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Some fixed point theorems for expansiveness
of orthogonal p-contractiveness

Gungor N.B.

Orthogonal set and orthogonal metric spaces are two new notions, which are defined in 2017. In
this type metric spaces, a generalization of Banach fixed point theorem is presented. Then in 2019,
new fixed point theorems are investigated by using altering distance functions. In this paper, fixed
point theorems for expansiveness of orthogonal p-contractiveness via altering distance functions are
given inspired by [Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47

(4), 2683–2693] and [Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal sets and Banach

fixed point theorem. Fixed Point Theory 2017, 18 (2), 569–578]. Further, consequences and a restrictive
example are offered.
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1 Introduction and preliminaries

An important theorem, which is known as Banach contraction principle, is proved by
S. Banach in 1922. This principle has been accepted as starting of the fixed point theory in
metric spaces.

Some generalizations of Banach contraction principle have been studied on complete metric
(see [5, 6, 13, 14, 20]). These studies were developed using two techniques. The first technique
is to change the contraction conditions of the mappings and the second technique is to replace
the studied metric space with another one.

Considering the first technique, the research of the metric fixed point theory to a new cate-
gory by presenting a control function is given by M.S. Khan et. al. [15] in 1984.

Definition 1 ([15]). If ς : [0, ∞) → [0, ∞) is a function, which satisfies the following conditions

(i) ς(s) is nondecreasing and continuous,

(ii) s = 0 ⇐⇒ ς(s) = 0,

then ς is named altering distance function.

The whole family of altering distance functions will be denoted by ∆.
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Theorem 1 ([15]). Let (W, τ) be a complete metric space, ς be an altering distance function and
✁ : W → W be a self mapping satisfying the inequality

ς
(

τ(✁µ,✁η)
)

≤ βς
(

τ(µ, η)
)

for all µ, η ∈ W and for some β ∈ (0, 1). Then ✁ has a unique fixed point.

After then, this type functions have been used in a lot of papers in metric fixed point theory
(see [4, 17, 22, 23]).

In 1997, the subject of weak contractions is presented by Y.I. Alber and S. Guerre-Delabriere
[3], which is an another extension of the contraction principle. Also, B.E. Rhoades [21] enlarged
this notion to metric spaces in 2001.

Definition 2 ([21]). Let (W, τ) be a metric space, ς be an altering distance function and
✁ : W → W be a self mapping satisfying

τ(✁µ,✁η) ≤ τ(µ, η)− ς
(

τ(µ, η)
)

,

where µ, η ∈ W. Then ✁ is said to be weakly contractive mapping.

Theorem 2 ([21]). Let (W, τ) be a complete metric space and ✁ : W → W be a weakly contrac-
tive mapping. Then ✁ has a unique fixed point.

As one of the results in the second technique, M.E. Gordji et. al. [8] defined the subject of an
orthogonal set and orthogonal metric spaces. After that, M.E. Gordji and H. Habibi [7] noticed
a new subject of generalized orthogonal metric space and they applied the obtained results to
show presence and uniqueness of solution of Cauchy problem for the first order differential
equation.

Very recently, on orthogonal metric space, N.B. Gungor and D. Turkoglu [12] noticed some
fixed point theorems via altering distance functions inspired by [15] and [8]. In 2022, presence
and uniqueness of fixed points of the generalizations of contraction principle via auxiliary
functions are proved and the homotopy application of the one of the corollaries is given by
N.B. Gungor [10].

In recent years, many research articles have presented fixed point theorems and their
applications in orthogonal metric spaces (see [1, 2, 9, 11, 16, 18, 19, 24, 26]).

In this research paper, some fixed points theorems for the generalizations of contraction
principle via auxiliary functions are proved. Also, consequences and an illustrative example
are presented.

Let R, R
+, Z denote real numbers, positive real numbers and integers, respectively.

Definition 3 ([8]). Let W be a non-empty set, ⊥ be a binary relation defined on W. If binary
relation ⊥ fulfils the following condition

∃ µ0 ∈ W : (∀η ∈ W η ⊥ µ0) or (∀η ∈ W µ0 ⊥ η), (1)

then (W,⊥) known as an orthogonal set (an O-set, for short). And µ0 is named an orthogonal

element.

Example 1 ([7]). Let W = Z. Define x ⊥ y if there exists a ∈ Z such that x = ay. One can see
that 0 ⊥ y for all y ∈ Z. Thus, (W,⊥) is an O-set.
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Definition 4 ([8]). If the following criteria

(∀n ∈ N ηn ⊥ ηn+1) or (∀n ∈ N ηn+1 ⊥ ηn) (2)

is satisfied, then the sequence {ηn} is called orthogonal sequence.
Similarly, if the criteria (2) is satisfied, then a Cauchy sequence {ηn} is called to be an

orthogonally Cauchy sequence.

