 = 0;

h0(0), if j1 > i2 and k1 > i2 − j1 + k2 < 0

=






0, if j1 < i2 and j1 − i2 + k1 < 0;
0, if j1 < i2 and j1 − i2 + k1 = 0;
h0
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;

h0
(
i1, j2, [0; k1]

)
, if j1 = i2;

h0
(
i1, j1 − i2 + j2, [0; k1]

)
, if j1 > i2 and k1 6 i2 − j1 + k2;

0, if j1 > i2 and k1 > i2 − j1 + k2 = 0;
0, if j1 > i2 and k1 > i2 − j1 + k2 < 0

=





0, if j1 < i2 and j1 − i2 + k1 < 1;(
i1 − j1 + i2, j2, [0; j1 − i2 + k1 − 1]

)
, if j1 < i2 and 1 6 j1 − i2 + k1 6 k2;(

i1, j2, [0; k1 − 1]
)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; k1 − 1]
)
, if j1 > i2 and k1 6 i2 − j1 + k2;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1 > i2 and k1 > i2 − j1 + k2 > 1;

0, if j1 > i2 and k1 > i2 − j1 + k2 < 1.

In the case when k1 > k2 we have that

h0
(
i1, j1, [0; k1]

)
· h0

(
i2, j2, [0; k2]

)
=

(
i1, j1, [0; k1 − 1]

)
·
(
i2, j2, [0; k2 − 1

]
)

=





(
i1 − j1 + i2, j2,

(
j1 − i2 + [0; k1 − 1]

)
∩ [0; k2 − 1]

)
, if j1 < i2;

(
i1, j2, [0; k1 − 1] ∩ [0; k2 − 1]

)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; k1 − 1] ∩
(
i2 − j1 + [0; k2 − 1]

))
, if j1 > i2

=





0, if j1<i2 and j1 − i2 + k1 − 1 < 0;(
i1−j1+i2, j2, [0; 0]∩[0; k2 − 1]

)
, if j1<i2 and j1 − i2 + k1 − 1 = 0;(

i1−j1+i2, j2, [0; j1−i2+k1−1]∩[0; k2−1]
)
, if j1<i2 and 16j1−i2+k1 − 16k2−1;(

i1 − j1 + i2, j2, [0; k2 − 1]
)
, if j1<i2 and k2−1<j1−i2+k1−1;(

i1, j2, [0; k1 − 1]∩[0; k2 − 1]
)
, if j1=i2;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1>i2 and i2 − j1 + k2 − 1 > 0;

0, if j1>i2 and i2 − j1 + k2 − 1 < 0

=






0, if j1 < i2 and j1 − i2 + k1 < 1;(
i1 − j1 + i2, j2, [0; 0]

)
, if j1 < i2 and j1 − i2 + k1 = 1;(

i1 − j1 + i2, j2, [0; j1 − i2 + k1 − 1]
)
, if j1 < i2 and 1 6 j1 − i2 + k1 − 1 6 k2 − 1;(

i1 − j1 + i2, j2, [0; k2 − 1]
)
, if j1 < i2 and k2 < j1 − i2 + k1;(

i1, j2, [0; k2 − 1]
)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1 > i2 and i2 − j1 + k2 > 1;

0, if j1 > i2 and i2 − j1 + k2 < 1

and
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h0

((
i1, j1, [0; k1]

)
·
(
i2, j2, [0; k2]

))
=





h0(i1−j1+i2, j2,
(

j1−i2+[0; k1]
)
∩[0; k2]), if j1<i2;

h0
(
i1, j2, [0; k1]∩[0; k2]

)
, if j1=i2;

h0

(
i1, j1−i2+j2, [0; k1]∩

(
i2−j1+[0; k2]

))
, if j1>i2

=






h0(0), if j1 < i2 and j1 − i2 + k1 < 0;
h0
(
i1 − j1 + i2, j2, [0; 0]

)
, if j1 < i2 and j1 − i2 + k1 = 0;

h0
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and k2 > j1 − i2 + k1 > 1;

h0
(
i1 − j1 + i2, j2, [0; k2]

)
, if j1 < i2 and k2 < j1 − i2 + k1 > 1;

h0
(
i1, j2, [0; k2]

)
, if j1 = i2;

h0
(
i1, j1 − i2 + j2, [0; i2 − j1 + k2]

)
, if j1 > i2 and 1 6 i2 − j1 + k2;

h0
(
i1, j1 − i2 + j2, [0; 0]

)
, if j1 > i2 and 0 = i2 − j1 + k2;

h0(0), if j1 > i2 and i2 − j1 + k2 < 0

=





h0(0), if j1 < i2 and j1 − i2 + k1 < 0;
h0(0), if j1 < i2 and j1 − i2 + k1 = 0;
h0
(
i1 − j1 + i2, j2, [0; j1 − i2 + k1]

)
, if j1 < i2 and k2 > j1 − i2 + k1 > 1;

h0
(
i1 − j1 + i2, j2, [0; k2]

)
, if j1 < i2 and k2 < j1 − i2 + k1 > 1;

h0
(
i1, j2, [0; k2]

)
, if j1 = i2;

h0
(
i1, j1 − i2 + j2, [0; i2 − j1 + k2]

