References

  1. Al-Salti N., Kirane M., Torebek B.T. On a class of inverse problems for a heat equation with involution perturbation. Hacet. J. Math. Stat. 2019, 48 (3), 669–681. doi:10.15672/HJMS.2017.538
  2. Ashyralyev A., Sarsenbi A. Well-posedness of a parabolic equation with involution. Numer. Funct. Anal. Optim. 2017, 38 (10), 1295–1304. doi:10.1080/01630563.2017.1316997
  3. Ashyralyev A., Sarsenbi A. Well–posedness of an elliptic equations with involution. Electron. J. Differential Equations 2015, 2015 (284), 1–8.
  4. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. Nonlocal multipoint problem for ordinary differential equations of even order involution. Mat. Stud. 2018, 49 (1), 80–94. doi:10.15330/ms.49.1.80-94
  5. Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The nonlocal multipoint problem with Dirichlet-type conditions for an ordinary differential equation of even order with involution. Mat. Stud. 2020, 54 (1), 64–78. doi:10.30970/ms.54.1.64-78
  6. Baranetskij Ya.O., Kalenyuk P.I. Boundary-value problems with Birkhoff regular but not strongly regular conditions for a second-order differential operator. J. Math. Sci. 2019, 238 (1), 1–21. doi:10.1007/S10958-019-04214-Z
  7. Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Spectral properties of nonself-adjoint nonlocal boundary-value problems for the operator of differentiation of even order. Ukrainian Math. J. 2018, 70 (6), 851–865.
  8. Baranetskij Ya.O., Kalenyuk P.I. Nonlocal multipoint problem with multiple spectrum for an ordinary 2n–th order differential equation. J. Math. Sci. 2020, 246 (2), 152–169. doi:10.1007/s10958-020-04727-y
  9. Cabada A., Tojo A.F. Equations with Involutions. Workshop on Differential Equations, Malla Moravka, Czech Republic, 2014, 240.
  10. Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B. Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions. Appl. Math. Comput. 2019, 346, 800–815. doi:10.1016/j.amc.2018.10.059
  11. Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B. An inverse time-dependent source problem for the heat equation with a non-classical boundary condition. Appl. Math. Model. 2015, 39 (20), 6258–6272. doi:10.1016/j.apm.2015.01.058
  12. Hazanee A., Lesnic D. Determination of a time-dependent heat source from nonlocal boundary conditions. Eng. Anal. Bound. Elem. 2013, 37 (6), 936–956. doi:10.1016/j.enganabound.2013.03.003
  13. Hazanee A., Lesnic D. Determination of a time-dependent coefficient in the bioheat equation. Int. J. Mech. Sci. 2014, 88, 259–266. doi:10.1016/j.ijmecsci.2014.05.017
  14. Gohberg I.C., Krein M.G. Introduction to the theory of linear nonself-adjoint operators. Providence: Amer. Math. Soc. 1969.
  15. Il'in V.A. Existence of a reduced system of eigen- and associated functions for a nonself-adjoint ordinary differential operator. Proc. Steklov Inst. Math. 1979, 142, 157–164.
  16. Kirane M., Al-Salti N. Inverse problems for a nonlocal wave equation with an involution perturbation. J. Nonlinear Sci. Appl. 2016, 9 (3), 1243–1251. doi:10.22436/jnsa.009.03.49
  17. Kritskov L.V., Sarsenbi A.M. Basicity in \(L_{p}\) of root functions for differential equations with involution. Electron. J. Differ. Equ. 2015, 2015 (278), 1–9.
  18. Kritskov L.V., Sadybekov M.A., Sarsenbi A.M. Properties in \(L_{p}\) of root functions for a nonlocal problem with involution. Turkish J. Math. 2019, 43 (1), 393–401. doi:10.3906/mat-1809-12
  19. Naimark M.A. Linear differential operators. Frederick Ungar Publ. Co., New York, 1967.
  20. Orazov I., Sadybekov M.A. On a class of problems of determining the temperature and density of heat sources given initial and final temperature. Sib. Math. J. 2012, 53 (1), 146–151.
  21. Sadybekov M., Dildabek G., Ivanova M.B. Direct and inverse problems for nonlocal heat equation with boundary conditions of periodic type. Bound. Value Probl. 2022, 53. doi:10.1186/s13661-022-01632-y
  22. Sadybekov M.A., Dildabek G., Ivanova M.B. On an inverse problem of reconstructing a heat conduction process from nonlocal data. Adv. Math. Phys. 2018, 2018, 1–8. doi:10.1155/2018/8301656
  23. Sarsenbi A. Solvability of a mixed problem for a heat equation with an involution perturbation. AIP Conference Proceedings 2019, 2183 (1). doi:10.1063/1.5136187
  24. Sarsenbi A. The ill-posed problem for the heat transfer equation with involution. Zhurnal SVMO. 2019, 21 (1), 48–59. doi:10.15507/2079-6900.21.201901.48-59
  25. Sarsenbi A. On a class of inverse problems for a parabolic equation with involution. AIP Conference Proceedings 2017, 1880 (1). doi:10.1063/1.5000637
  26. Vladykina V.E., Shkalikov A.A. Regular Ordinary Differential Operators with Involution. Math. Notes 2019, 106 (5), 674–687. doi:10.1134/S0001434619110026
  27. Vladykina V.E., Shkalikov A.A. Spectral properties of ordinary differential operators with involution. Dokl. Math. 2019, 99 (1), 5–10.