Definition 5 ([8]). Let (W,⊥) be an orthogonal set, τ be a usual metric on W. In this case
(W,⊥, τ) is called an orthogonal metric space.

Definition 6 ([8]). Let (W,⊥, τ) be an orthogonal metric space. If every orthogonally Cauchy
sequence converges in W, then (W,⊥, τ) is called to be a complete orthogonal metric space.

Definition 7 ([8]). Let (W,⊥, τ) be an orthogonal metric space and ✁ : W → W be a function.
If for each orthogonal sequence {ηn} converging to η we have ✁ηn → ✁η as n → ∞, then ✁ is
named to be orthogonally continuous at η.

If ✁ is orthogonally continuous in each η ∈ W, then ✁ is orthogonally continuous on W.

Definition 8 ([8]). Let (W,⊥, τ) be an orthogonal metric space and λ ∈ R, 0 < λ < 1. A
function ✁ : W → W is called to be orthogonal contraction with Lipschitz constant λ if

τ(✁µ,✁η) ≤ λτ(µ, η)

for all µ, η ∈ W whenever µ ⊥ η.

Definition 9 ([8]). Let (W,⊥, τ) be an orthogonal metric space. A function ✁ : W → W is
named orthogonal preserving if ✁µ ⊥ ✁η whenever µ ⊥ η.

Remark 1. In [7], it is shown that the orthogonal continuity and orthogonal contraction no-
tations are weaker than the classical continuity and contraction notations in classical metric
spaces.

Theorem 3 ([8]). Let (W,⊥, τ) be an orthogonal complete metric space and ✁ : W → W be
orthogonal continuous, orthogonal contraction (with Lipschitz constant λ, 0 < λ < 1) and
orthogonal preserving. Afterwards ✁ has a unique fixed point η∗ ∈ W and lim

n→∞
✁

n(η) = η∗

for all η ∈ W.

In 2022, presence and uniqueness of fixed points of the generalizations of contraction prin-
ciple via auxiliary functions are proved and the homotopy application of the one of the corol-
laries is given by N.B. Gungor.

In [12], N.B. Gungor and D. Turkoglu presented the remarkable fixed point theorems on or-
thogonal metric spaces via altering distance functions. And then, in [10], N.B. Gungor proved
presence and uniqueness of fixed points of the generalizations of contraction principle via
auxiliary functions and gived the homotopy application of the one of the corollaries.

In 2018, T. Senapati et. al. [25] defined the orthogonal lower semi continuity and introduced
the concept w-distance in orthogonal metric space. Also they proved a fixed point theorem
which is the version of Banach fixed point theorem in orthogonal metric spaces owing to the
concept of w-distance.
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Definition 10 ([25]). Let (W,⊥, τ) be an orthogonal metric space. A function ✁ : W → [0, ∞] is
said to be orthogonal lower semi continuous at η if for every orthogonal sequence {ηn} converging
to η, we have

lim inf
n→∞

✁(ηn) ≥ ✁(η).

Remark 2. The authors of [25] gave an examples, which show orthogonal lower semi continu-
ity is weaker than orthogonal continuity and lower semi continuity.

Definition 11 ([25]). Let (W,⊥, τ) be an orthogonal metric space. A function p :W×W → [0, ∞)

is said to be w-distance function on W if

(p1) p(µ, η) ≤ p(µ, θ) + p(θ, η) for any µ, θ, η ∈ W,

(p2) p(µ, ·) : W × W → [0, ∞) is orthogonal lower semi-continuous for any µ ∈ W,

(p3) for any ǫ > 0 there exists γ > 0 such that p(µ, η) ≤ γ and p(θ, η) ≤ γ imply d(µ, θ) ≤ ǫ.

Lemma 1 ([25]). Let (W,⊥, τ) be an orthogonal metric space and p : W × W → [0, ∞) be a
w-distance. Suppose {µn} and {ηn} are two orthogonal sequences in W and µ, η, θ ∈ W.
Let {un} and {vn} be sequences of positive real numbers converging to 0. Then we have the
followings.

(i) If p (µn, η) ≤ un and p (µn, θ) ≤ vn then η = θ. Moreover, if p(µ, η) = 0 and p(µ, θ) = 0,
then η = θ.

(ii) If p (µn, ηn) ≤ un and p (µn, θ) ≤ vn, then ηn → θ as n → ∞.

(iii) If p (µn, µm) ≤ un for all m > n, then {µn} is an orthogonal Cauchy sequence in W.