)
, if j1 > i2 and 1 6 i2 − j1 + k2;

h0(0), if j1 > i2 and 0 = i2 − j1 + k2;
h0(0), if j1 > i2 and i2 − j1 + k2 < 0

=





0, if j1 < i2 and j1 − i2 + k1 6 0;(
i1 − j1 + i2, j2, [0; j1 − i2 + k1 − 1]

)
, if j1 < i2 and k2 > j1 − i2 + k1 > 1;(

i1 − j1 + i2, j2, [0; k2 − 1]
)
, if j1 < i2 and k2 < j1 − i2 + k1 > 1;(

i1, j2, [0; k2 − 1]
)
, if j1 = i2;(

i1, j1 − i2 + j2, [0; i2 − j1 + k2 − 1]
)
, if j1 > i2 and 1 6 i2 − j1 + k2;

0, if j1 > i2 and i2 − j1 + k2 6 0.

Next observe that by induction we obtain that

hp = h0 ◦ · · · ◦ h0︸ ︷︷ ︸
p+1-times

= h
p+1
0

for any p ∈ {1, . . . , n − 1}.
Simple verifications show that the homomorphism hp : B

Fn
ω → B

Fn
ω maps the semigroup

B
Fn
ω onto its subsemigroup B

Fn−p−1
ω .

Proposition 4. For any positive integer n every congruence on the semigroup I n
ω(

−−→conv) is
Rees.

Proof. First we observe that since the semigroup I n
ω(

−−→conv) has the zero 0 the identity con-
gruence on I n

ω(
−−→conv) is Rees, and it is obvious that the universal congruence on I n

ω(
−−→conv) is

Rees, too.
By induction we shall show the following: if C is a congruence I n

ω(
−−→conv) such that

for some k 6 n there exist two distinct C-equivalent elements α, β ∈ I k
ω(

−−→conv) with
max{rank α, rank β} = k, then all elements of subsemigroup I k

ω(
−−→conv) are equivalent.
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In the case when k = 1 then it is obvious that the semigroup I 1
ω(

−−→conv) is isomorphic to
the semigroup I 1

ω which is isomorphic to the semigroup Bω of ω×ω-matrix units. Since the
semigroup Bω of ω×ω-matrix units is congruence-free (see [24, Corollary 3]), the statement
that any two distinct elements of the semigroup I 1

ω(
−−→conv) are C-equivalent implies that all

elements of I 1
ω(

−−→conv) are C-equivalent. Hence the initial step of induction holds.
Next we shall show the step of induction: if C is a congruence I n

ω(
−−→conv) such that there

exist two distinct C-equivalent elements α, β ∈ I k+1
ω (−−→conv) with max{rank α, rank β} = k + 1,

then the statement that all elements of the subsemigroup I k
ω(

−−→conv) are C-equivalent implies
that all elements of the subsemigroup I k+1

ω (−−→conv) are C-equivalent, as well.

Next we consider all possible cases.

(I) Suppose that α =
(

a a+1 ··· a+k
b b+1 ··· b+k

)
, β = 0 and αCβ. Since C is a congruence on I n

ω(
−−→conv),

for any element γ =
(

c c+1 ··· c+k1
d d+1 ··· d+k1

)
of the subsemigroup I k+1

ω (−−→conv), where k1 6 k + 1, we

have that
γ =

(
c c+1 ··· c+k1
a a+1 ··· a+k1

)
· α ·

(
b b+1 ··· b+k1
d d+1 ··· d+k1

)

is C-equivalent to (
c c+1 ··· c+k1
a a+1 ··· a+k1

)
· 0 ·

(
b b+1 ··· b+k1
d d+1 ··· d+k1

)
= 0,

and hence γC0.

(II) Suppose that α =
(

a a+1 ··· a+k
a a+1 ··· a+k

)
and β =

(
b b+1 ··· b+k1
b b+1 ··· b+k1

)
are non-zero C-equivalent

idempotents of the subsemigroup I k
ω(

−−→conv) such that k1 6 k and β 4 α. In this case we have
that [b; b + k1] ⊆ [a; a + k]. We put

ε =





(
a+1 ··· a+k
a+1 ··· a+k

)
, if a = b;(

a ··· a+k−1
a ··· a+k−1

)
, if a + k = b + k1

and γ =
(

a a+1 ··· a+k
a+1 a+2 ··· a+k+1

)
if a < b and b + k1 < a + k.

In the case when either a = b or a + k = b + k1 we obtain that εα and εβ are distinct
C-equivalent idempotents of the subsemigroup I k−1

ω (−−→conv) and hence by the assumption of
induction all elements of I k−1

ω (−−→conv) are C-equivalent.
In the case when a < b and b + k1 < a + k we obtain that γαγ−1 and γβγ−1 are distinct

C-equivalent idempotents of the subsemigroup I k
ω(

−−→conv), because they have distinct rank 6 k.
Hence by the assumption of induction all elements of I k

ω(
−−→conv) are C-equivalent.

In both above cases we get that αC0, which implies that case (I) holds.

