References
- Al-Salti N., Kirane M., Torebek B.T. On a class of inverse
problems for a heat equation with involution perturbation. Hacet.
J. Math. Stat. 2019, 48 (3), 669–681.
doi:10.15672/HJMS.2017.538
- Ashyralyev A., Sarsenbi A. Well-posedness of a parabolic equation
with involution. Numer. Funct. Anal. Optim. 2017,
38 (10), 1295–1304.
doi:10.1080/01630563.2017.1316997
- Ashyralyev A., Sarsenbi A. Well–posedness of an elliptic
equations with involution. Electron. J. Differential Equations
2015, 2015 (284), 1–8.
- Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I.
Nonlocal multipoint problem for ordinary differential equations of
even order involution. Mat. Stud. 2018, 49 (1),
80–94. doi:10.15330/ms.49.1.80-94
- Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The
nonlocal multipoint problem with Dirichlet-type conditions for an
ordinary differential equation of even order with involution. Mat.
Stud. 2020, 54 (1), 64–78.
doi:10.30970/ms.54.1.64-78
- Baranetskij Ya.O., Kalenyuk P.I. Boundary-value problems with
Birkhoff regular but not strongly regular conditions for a second-order
differential operator. J. Math. Sci. 2019, 238
(1), 1–21. doi:10.1007/S10958-019-04214-Z
- Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Spectral
properties of nonself-adjoint nonlocal boundary-value problems for the
operator of differentiation of even order. Ukrainian Math. J. 2018,
70 (6), 851–865.
- Baranetskij Ya.O., Kalenyuk P.I. Nonlocal multipoint problem with
multiple spectrum for an ordinary 2n–th order differential
equation. J. Math. Sci. 2020, 246 (2), 152–169.
doi:10.1007/s10958-020-04727-y
- Cabada A., Tojo A.F. Equations with Involutions. Workshop on
Differential Equations, Malla Moravka, Czech Republic, 2014, 240.
- Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B. Inverse
time-dependent source problems for the heat equation with nonlocal
boundary conditions. Appl. Math. Comput. 2019,
346, 800–815. doi:10.1016/j.amc.2018.10.059
- Hazanee A., Lesnic D., Ismailov M.I., Kerimov N.B. An inverse
time-dependent source problem for the heat equation with a non-classical
boundary condition. Appl. Math. Model. 2015, 39
(20), 6258–6272. doi:10.1016/j.apm.2015.01.058
- Hazanee A., Lesnic D. Determination of a time-dependent heat
source from nonlocal boundary conditions. Eng. Anal. Bound. Elem.
2013, 37 (6), 936–956.
doi:10.1016/j.enganabound.2013.03.003
- Hazanee A., Lesnic D. Determination of a time-dependent
coefficient in the bioheat equation. Int. J. Mech. Sci. 2014,
88, 259–266. doi:10.1016/j.ijmecsci.2014.05.017
- Gohberg I.C., Krein M.G. Introduction to the theory of linear
nonself-adjoint operators. Providence: Amer. Math. Soc. 1969.
- Il'in V.A. Existence of a reduced system of eigen- and associated
functions for a nonself-adjoint ordinary differential operator.
Proc. Steklov Inst. Math. 1979, 142, 157–164.
- Kirane M., Al-Salti N. Inverse problems for a nonlocal wave
equation with an involution perturbation. J. Nonlinear Sci. Appl.
2016, 9 (3), 1243–1251. doi:10.22436/jnsa.009.03.49
- Kritskov L.V., Sarsenbi A.M. Basicity in \(L_{p}\) of root functions for differential
equations with involution. Electron. J. Differ. Equ. 2015,
2015 (278), 1–9.
- Kritskov L.V., Sadybekov M.A., Sarsenbi A.M. Properties in \(L_{p}\) of root functions for a nonlocal
problem with involution. Turkish J. Math. 2019, 43
(1), 393–401. doi:10.3906/mat-1809-12
- Naimark M.A. Linear differential operators. Frederick Ungar Publ.
Co., New York, 1967.
- Orazov I., Sadybekov M.A. On a class of problems of determining
the temperature and density of heat sources given initial and final
temperature. Sib. Math. J. 2012, 53 (1),
146–151.
- Sadybekov M., Dildabek G., Ivanova M.B. Direct and inverse
problems for nonlocal heat equation with boundary conditions of periodic
type. Bound. Value Probl. 2022, 53.
doi:10.1186/s13661-022-01632-y
- Sadybekov M.A., Dildabek G., Ivanova M.B. On an inverse problem
of reconstructing a heat conduction process from nonlocal data.
Adv. Math. Phys. 2018, 2018, 1–8.
doi:10.1155/2018/8301656
- Sarsenbi A. Solvability of a mixed problem for a heat equation
with an involution perturbation. AIP Conference Proceedings 2019,
2183 (1). doi:10.1063/1.5136187
- Sarsenbi A. The ill-posed problem for the heat transfer equation
with involution. Zhurnal SVMO. 2019, 21 (1),
48–59. doi:10.15507/2079-6900.21.201901.48-59
- Sarsenbi A. On a class of inverse problems for a parabolic
equation with involution. AIP Conference Proceedings 2017,
1880 (1). doi:10.1063/1.5000637
- Vladykina V.E., Shkalikov A.A. Regular Ordinary Differential
Operators with Involution. Math. Notes 2019, 106
(5), 674–687. doi:10.1134/S0001434619110026
- Vladykina V.E., Shkalikov A.A. Spectral properties of ordinary
differential operators with involution. Dokl. Math. 2019,
99 (1), 5–10.