(iv) If p (µn, η) ≤ un, then {µn} is an orthogonal Cauchy sequence in W.

Definition 12 ([25]). Let (W,⊥, τ) be an orthogonal metric space and p : W × W → [0, ∞) be
a w-distance. A mapping ✁ : W → W is said to be an orthogonal p-contraction if there exists a
λ ∈ [0, 1) such that

p(✁µ,✁η) ≤ λp(µ, η)

for all µ, η ∈ W with µ ⊥ η.

Remark 3. In [25], a remarkable example is given, which shows that orthogonal p-contraction
need not to be an orthogonal contraction.

Theorem 4 ([25]). Let (W,⊥, τ) be an orthogonal complete metric space with a w-distance p.
If ✁ is an orthogonal p-contractive, orthogonal preserving and orthogonal continuous self
mapping, then

(a) ✁ has a unique fixed point µ∗ ∈ W,

(b) the Picard sequence ✁
n(µ) converges to µ∗ ∈ W for every µ ∈ W.
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2 Main results

Theorem 5. Let (W,⊥, τ) be an orthogonal complete metric space equipped with a w-dis-
tance p, ✁ : W → W be a self map, ς, ♭ ∈ ∆, ⊥ is transitive binary relation. Suppose that ✁ is
orthogonal preserving self mapping satisfying the inequality

ς
(

p(✁µ,✁η)
)

≤ ς
(

M(µ, η)
)

− ♭
(

M(µ, η)
)

(3)

for all orthogonally related µ, η ∈ W, where

M(µ, η) = max
{

p(µ, η), min
{

p(µ,✁µ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

.

In this case, there exists a point µ∗ ∈ W such that for any orthogonal element µ0 ∈ W, the
iteration sequence {✁n(µ0)} converges to this point. Also, if ✁ is orthogonal continuous at
µ∗ ∈ W, then µ∗ ∈ W is a fixed point of ✁.

Proof. Because (W,⊥) is an orthogonal set, condition (1) is fulfilled. Since ✁ is a self mapping
on W, for any orthogonal element µ0 ∈ W, µ1 ∈ W can be choosen as µ1 = ✁µ0. Thus,

µ0 ⊥ ✁µ0 ∨✁µ0 ⊥ µ0 ⇒ µ0 ⊥ µ1 ∨ µ1 ⊥ µ0.

Then, if it is similarly proceeded

µ1 = ✁µ0, µ2 = ✁µ1 = ✁
2µ0, . . . , µn = ✁µn−1 = ✁

nµ0,

so {✁nµ0} is an iteration sequence.

If for any n ∈ N we have µn = µn+1, then µn = ✁µn and so ✁ has a fixed point.
Assume that µn 6= µn+1 for all n ∈ N. Since ✁ is orthogonal preserving, {✁nµ0} is an

orthogonal sequence. Now, we proceed to show that

lim
n→∞

p
(

✁
n µ0,✁n+1µ0

)

= 0. (4)

By using the inequality (3), we have

ς
(

p
(

✁
n µ0,✁n+1µ0

)

)

= ς
(

p
(

✁ µn−1,✁µn
)

)

≤ ς
(

max
{

p (µn−1, µn) , min
{

p (µn−1, µn) , p (µn, µn+1) , p (µn, µn−1) , p (µn+1, µn)
}

})

− ♭

(

max
{

p (µn−1, µn) , min
{

p (µn−1, µn) , p(µn, µn+1), p (µn, µn−1) , p (µn+1, µn)
}

})

,

so that

ς
(

p
(

✁
n µ0,✁n+1µ0

)

)

≤ ς
(

p
(

✁
n−1 µ0,✁nµ0

)

)

− ♭

(

p
(

✁
n−1 µ0,✁nµ0

)

)

(5)

for any n ∈ N. Also

ς
(

p
(

✁
n µ0,✁n+1µ0

)

)

≤ ς
(

p
(

✁
n−1 µ0,✁nµ0

)

)

− ♭

(

p
(

✁
n−1 µ0,✁nµ0

)

)

≤ ς
(

p
(

✁
n−1 µ0,✁nµ0

)

)

.