(III) Suppose that α and β are distinct incomparable non-zero C-equivalent idempotents of
the subsemigroup I k

ω(
−−→conv) of I n

ω(
−−→conv) such that rank α = k + 1. Then α = ααCαβ and

αβ 4 α which implies that either case (II) or case (I) holds.

(IV) Suppose that α and β are distinct non-zero C-equivalent elements of the subsemigroup
I k

ω(
−−→conv) of I n

ω(
−−→conv) such that rank α = k + 1. Then at least one of the following conditions

αα−1 6= ββ−1 or α−1α 6= β−1β holds, because by Proposition 1(8) and Theorem 1 all H -
classes in I n

ω(
−−→conv) are singletons. By [32, Proposition 2.3.4(1)], αα−1Cββ−1 and α−1αCβ−1β,

and hence at least one of cases (II) or (III) holds.

Theorem 1 and Proposition 4 imply the description of all congruences on the semi-
group B

Fn
ω .
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Theorem 2. For an arbitrary n ∈ ω the semigroup B
Fn
ω admits only Rees congruences.

Theorem 3. Let n be a non-negative integer and S be a semigroup. For any homomorphism
h : B

Fn
ω → S the image h(B

Fn
ω ) is either isomorphic to B

Fk
ω for some k ∈ {0, 1, . . . , n}, or is a

singleton.

Proof. By Theorem 2 the homomorphism h generates the Rees congruence Ch on the semigroup
B

Fn
ω . By Proposition 1(9) the following ideal series

{0} $ B
F0
ω $ B

F1
ω $ · · · $ B

Fn−1
ω $ B

Fn
ω

is maximal in B
Fn
ω , i.e. if J is an ideal of B

Fn
ω then either J = {0} or J = B

Fm
ω for some

m ∈ {0, 1, . . . , n}.
It is obvious that if J = {0} then the Rees congruence CJ generates the injective homo-

morphism hCJ
, and hence the image hCJ

(
B

Fn
ω

)
is isomorphic to the semigroup B

Fn
ω . Similar

in the case when J = B
Fn
ω we have that the image hCJ

(
B

Fn
ω

)
is a singleton.

Suppose that J = B
Fm
ω for some m ∈ {0, 1, . . . , n − 1}. Then the Rees congruence CJ

generates the natural homomorphism h : B
Fn
ω → B

Fn
ω /J . It is obvious that αCJ β if and

only if hm(α) = hm(β) for α, β ∈ B
Fn
ω , where hm : B

Fn
ω → B

Fn
ω is the homomorphism de-

fined in Proposition 3. Then by Proposition 3 the image h
(

B
Fn
ω

)
is isomorphic to the semi-

group B
Fn−m−1
ω .

3 On topologizations and closure of the semigroup B
Fn

ω

In this section, we establish topologizations of the semigroup B
Fn
ω and its compact-like

shift-continuous topologies.

Theorem 4. Let n be a non-negative integer. Then for any shift-continuous T1-topology τ on

the semigroup B
Fn
ω every non-zero element of B

Fn
ω is an isolated point of

(
B

Fn
ω , τ

)
and hence

every subset in
(

B
Fn
ω , τ

)
which contains zero is closed. Moreover, for any non-zero element

(
i, j, [0; k]

)
of B

Fn
ω the set ↑4

(
i, j, [0; k]

)
is open-and-closed in

(
B

Fn
ω , τ

)
.

Proof. Fix an arbitrary non-zero element
(
i, j, [0; k]

)
of the semigroup B

Fn
ω , where i, j ∈ ω,

k ∈ {0, . . . , n}. Proposition 3 and [20, Proposition 7] imply there exists an open neighbourhood

U(
i,j,[0;k]

) of the point
(
i, j, [0; k]

)
in

(
B

Fn
ω , τ

)
such that

• U(
i,j,[0;k]

) ⊆ B
Fn
ω \ B

Fk−1
ω and

(
i, j, [0; k]

)
is an isolated point in B

Fk
ω if k ∈ {1, . . . , n};

• U(
i,j,[0;k]

) ⊆ B
Fn
ω \ {0} and

(
i, j, [0; k]

)
is an isolated point in B

F0
ω if k = 0.

By separate continuity of the semigroup operation in
(

B
Fn
ω , τ

)
there exists an open neighbour-

hood V(
i,j,[0;k]

) of
(
i, j, [0; k]

)
such that V(

i,j,[0;k]
) ⊆ U(

i,j,[0;k]
) and

(
i, i, [0; k]

)
· V(

i,j,[0;k]
) ·

(
j, j, [0; k]

)
⊆ U(

i,j,[0;k]
).
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We claim that V(
i,j,[0;k]

) ⊆ ↑4
(
i, j, [0; k]

)
. Suppose to the contrary that there exists

(
i1, j1, [0; k1]

)
∈ V(

i,j,[0;k]
) \ ↑4

(
i, j, [0; k]

)
. Then by [32, Lemma 1.4.6(4)] we have that

(
i, i, [0; k]

)
·
(
i1, j1, [0; k1]

)
·
(

j, j, [0; k]
)
6=

(
i, j, [0; k]

)
.

