References

  1. Egner S., Puschel M. Symmetry-based matrix factorization. J. Symbolic Comput. 2004, 37 (2), 157–186. doi:10.1016/j.jsc.2002.06.005
  2. Good I.J. The Interaction Algorithm and Practical Fourier Analysis. J. R. Stat. Soc. Ser. B. Stat. Methodol. 1958, 20 (2), 361–372.
  3. Jorgensen P. Matrix Factorizations, Algorithms, Wavelets. Notices Amer. Math. Soc. 2003, 50 (8), 880–894.
  4. Kondor R., Teneva N., Garg V. Multiresolution matrix factorization. Proceedings of the 31st International Conference on Machine Learning (PMLR) 2014, 32, 1620–1628.
  5. Mullen G., Panario D. Handbook of Finite Fields. CRC Press, New York, 2013. doi:10.1201/b15006
  6. Petryshyn L.B. Theoretical bases of transformation and digital information processing in Galois basis. Inst. of contents and teaching methods, Kyiv, 1997. (in Ukrainian)
  7. Prevysokova N.V. Family of wavelet functions on the Galois function base. Carpathian Math. Publ. 2016, 8 (2), 295–304. doi:10.15330/cmp.8.2.295-304
  8. Symeonidis P., Zioupos A. Matrix and Tensor Factorization Techniques for Recommender Systems. In: Gerstner R. (Ed.) SpringerBriefs in Computer Science. Springer Cham, New York, 2016. doi:10.1007/978-3-319-41357-0
  9. Thompson A. The Cascading Haar Wavelet Algorithm for Computing the Walsh - Hadamard Transform. IEEE Signal Process. Letters. 2017, 24, 1020–1023. doi:10.1109/LSP.2017.2705247
  10. Yaroslavsky L.P. Digital picture processing: an introduction. Soviet radio, Moscow, 1979. (in Russian)
  11. Zalmanzon L.A. Fourier, Walsh, and Haar Transforms and Their Applications in Control, Communication, and Other Fields. Nauka, Moscow, 1989. (in Russian)