Therefore, owing to the monocity of ς, the inequality p
(

✁
nµ0,✁n+1µ0

)

≤ p
(

✁
n−1µ0,✁nµ0

)

is obtained for all n ∈ N. Thus, for the nonnegative decreasing sequence
{

p(✁nµ0,✁n+1µ0)
}

there exists some r ≥ 0 such that

lim
n→∞

p
(

✁
n µ0,✁n+1µ0

)

= r. (6)
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Assume that r > 0. On letting n → ∞ in (5) besides using (6), we get

ς(r) ≤ ς(r)− ♭(r),

which amounts to say that ♭(r) = 0. As, ♭ is an altering distance function, r = 0, which is a
contradiction to nonzeroness of r yielding thereby

lim
n→∞

p
(

✁
n µ0,✁n+1µ0

)

= 0

is obtained. Similarly, one can also show that

lim
n→∞

p
(

✁
n+1 µ0,✁nµ0

)

= 0. (7)

Now, we continue to show

lim
n,m→∞

p
(

✁
n µ0,✁mµ0

)

= 0. (8)

Suppose (7) is untrue. Then we can find a ∂ > 0 with sequences {ms} and {ns} such that

p
(

✁
ns µ0,✁msµ0

)

≥ ∂ for all s ∈ {1, 2, . . . } (9)

wherein ms > ns. By (4) there exists s0 ∈ N such that ns > s0 implies

p
(

✁
ns µ0,✁ns+1µ0

)

< ∂. (10)

Notice that in view of (9) and (10), ms 6= ns+1. We can assume that ms is minimum index
such that (9) holds, so that

p
(

✁
ns µ0,✁rµ0

)

≥ ∂ for r ∈ {ns+1, ns+2, . . . , ms − 1} ,

which in view of (9) gives rise to

0 < ∂ ≤ p
(

✁
ns µ0,✁msµ0

)

≤ p
(

✁
ns µ0,✁ms−1µ0

)

+ p
(

✁
ms−1 µ0,✁msµ0

)

< ∂ + p
(

✁
ms−1 µ0,✁msµ0

)

,

so that

lim
s→∞

p
(

✁
ns µ0,✁msµ0

)

= ∂.

Next, we show that

lim sup
s→∞

p
(

✁
ns+1 µ0,✁ms+1µ0

)

= ǫ < ∂.

If lim sup
s→∞

p
(

✁
ns+1µ0,✁ms+1µ0

)

= ǫ ≥ ∂, then there exists {sr} such that

lim sup
r→∞

p
(

✁
nsr+1 µ0,✁msr+1µ0

)

= ǫ ≥ ∂.

Since ς is continuous, nondecreasing mapping and also ✁
nsr µ0 ⊥ ✁

msr µ0, on using inequal-
ity (3), one gets

ς
(

p
(

✁
nsr+1 µ0,✁msr+1µ0

)

)

≤ ς
(

M
(

✁
ns µ0,✁msµ0

)

)

− ♭

(

M
(

✁
ns µ0,✁msµ0

)

)

(11)
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with

M
(

✁
ns kµ0,✁msµ0

)

= max
{

p (✁ns µ0,✁msµ0) , min
{

p
(

✁
ns µ0,✁ns+1µ0

)

,

p
(

✁
ms µ0,✁ms+1µ0

)

,

p
(

✁
ns+1 µ0,✁ns µ0

)

,

p
(

✁
ms+1 µ0,✁msµ0

)}

}

,

implying thereby
lim
s→∞

M
(

✁
ns µ0,✁msµ0

)

= max{0, ∂} = ∂. (12)

Letting s → ∞ in (11) and using (12), we get

ς(∂) ≤ ς(ǫ) ≤ ς(∂)− ♭(∂) ≤ ς(∂),

so that ♭(∂) = 0 implying thereby ∂ = 0, which is a contradiction. Hence,

lim sup
s→∞

p
(

✁
ns+1 µ0,✁ms+1µ0

)

< ∂

and we have

0 < ∂ ≤ p
(

✁
ns µ0,✁msµ0

)

≤ p
(

✁
ns µ0,✁ns+1µ0

)

+ p
(

✁
ns+1 µ0,✁ms+1µ0

)

+ p
(

✁
ms+1 µ0,✁msµ0

)

.

Therefore, owing to (4) and (7), we have

0 < ∂ ≤ lim
s→∞

p
(

✁
ns µ0,✁msµ0

)

≤ lim
s→∞

p
(

✁
ns µ0,✁ns+1µ0

)

+ lim sup
s→∞

p
(

✁
ns+1 µ0,✁ms+1µ0

)

+ lim
s→∞

p
(

✁
ms+1 µ0,✁msµ0

)

= lim sup
s→∞

p
(

✁
ns+1 µ0,✁ms+1µ0

)

< ∂,

which is a contradiction. Hence (8) holds. Owing to Lemma 1, {✁nµ0} is an orthogonal
Cauchy sequence in W. Since Ω is an orthogonal complete metric space, there exists µ∗ such
that lim

n→∞
✁

nµ0 = µ∗. Now, assume that ✁ is an orthogonal continuous at µ∗. In this case,

lim
n→∞

✁
n+1µ0 = ✁µ∗. By using orthogonal lower semi-continuity of p, we have

p
(

✁
n µ0, µ∗

)

≤ lim inf
m→∞

p
(

✁
n µ0,✁mµ0

)

= αn,

p
(

✁
n µ0,✁µ∗

)

≤ lim inf
m→∞

p
(

✁
n µ0,✁m+1µ0

)

= βn.