Since B
Fk
ω is an ideal of B

Fn
ω the above inequality implies that

(
i, i, [0; k]

)
· V(

i,j,[0;k]
) ·

(
j, j, [0; k]

)
* U(

i,j,[0;k]
),

a contradiction. Hence V(
i,j,[0;k]

) ⊆ ↑4
(
i, j, [0; k]

)
. By Lemma 1 the set ↑4

(
i, j, [0; k]

)
is finite,

which implies that
(
i, j, [0; k]

)
is an isolated point of

(
B

Fn
ω , τ

)
, because

(
B

Fn
ω , τ

)
is a T1-space.

The last statement follows from the equality

x
4

(
i, j, [0; k]

)
=

{
(a, b, [0; p]

)
∈ B

Fn
ω :

(
i, i, [0; k]

)
·
(
a, b, [0; p]

)
=

(
i, j, [0; k]

)}

and the assumption that τ is a shift-continuous T1-topology on the semigroup B
Fn
ω .

Recall [17], that a topological space X is called:

• scattered if X contains no non-empty subset which is dense-in-itself;

• 0-dimensional if X has a base which consists of open-and-closed subsets;

• collectionwise normal if for every discrete family {Fi}i∈S of closed subsets of X there exists
a pairwise disjoint family of open sets {Ui}i∈S such that Fi ⊆ Ui for all i ∈ S .

Corollary 1. Let n be a non-negative integer. Then for any shift-continuous T1-topology τ on

the semigroup B
Fn
ω the space

(
B

Fn
ω , τ

)
is scattered, 0-dimensional and collectionwise normal.

Proof. Theorem 4 implies that
(

B
Fn
ω , τ

)
is a scattered, 0-dimensional space.

Let {Fs}s∈S be a discrete family of closed subsets of
(

B
Fn
ω , τ

)
. By Theorem 4 every non-

zero element of B
Fn
ω is an isolated point of

(
B

Fn
ω , τ

)
. In the case when every element of the

family {Fs}s∈S does not contain the zero 0 of B
Fn
ω by [17, Theorem 5.1.17] the space

(
B

Fn
ω , τ

)
is

collectionwise normal. Suppose that 0 ∈ Fs0 for some s0 ∈ S . Let U(0) be an open neighbour-
hood of the zero 0 of B

Fn
ω , which intersects at more one element of the family {Fs}s∈S . Put

Us0 = U(0) ∪ Fs0 and Us = Fs for all s ∈ S \ {so}. Then Us ∩ Ut = ∅ for all distinct s, t ∈ S

and hence by [17, Theorem 5.1.17] the space
(

B
Fn
ω , τ

)
is collectionwise normal.

Example 1. Let n be a non-negative integer. We define a topology τAc on the semigroup
B

Fn
ω in the following way. All non-zero elements of the semigroup B

Fn
ω are isolated points

of
(

B
Fn
ω , τAc

)
and the family BAc(0) =

{
A ⊆ B

Fn
ω : 0 ∈ A and B

Fn
ω \ A is finite

}
determines

the base of the topology τAc at the point 0.

It is obvious that the topological space
(

B
Fn
ω , τAc

)
is homeomorphic to the Alexandroff

one-point compactification of the discrete infinite countable space, and hence
(

B
Fn
ω , τAc

)
is a
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Hausdorff compact space. Then the space
(

B
Fn
ω , τAc

)
is normal and since it has a countable

base, by the Urysohn Metrization Theorem (see [17, Theorem 4.2.9]) the space
(

B
Fn
ω , τAc

)
is

metrizable.
Next we shall show that

(
B

Fn
ω , τAc

)
is a semitopological semigroup. Let α and β be non-

zero elements of the semigroup B
Fn
ω . Since α and β are isolated points in

(
B

Fn
ω , τAc

)
, it is

sufficient to show how to find for a fixed open neighbourhood U0 open neighbourhoods V0

and W0 of the zero 0 in
(

B
Fn
ω , τAc

)
such that

V0 · α ⊆ U0 and β · W0 ⊆ U0.

Since the space
(

B
Fn
ω , τAc

)
is compact, any open neighbourhood U0 of the zero 0 is cofinite

subset in B
Fn
ω . By Lemma 2,

V0 = {γ ∈ U0 : γ · α ∈ U0} and W0 = {γ ∈ U0 : β · γ ∈ U0}

are cofinite subsets of U0 and hence by the definition of the topology τAc the sets V0 and W0

are required open neighbourhoods of the zero 0 in
(

B
Fn
ω , τAc

)
.

Since all non-zero elements of the semigroup B
Fn
ω are isolated points in

(
B

Fn
ω , τAc

)
and

every open neighbourhood U0 of the zero in
(

B
Fn
ω , τAc

)
has the finite complement in B

Fn
ω , the

inversion is continuous in
(

B
Fn
ω , τAc

)
.

The following theorem describes all compact-like shift-continuous T1-topologies on the
semigroup B

Fn
ω .

Theorem 5. Let n be a non-negative integer. Then for any shift-continuous T1-topology τ on
the semigroup B

Fn
ω the following conditions are equivalent:

(1) (B
Fn
ω , τ) is a compact semitopological semigroup;

(2) (B
Fn
ω , τ) is topologically isomorphic to

(
B

Fn
ω , τAc

)
;

(3) (B
Fn
ω , τ) is a compact semitopological semigroup with continuous inversion;

(4) (B
Fn
ω , τ) is an ωd-compact space.

