References
- Egner S., Puschel M. Symmetry-based matrix factorization. J.
Symbolic Comput. 2004, 37 (2), 157–186. doi:10.1016/j.jsc.2002.06.005
- Good I.J. The Interaction Algorithm and Practical Fourier
Analysis. J. R. Stat. Soc. Ser. B. Stat. Methodol. 1958,
20 (2), 361–372.
- Jorgensen P. Matrix Factorizations, Algorithms, Wavelets.
Notices Amer. Math. Soc. 2003, 50 (8), 880–894.
- Kondor R., Teneva N., Garg V. Multiresolution matrix
factorization. Proceedings of the 31st International Conference on
Machine Learning (PMLR) 2014, 32, 1620–1628.
- Mullen G., Panario D. Handbook of Finite Fields. CRC Press, New York,
2013. doi:10.1201/b15006
- Petryshyn L.B. Theoretical bases of transformation and digital
information processing in Galois basis. Inst. of contents and teaching
methods, Kyiv, 1997. (in Ukrainian)
- Prevysokova N.V. Family of wavelet functions on the Galois
function base. Carpathian Math. Publ. 2016, 8 (2),
295–304. doi:10.15330/cmp.8.2.295-304
- Symeonidis P., Zioupos A. Matrix and Tensor Factorization Techniques
for Recommender Systems. In: Gerstner R. (Ed.) SpringerBriefs in
Computer Science. Springer Cham, New York, 2016.
doi:10.1007/978-3-319-41357-0
- Thompson A. The Cascading Haar Wavelet Algorithm for Computing
the Walsh - Hadamard Transform. IEEE Signal Process. Letters. 2017,
24, 1020–1023. doi:10.1109/LSP.2017.2705247
- Yaroslavsky L.P. Digital picture processing: an introduction. Soviet
radio, Moscow, 1979. (in Russian)
- Zalmanzon L.A. Fourier, Walsh, and Haar Transforms and Their
Applications in Control, Communication, and Other Fields. Nauka, Moscow,
1989. (in Russian)