On using (8), we have lim
n→∞

αn = lim
n→∞

βn = 0. And then, in view of Lemma 1, µ∗ is a fixed

point of ✁.

Lemma 2. Let (W,⊥, d) be an orthogonal complete metric space equipped with a w-distance p,
✁ : W → W be a self map, ς, ♭ ∈ ∆. Suppose that

ς
(

p
(

✁ µ,✁η
))

≤ ς
(

M
(

µ, η
))

− ♭
(

M
(

µ, η
))

for all orthogonally related µ, η ∈ W, where

M(µ, η) = max
{

p(µ, η), min
{

p(µ, hµ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

.

If there exists a point µ∗ ∈ W that is a fixed point of ✁ and µ∗ ⊥ µ∗, then p(µ∗, µ∗) = 0.
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Proof. On the contrary suppose that p(µ∗, µ∗) 6= 0. As µ∗ ⊥ µ∗ and

M (µ∗, µ∗) = max
{

p(µ∗, µ∗), min
{

p(µ∗,✁µ∗), p(µ∗,✁µ∗), p(✁µ∗, µ∗), p(✁µ∗, µ∗)
}

}

= p(µ∗, µ∗).

Therefore,
ς
(

p
(

✁ µ∗,✁µ∗
))

≤ ς
(

M
(

µ∗, µ∗
))

− ♭
(

M
(

µ∗, µ∗
))

and so
ς
(

p
(

µ∗, µ∗
))

≤ ς
(

p
(

µ∗, µ∗
))

− ♭
(

p
(

µ∗, µ∗
))

≤ ς
(

p
(

µ∗, µ∗
))

,

which amounts to say that ♭
(

p(µ∗, µ∗)
)

= 0. Since ♭ is an altering distance function, we
obtain p

(

µ∗, µ∗
)

= 0.

Theorem 6. If the following (∗) condition is added to hypotheses of the Theorem 5, the fixed
point of ✁ turns out to be unique. Moreover, lim

n→∞
✁

n(µ) = µ∗ for every µ ∈ W provided, then

µ∗ is a fixed point of ✁, i.e. the map ✁ : W → W is a Picard operator.

(∗) If there exists a point µ∗ ∈ W such that for any orthogonal element µ0 ∈ W, the iteration
sequence {✁n(µ0)} converges to this point, then µ∗ ⊥ µ∗.

Proof. Following the proof of Theorem 5, there exists a point µ∗ ∈ W such that for any ortho-
gonal element µ0 ∈ W, the iteration sequence {✁n(µ0)} converges to this point. Also, if ✁ is
orthogonal continuous at µ∗ ∈ W, then µ∗ ∈ W is a fixed point of ✁.

Suppose µ∗ and η∗ are two fixed points of ✁ in W determined in this shape. Then using the
condition (∗), one get µ∗ ⊥ µ∗ and η∗ ⊥ η∗. In this case, using the Lemma 2, p (µ∗, µ∗) = 0
and p (η∗, η∗) = 0 are obtained. Now, we have two cases.

Case I. If µ∗ ⊥ η∗ or η∗ ⊥ µ∗, owing to the condition (3) of Theorem 5, we have

ς
(

p (✁µ∗,✁η∗)
)

≤ ς
(

M (µ∗, η∗)
)

− ♭
(

M (µ∗, η∗)
)

.

As

M (µ∗, η∗) = max
{

p (µ∗, η∗) , min
{

p (µ∗,✁µ∗) , p (η∗,✁η∗) , p (✁µ∗, µ∗) , p (✁η∗, η∗)
}

}

= p (µ∗, η∗) ,

therefore
ς
(

p (✁µ∗,✁η∗)
)

≤ ς
(

p (µ∗, η∗)
)

− ♭
(

p (µ∗, η∗)
)

,

which amounts to say that ♭
(

p (µ∗, η∗)
)

= 0. As ♭ is an altering distance function, therefore
for every n ∈ N, we have p (µ∗, η∗) = 0. Also, in view of Lemma 2, we get p (µ∗, µ∗) = 0 and
by using Lemma 1, we have µ∗ = η∗, i.e. the fixed point of ✁ is unique.