Proof. Implications (1) ⇒ (4), (2) ⇒ (1), (2) ⇒ (3) and (3) ⇒ (1) are obvious. Since by Theo-
rem 4 every non-zero element of the semigroup B

Fn
ω is an isolated point in (B

Fn
ω , τ), statement

(1) implies (2).
(4) ⇒ (1) Suppose there exists a shift-continuous T1-topology τ on the semigroup B

Fn
ω

such that (B
Fn
ω , τ) is an ωd-compact non-compact space. Then there exists an open cover

U = {Us} of (B
Fn
ω , τ), which has no a finite subcover. Let Us0 ∈ U be such that Us0 ∋ 0.

Then B
Fn
ω \ Us0 is an infinite countable subset of isolated points of (B

Fn
ω , τ). We enumerate

the set B
Fn
ω \ Us0 by positive integers, i.e. B

Fn
ω \ Us0 = {αi : i ∈ N}. Next we define a map

f : (B
Fn
ω , τ) → ωd by the formula

f (α) =

{
0, if α ∈ Us0 ;
i, if α = αi for some i ∈ N.
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By Theorem 4 the set Us0 is open-and-closed in
(

B
Fn
ω , τ

)
, and hence so defined map f is con-

tinuous. But the image f
(

B
Fn
ω

)
is not a compact subset of ωd, a contradiction. The obtained

contradiction implies the implication (4) ⇒ (1).

The following proposition states that the semigroup B
Fn
ω has a similar closure in a

T1-semitopological semigoup as the bicyclic monoid (see [10, 16]), the λ-polycyclic monoid [9],
graph inverse semigroups [7, 34], McAlister semigroups [8], locally compact semitopological
0-bisimple inverse ω-semigroups with a compact maximal subgroup [18], and other discrete
semigroups of bijective partial transformations [12, 13, 19, 22, 25, 27–30].

Proposition 5. Let n be a non-negative integer. If S is a T1-semitopological semigroup, which

contains B
Fn
ω as a dense proper subsemigroup, then I =

(
S \ B

Fn
ω

)
∪ {0} is an ideal of S.

Proof. Fix an arbitrary element ν ∈ I. If χ · ν = ζ /∈ I for some χ ∈ B
Fn
ω , then there exists

an open neighbourhood U(ν) of the point ν in the space S such that {χ} · U(ν) = {ζ} ⊂

B
Fn
ω \ {0}. By Lemma 3 the open neighbourhood U(ν) should contain finitely many elements

of the semigroup B
Fn
ω , which contradicts our assumption. Hence χ · ν ∈ I for all χ ∈ B

Fn
ω and

ν ∈ I. The proof of the statement that ν · χ ∈ I for all χ ∈ B
Fn
ω and ν ∈ I is similar.

Suppose to the contrary that χ · ν = ω /∈ I for some χ, ν ∈ I. Then ω ∈ B
Fn
ω and the

separate continuity of the semigroup operation in S yields open neighbourhoods U(χ) and
U(ν) of the points χ and ν in the space S, respectively, such that {χ} · U(ν) = {ω} and
U(χ) · {ν} = {ω}. Since both neighbourhoods U(χ) and U(ν) contain infinitely many ele-
ments of the semigroup B

Fn
ω , equalities {χ} · U(ν) = {ω} and U(χ) · {ν} = {ω} do not hold,

because {χ} ·
(

U(ν) ∩ B
Fn
ω

)
⊆ I. The obtained contradiction implies that χ · ν ∈ I.

For any k ∈ {0, 1, . . . , n + 1} we denote

Dk =
{

α ∈ I n+1
ω (−−→conv) : rank α = k

}
.

We observe that by Proposition 1(9) and Theorem 1, D = {Dk : k = 0, 1, . . . , n + 1} is the
family of all D-classed of the semigroup I n+1

ω (−−→conv).
The following proposition describes the remainder of the semigroup B

Fn
ω in a semitopo-

logical semigroup.

Proposition 6. Let n be a non-negative integer. If S is a T1-semitopological semigroup, which
contains B

Fn
ω as a dense proper subsemigroup, then χ · χ = 0 for all χ ∈ S \ B

Fn
ω .

Proof. We observe that 0 is zero of the semigroup S by [18, Lemma 4.4].
We shall prove the statement of the proposition for the semigroup I n+1

ω (−−→conv), which by
Theorem 1 is isomorphic to the semigroup B

Fn
ω .

Fix an arbitrary χ ∈ S \I n+1
ω (−−→conv) and any open neighbourhood U(χ) of the point χ in S.