Case II. If µ∗ and η∗ are not orthogonally related elements, then because of (W,⊥) is an
orthogonal set, we have

∃ µ0 ∈ W (µ∗ ⊥ µ0 and η∗ ⊥ µ0) or (µ0 ⊥ µ∗ and µ0 ⊥ η∗) .

Since ✁ is orthogonal preserving self mapping, we get

(µ∗ ⊥ ✁
n(µ0) and η∗ ⊥ ✁

n(µ0)) or (✁n(µ0) ⊥ µ∗ and ✁
n (µ0) ⊥ η∗)
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for any n ∈ N and henceforth

ς
(

p
(

✁
n µ0, µ∗

))

= ς
(

p
(

✁
n µ0, hµ∗

))

≤ ς
(

M
(

✁
n−1 µ0, µ∗

))

− ♭
(

M
(

✁
n−1 µ0, µ∗

))

with

M
(

✁
n−1µ0, µ∗

)

= max
{

p
(

✁
n−1 µ0, µ∗

)

, min
{

p
(

✁
n−1 µ0,✁nµ0

)

, p
(

µ∗,✁µ∗
)

,

p
(

✁
n µ0,✁n−1µ0

)

, p
(

✁ µ∗, µ∗
)}

}

= p
(

✁
n−1 µ0, µ∗

)

.

Therefore

ς
(

p
(

✁
n µ0, µ∗

))

= ς
(

p
(

✁
n µ0,✁µ∗

))

≤ ς
(

p
(

✁
n−1 µ0, µ∗

))

− ♭
(

p
(

✁
n−1 µ0, µ∗

))

≤ ς
(

p
(

✁
n−1 µ0, µ∗

))

.

Since ς is a nondecreasing function, we get p (✁nµ0, µ∗) ≤ p
(

✁
n−1µ0, µ∗

)

, i.e. the non-
negative sequence

{

p (✁nµ0, µ∗)
}

is decreasing. As earlier, we have

lim
n→∞

p (✁nµ0, µ∗) = 0.

Also, since µ0 and η∗ are orthogonally related elements, therefore proceeding as earlier, we
can prove that

lim
n→∞

p (✁nµ0, η∗) = 0.

And so, from Lemma 1, we infer that η∗ = µ∗, i.e. the fixed point of ✁ is unique.
Now, we proceed to show

lim
n→∞

✁
nµ = µ∗

for every µ ∈ W provided µ∗ is a fixed point of ✁. We distinguish two cases.
Case (i). Let µ ∈ W, µ∗ and µ are orthogonally related elements. As earlier, we have

lim
n→∞

p (✁nµ∗,✁nµ) = 0.

Also, in view of Lemma 2, we have lim
n→∞

p (✁nµ∗, µ∗) = 0 and by using Lemma 1, we get

lim
n→∞

✁
nµ = µ∗.

Case (ii). Let µ ∈ W, µ∗ and µ are not orthogonally related elements. Then because of
(W,⊥) is an orthogonal set, we have

∃ µ0 ∈ W (µ0 ⊥ µ∗ and µ0 ⊥ µ) or (µ∗ ⊥ µ0 and µ ⊥ µ0) .

As earlier, we can prove lim
n→∞

p (✁nµ0, µ∗) = 0 and lim
n→∞

p (µ∗,✁nµ0) = 0. By the triangular

inequality, we obtain

p (✁nµ0,✁nµ0) ≤ p (✁nµ0, µ∗) + p (µ∗,✁nµ0) .

Then one get
lim

n→∞
p (✁nµ0,✁nµ0) = 0.
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Since µ and µ0 are orthogonally related elements, due to orthogonally preserving property
of ✁, we can see, that ✁µ and ✁µ0 are orthogonally related elements. Continuing this process
inductively, we get ✁nµ and ✁

nµ0 are orthogonally related elements. Now, we proceeed to
show that

lim inf
n→∞

p (✁nµ0,✁nµ) = 0.

Suppose lim inf
n→∞

p (✁nµ0,✁nµ) = γ > 0. Since lim
n→∞

p (✁nµ0,✁nµ0) = 0, for arbitrary δ,

0 < δ < γ, there exists n1 ∈ N such that for every n > n1 we have p (✁nµ0,✁nµ0) < δ.
Also, since lim inf

n→∞
p (✁nµ0,✁nµ) = γ > δ > 0, there exists n2 ∈ N such that for every

n > n2, we have p (✁nµ0,✁nµ) > δ. Therefore, for every n > N = max {n1, n2}, we get

M
(

✁
n−1 µ0,✁n−1µ

)

= max
{

p
(

✁
n−1 µ0,✁n−1µ

)

, min
{

p
(

✁
n−1 µ0,✁nµ0

)

, p
(

✁
n−1 µ,✁nµ

)

,

p
(

✁
n µ0,✁n−1µ0

)

, p
(

✁
n µ,✁n−1µ

)}

}

= p
(

✁
n−1 µ0,✁n−1µ

)

.