Since B
Fn
ω is a dense proper subsemigroup of S the set U(χ) ∩

(
I n+1

ω (−−→conv) \ {0}
)

is infinite.
Since the family D is finite, there exists i ∈ {1, . . . , n + 1} such that the set U(χ) ∩ Di is infinite.
This and the definition of the semigroup I n+1

ω (−−→conv) imply that at least one of the families

dom DiU(χ) =
{

dom α : α ∈ U(χ) ∩ Di

}
or ran DiU(χ) =

{
ran α : α ∈ U(χ) ∩ Di

}
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has infinitely many members. Assume that the family dom DiU(χ) is infinite. Then the def-
inition of the semigroup operation on I n+1

ω (−−→conv) implies that there exist infinitely many
β ∈ U(χ) ∩ I n+1

ω (−−→conv) such that 0 ∈ β · U(χ), and since S is a T1-space we have that
β · χ = 0 for such elements β. Also, the infiniteness of dom DiU(χ) and the semigroup op-
eration of I n+1

ω (−−→conv) imply the existence infinitely many γ ∈ U(χ) ∩ I n+1
ω (−−→conv) such that

0 ∈ U(χ) · γ, and since S is a T1-space we have that χ · γ = 0 for such elements γ. In the
case when the family ran DiU(χ) is infinite similarly we obtain that there exist infinitely many
β, γ ∈ U(χ) ∩I n+1

ω (−−→conv) such that β · χ = 0 and χ · γ = 0.
Thus we show that 0 ∈ V(χ) · χ and 0 ∈ χ · V(χ) for any open neighbourhood V(χ) of

the point χ in S. Since S is a T1-space, this implies the required equality χ · χ = 0 for all
χ ∈ S \ B

Fn
ω .

Let STSG be a class of semitopological semigroups. A semigroup S ∈ STSG is called H-

closed in STSG, if S is a closed subsemigroup of any topological semigroup T ∈ STSG, which
contains S both as a subsemigroup and as a topological space. H-closed topological semi-
groups were introduced by J.W. Stepp in [38], and there they were called maximal semigroups.
A semitopological semigroup S ∈ STSG is called absolutely H-closed in the class STSG, if any
continuous homomorphic image of S into T ∈ STSG is H-closed in STSG. An algebraic
semigroup S is called:

• algebraically complete in STSG, if S with any Hausdorff topology τ such that (S, τ) ∈

STSG is H-closed in STSG0;

• algebraically h-complete in STSG, if S with discrete topology τd is absolutely H-closed in
STSG and (S, τd) ∈ STSG.

Absolutely H-closed topological semigroups and algebraically h-complete semigroups were
introduced by J.W. Stepp in [39], and there they were called absolutely maximal and algebraic

maximal, respectively. Other distinct types of completeness of (semi)topological semigroups
were studied by T. Banakh and S. Bardyla (see [1–6]).

Proposition 3 and [20, Proposition 10] imply the following theorem.

Theorem 6. For any n ∈ ω the semigroup B
Fn
ω is algebraically complete in the class of Haus-

dorff semitopological inverse semigroups with continuous inversion, and hence in the class of
Hausdorff topological inverse semigroups.

Theorem 7. Let n be a non-negative integer. If
(

B
Fn
ω , τ

)
is a Hausdorff topological semigroup

with the compact band then
(

B
Fn
ω , τ

)
is H-closed in the class of Hausdorff topological semi-

groups.

Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup T, which

contains
(

B
Fn
ω , τ

)
as a non-closed subsemigroup. Since the closure of a subsemigroup of a

topological semigroup S is a subsemigroup of S (see [11, p. 9]), without loss of generality we
can assume that B

Fn
ω is a dense subsemigroup of T and T \ B

Fn
ω 6= ∅. Let χ ∈ T \ B

Fn
ω . Then 0

is the zero of the semigroup T by [18, Lemma 4.4], and χ · χ = 0 by Proposition 6.
Since 0 · χ = χ · 0 = 0 and T is a Hausdorff topological semigroup, for any disjoint open

neighbourhoods U(χ) and U(0) of χ and 0 in T, respectively, there exist open neighbour-
hoods V(χ) ⊆ U(χ) and V(0) ⊆ U(0) of χ and 0 in T, respectively, such that V(0) · V(χ) ⊆
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U(0) and V(χ) · V(0) ⊆ U(0). By Theorem 4 every non-zero element of B
Fn
ω is an isolated

point in
(

B
Fn
ω , τ

)
and by [17, Corollary 3.3.11] it is an isolated point of T, and hence the set

E
(

B
Fn
ω

)
\ V(0) is finite. Also Hausdorffness and compactness of E

(
B

Fn
ω

)
imply that with-

out loss of generality we may assume that V(χ) ∩ E
(

B
Fn
ω

)
= ∅. Since the neighbourhood

V(χ) contains infinitely many elements of the semigroup B
Fn
ω and the set E

(
B

Fn
ω

)
\ V(0) is

finite, there exists
(
i, j, [0; k]

)
∈ V(χ) such that either

(
i, i, [0; k]

)
∈ V(0) or

(
j, j, [0; k]

)
∈ V(0).

Therefore, we have that at least one of the following conditions holds:

(V(0) · V(χ)) ∩ V(χ) 6= ∅ and (V(χ) · V(0)) ∩ V(χ) 6= ∅.

Every of the above conditions contradicts the assumption that U(χ) and U(0) are disjoint open
neighbourhoods of χ and 0 in T. The obtained contradiction completes the proof.

Since compactness preserves by continuous maps Theorems 3 and 7 imply the following
assertion.

Corollary 2. Let n be a non-negative integer. If
(

B
Fn
ω , τ

)
is a Hausdorff topological semi-

group with the compact band then
(

B
Fn
ω , τ

)
is absolutely H-closed in the class of Hausdorff

topological semigroups.

Theorem 8. Let n be a non-negative integer and
(

B
Fn
ω , τ

)
be a Hausdorff topological inverse

semigroup. If
(

B
Fn
ω , τ

)
is H-closed in the class of Hausdorff topological semigroups then its

band E
(

B
Fn
ω

)
is compact.

Proof. We shall prove the statement of the proposition for the semigroup I n+1
ω (−−→conv), which

by Theorem 1 is isomorphic to the semigroup B
Fn
ω .

Suppose to the contrary that there exists a Hausdorff topological inverse semigroup(
I n+1

ω (−−→conv), τ
)

with the non-compact band such that
(
I n+1

ω (−−→conv), τ
)

is H-closed in the
class of Hausdorff topological semigroups. By Theorem 4 every non-zero element of the semi-
group I n+1

ω (−−→conv) is an isolated point in
(
I n+1

ω (−−→conv), τ
)
. Hence there exists an open neigh-

bourhood U(0) of the zero 0 in
(
I n+1

ω (−−→conv), τ
)

such that the set A = E
(
I n+1

ω (−−→conv)
)
\U(0)

is infinite and closed in
(
I n+1

ω (−−→conv), τ
)
. Let k be the smallest positive integer 6 n + 1 such

that the set Ak = A ∩ I k
ω(

−−→conv) is infinite for the subsemigroup I k
ω(

−−→conv) of I n+1
ω (−−→conv).

Without loss of generality we may assume that there exists an increasing sequence of non-
negative integers

{
aj

}
j∈ω

such that a0 > n + 1 and

Ãk =
{(

aj ··· aj+k−1
aj ··· aj+k−1

)
: j ∈ ω

}
⊆ Ak.

The continuity of the semigroup operation in
(
I n+1

ω (−−→conv), τ
)

implies that there exists an
open neighbourhood V(0) ⊆ U(0) of the zero 0 in

(
I n+1

ω (−−→conv), τ
)

such that V(0) · V(0) ⊆

U(0). By the definition of the semigroup operation on I n+1
ω (−−→conv) we have that the neigh-

bourhood V(0) does not contain at least one of the points

(
aj ··· aj+n
aj ··· aj+n

)
or

(
aj−n+k−2 ··· aj+k−1
aj−n+k−2 ··· aj+k−1

)
.
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Since the both above points belong to I n+1
ω (−−→conv) \ I n

ω(
−−→conv), without loss of generality we

may assume that there exists an increasing sequence of non-negative integers
{

bj

}
j∈ω

such

that bj + n + 1 < bj+1 for all i ∈ ω and

B̃n+1 =
{(

bj ··· bj+n

bj ··· bj+n

)
: j ∈ ω

}
* V(0).

Since
(
I n+1

ω (−−→conv), τ
)

is a Hausdorff topological inverse semigroup, we conclude that the
maps f1 : I n+1

ω (−−→conv) → E
(
I n+1

ω (−−→conv)
)
, α 7→αα−1 and f2 : I n+1

ω (−−→conv) → E
(
I n+1

ω (−−→conv)
)
,

α 7→ α−1α are continuous, and hence the set SB̃n+1
= f−1

1 (B̃n+1)∪ f−1
2 (B̃n+1) is infinite and open

in
(
I n+1

ω (−−→conv), τ
)
.

Let χ /∈ I n+1
ω (−−→conv). Put S = I n+1

ω (−−→conv) ∪ {χ}. We extend the semigroup operation
from I n+1

ω (−−→conv) onto S in the following way:

χ · χ = χ · α = α · χ = 0 for all α ∈ I n+1
ω (−−→conv).

Simple verifications show that such defined binary operation is associative.
For any p ∈ ω we denote

Γp =
{(

b2j ··· b2j+n

b2j+1 ··· b2j+1+n

)
: j > p

}
.

We determine a topology τS on the semigroup S in the following way:

(1) for every γ ∈ I n+1
ω (−−→conv) the bases of topologies τ and τS at γ coincide;

(2) B(χ) =
{

Up(χ) = {χ} ∪ Γp : p ∈ ω
}

is the base of the topology τS at the point χ.

Simple verifications show that τS is a Hausdorff topology on the semigroup I n+1
ω (−−→conv).

For any p ∈ ω and any open neighbourhood V(0) ⊆ U(0) of the zero 0 in
(
I n+1

ω (−−→conv), τ
)

we have that

V(0) · Up(χ) = Up(χ) · V(0) = Up(χ) · Up(χ) = {0} ⊆ V(0).

We observe that the definition of the set Γp implies that for any non-zero element

γ =
(

c ··· c+l
d ··· d+l

)
of the semigroup I n+1

ω (−−→conv) there exists the smallest positive integer jγ such

that c + l < b2jγ and d + l < b2jγ+1. Then we have that γ · Ujγ(χ) = Ujγ(χ) · γ = {0} ⊆ V(0).
Therefore (S, τS) is a topological semigroup, which contains

(
I n+1

ω (−−→conv), τ
)

as a dense

proper subsemigroup. The obtained contradiction implies that E
(

B
Fn
ω

)
is a compact subset

of
(
I n+1

ω (−−→conv), τ
)
.