Therefore, as ς is an altering distance function, we get that the nonnegative sequence
p (✁nµ0,✁nµ) is decreasing. As earlier, we can prove lim

n→∞
p (✁nµ0,✁nµ) = 0, which is indeed

a contradiction to nonzeroness of γ, implying thereby

lim inf
n→∞

p (✁nµ0,✁nµ) = 0.

Also, since µ∗ and µ0 are orthogonally related elements, using the arguments of the earlier
case, we can prove

lim
n→∞

p (✁nµ0,✁nµ) = 0,

and by orthogonally lower semi-continuity of p (✁nµ0, .), we have

p
(

✁
n µ0, lim

m→∞
✁

mµ
)

≤ lim inf
m→∞

p
(

✁
n µ0,✁mµ

)

= αn,

and
p
(

✁
n µ0, µ∗

)

≤ lim inf
m→∞

p
(

✁
n µ0,✁mµ

)

= βn.

As lim
n→∞

αn = lim
n→∞

βn = 0, thus, in view of Lemma 1, we conclude that

lim
n→∞

✁
nµ = µ∗.

This completes the proof.

Example 2. Let W = [0, 1) be a set. Define d : W × W → R by d(µ, η) = |µ − η| and define
p : W × W → [0, ∞) by p(µ, η) = µ + η. Also, let the binary relation ⊥ on W be defined
by µ ⊥ η ⇐⇒ µη ≤ max

{µ
5 , η

5

}

. Then (W,⊥) is an orthogonal set and d is a metric
on W. (W,⊥, d) is an orthogonal metric space with w-distance p. In this space, any orthogonal
Cauchy sequence is convergent.

Indeed, if (µn) is an arbitrary orthogonal Cauchy sequence in W, then µnµn+1 ≤ µn
5 or

µnµn+1 ≤ µn+1
5 . Therefore

µn

(

µn+1 −
1

5

)

≤ 0 or µn+1

(

µn −
1

5

)

≤ 0,
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which implies
(

µn = 0 or µn+1 ≤
1

5

)

or

(

µn+1 = 0 or µn ≤
1

5

)

.

Therefore, for any δ > 0 there exists an n0 ∈ N such that for all n ∈ N, n > n0,
|µn − µn+1| < δ is provided. So, for any δ > 0 and for all n ∈ N, n > n0, we have |µn − 0| < δ,
that is {µn} is convergent to 0 ∈ W. So (W,⊥, d) is an orthogonal complete metric space with
a w-distance p. Remark that (W, d) is not a complete sub-metric space of (R, d), because W is
not a closed subset of (R, d).

Let ς : [0, ∞) → [0, ∞) be defined by ς(t) = t
3 and let ♭ : [0, ∞) → [0, ∞) be defined by

♭(t) = t
7 . Also let ✁ : W → W be defined by

✁(µ) =

{

µ
5 , 0 ≤ µ ≤ 1

5 ,

0, 1
5 < µ < 1.

One can see that ς, ♭ ∈ ∆ and ⊥ is a transitive binary relation on W.
Also ✁ is orthogonal preserving mapping. Indeed,

µ ⊥ η ⇒
(

µη ≤
µ

5

)

or
(

µη ≤
η

5

)

.

Without loss of generality, assume that µη ≤ µ
5 . In this case, µ = 0 or η ≤ 1

5 . And so the
following cases can be seen:

I: µ = 0 and η ≤ 1
5 ; then ✁(µ) = 0 and ✁(η) = η

5 ,

I I: µ = 0 and η > 1
5 ; then ✁(µ) = ✁(η) = 0,

I I I: η ≤ 1
5 and µ ≤ 1

5 ; then ✁(η) = η
5 and ✁(µ) = µ

5 ,

IV: η ≤ 1
5 and µ > 1

5 ; then ✁(η) = η
5 and ✁(µ) = 0.

These cases imply that ✁(µ)✁ (η) ≤ ✁(µ)
5 .

On the other hand, ✁ is orthogonal continuous at 0 ∈ W. Indeed, assume that {µn} is an
orthogonal sequence and µn → 0. In this case, we have µnµn+1 ≤ µn

5 or µnµn+1 ≤ µn+1
5 . From

this we obtain
(

µn = 0 or µn+1 ≤
1

5

)

or

(

µn+1 = 0 or µn ≤
1

5

)

.