Theorem 9. Let n be a non-negative integer and
(

B
Fn
ω , τ

)
be a Hausdorff topological inverse

semigroup. Then the following conditions are equivalent:

(1)
(

B
Fn
ω , τ

)
is H-closed in the class of Hausdorff topological semigroups;

(2)
(

B
Fn
ω , τ

)
is absolutely H-closed in the class of Hausdorff topological semigroups;

(3) the band E
(

B
Fn
ω

)
is compact.
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Proof. Implication (2) ⇒ (1) is obvious. Implications (1) ⇒ (3) and (3) ⇒ (1) follow from
Theorems 8 and 7, respectively.

Since a continuous image of a compact set is compact, Theorem 3 implies that (3) ⇒ (2).

The following example shows that a counterpart of the statement of Theorem 8 does not

hold, when
(

B
Fn
ω , τ

)
is a Hausdorff topological semigroup.

Example 2. On the semigroup I 1
ω(

−−→conv) we define a topology τ† in the following way. All
non-zero elements of the semigroup I 1

ω(
−−→conv) are isolated points of

(
I 1

ω(
−−→conv), τ†

)
and the

family B†(0) =
{

Uk(0) : k ∈ ω
}

, where Uk(0) = {0} ∪
{
( 2i

2i+1) : i > k
}

, determines the base of

the topology τ† at the point 0. It is obvious that τ† is a Hausdorff topology on I 1
ω(

−−→conv). Since
Uk(0) · Uk(0) = {0} for any k ∈ ω and Uq(0) ·

{
(p

q)
}
=

{
(p

q)
}
· Up(0) = {0} for any p, q ∈ ω,(

I 1
ω(

−−→conv), τ†
)

is a topological semigroup.

Proposition 7.
(
I 1

ω(
−−→conv), τ†

)
is H-closed in the class of Hausdorff topological semigroups.

Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup T, which
contains

(
I 1

ω(
−−→conv), τ†

)
as a non-closed subsemigroup. Since the closure of a subsemigroup

of a topological semigroup S is a subsemigroup of S (see [11, p. 9]), without loss of generality
we can assume that I 1

ω(
−−→conv) is a dense proper subsemigroup of T. Let χ ∈ T \ I 1

ω(
−−→conv).

Then 0 is the zero of the semigroup T by [18, Lemma 4.4], and χ · χ = 0 by Proposition 6.
Fix disjoint open neighbourhoods U(χ) and Up(0) of χ and 0 in T. By Proposition 6,

E(T) = E
(
I 1

ω(
−−→conv)

)
. By [11, Theorem 1.5], E

(
I 1

ω(
−−→conv)

)
is a closed subset of T and hence

without loss of generality we can assume that U(χ) ∩ E
(
I 1

ω(
−−→conv)

)
= ∅. Then for any open

neighbourhoods V(χ) ⊆ U(χ) and Uq(0) ⊆ Up(0) the infiniteness of V(χ) and the definition
of the semigroup operation on I 1

ω(
−−→conv) that imply that

V(χ) · Uq(0) * Up(0) or Uq(0) · V(χ) * Up(0),

which contradicts the continuity of the semigroup operation on T.
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Гутiк О.В., Попадюк О.Б. Про напiвгрупу B
Fn
ω , породжену сiм’єю Fn скiнченних обмежених iнтер-

валiв у ω // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 331–355.

Ми вивчаємо напiвгрупу B
Fn
ω , яка представлена в статтi [Вiсник Львiв. ун-ту. Сер. мех.-мат.

2020, 90, 5–19], у випадку коли ω-замкнена сiм’я Fn породжена множиною {0, 1, . . . , n}. Ми до-
водимо, що вiдношення Ґрiна D i J спiвпадають в B

Fn
ω , напiвгрупа B

Fn
ω iзоморфна напiвгрупi

I n+1
ω (−−→conv) часткових порядково-опуклих iзоморфiзмiв множини (ω,6) рангу 6 n + 1, i на

B
Fn
ω iснують лише конгруенцiї Рiса. Також вивчаються трансляцiйно неперервнi топологiї на

напiвгрупi B
Fn
ω . Зокрема, доведено, що для довiльної трансляцiйно неперервної T1-топологiї

τ на B
Fn
ω кожен ненульовий елемент напiвгрупи B

Fn
ω є iзольованою точкою в (B

Fn
ω , τ), на B

Fn
ω

iснує єдина компактна трансляцiйно неперервна T1-топологiя, i кожна ωd-компактна трансля-
цiйно неперервна T1-топологiя компактна. Описано замикання напiвгрупи B

Fn
ω в гаусдорфо-

вiй напiвтопологiчнiй напiвгрупi та доведено критерiй H-замкненостi топологiчної iнверсної
напiвгрупи B

Fn
ω в класi гаусдорфових топологiчних напiвгруп.

Ключовi слова i фрази: бiциклiчне розширення, конгруенцiя Рiса, напiвтопологiчна напiв-
група, топологiчна напiвгрупа, бiциклiчний моноїд, iнверсна напiвгрупа, ωd-компактний, ком-
пактний, замикання.