Therefore, for any δ > 0 there exists an n0 ∈ N such that for all n ∈ N, n > n0, the
inequality |µn − 0| < δ is obtained. So, for all n ∈ N, n > n0, we have µn ∈ [0, 1

5 ]. Thus,
from the definition of ✁, for the same n0 ∈ N, n > n0, we get | ✁ (µn) − ✁(0)| < δ, that is
✁(µn) → ✁(0) = 0.

Now, it can be shown that h is a self mapping satisfying the inequality (3) for all orthogo-
nally related µ, η ∈ W, where

M(µ, η) = max
{

p(µ, η), min
{

p(µ,✁µ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

.

Assume that µ, η ∈ W are two orthogonally related elements of W. In this case, we have

µη ≤
µ

5
or µη ≤

η

5
.

Without loss of generality, assume that µη ≤ µ
5 .
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Then there exist the following four cases.
Case I: µ = 0 and η ≤ 1

5 . Then ✁(µ) = 0, ✁(η) = η
5 . Clearly, ς

(

p(✁µ,✁η)
)

= ✁µ+✁η
3 = η

15
and

M(µ, η) = max
{

p(µ, η), min
{

p(µ,✁µ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

= max

{

η, min

{

0,
6η

5

}}

= η.

So, ς
(

M(µ, η)
)

= η
3 and ♭

(

M(µ, η)
)

= η
7 . Therefore,

ς
(

p(✁µ,✁η)
)

=
η

15
≤

η

3
−

η

7
=

4l

21
= ς

(

M(µ, η)
)

− ♭
(

M(µ, η)
)

.

Case II: µ = 0 and η > 1
5 . Then ✁(µ) = ✁(η) = 0. Clearly, ς

(

p(✁µ,✁η)
)

= 0+0
3 = 0. So,

ς
(

p(✁µ,✁η)
)

= 0 ≤ ς
(

M(µ, η)
)

− ♭
(

M(µ, η)
)

.

Case III: µ ≤ 1
5 and η ≤ 1

5 . Then ✁(µ) = µ
5 , ✁(η) = η

5 . There are two cases: 0 ≤ η ≤ µ ≤ 1
5

or 0 ≤ µ ≤ η ≤ 1
5 . It is sufficient to use only one of these situations. Let us assume that the

first condition is satisfied. We have ς
(

p(✁µ,✁η)
)

= ✁µ+✁η
3 = µ+η

15 , and

M(µ, η) = max
{

p(µ, η), min
{

p(µ,✁µ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

= max

{

µ + η, min

{

6µ

5
,

6η

5

}}

= max

{

µ + η,
6η

5

}

= k + l.

So, ς
(

M(µ, η)
)

= µ+η
3 , ♭

(

M(µ, η)
)

= µ+η
7 . Therefore,

ς
(

p(✁µ,✁η)
)

=
µ + η

15
≤

µ + η

3
−

µ + η

7
=

4(µ + η)

21
= ς

(

M(µ, η)
)

− ♭
(

M(µ, η)
)

.

Case IV: η ≤ 1
5 and µ > 1

5 . Then ✁η = l
5 , ✁µ = 0. Clearly, ς

(

p(✁µ,✁η)
)

= l
15 , and

M(µ, η) = max
{

p(µ, η), min
{

p(µ,✁µ), p(η,✁η), p(✁µ, µ), p(✁η, η)
}

}

= max

{

µ + η, min{µ,
6µ

5
}

}

.

There are two following cases.
If µ ≤ 6η

5 , then M(µ, η) = µ + η and so ς
(

M(µ, η)
)

= µ+η
3 , ♭

(

M(µ, η)
)

= µ+η
7 . Thus,

ς
(

p(✁µ,✁η)
)

=
η

15
≤

µ + η

3
−

µ + η

7
=

4(µ + η)

21
= ς

(

M(µ, η)
)

− ♭
(

M(µ, η)
)

.

If 6η
5 ≤ µ, then M(µ, η) = µ + η and so ς

(

M(µ, η)
)

= µ+η
3 , ♭

(

M(µ, η)
)

= µ+η
7 . Thus,

ς
(

p(✁µ,✁η)
)

=
η

15
≤

µ + η

3
−

µ + η

7
=

4(µ + η)

21
= ς

(

M(µ, η)
)

− ♭
(

M(µ, η)
)

.

Consequently, h is a self mapping satisfying the inequality (3) for all orthogonally related
µ, η ∈ W. Thus, all hypothesis of Theorem 5 satisfy and so it is obvious that ✁ has a fixed
point 0 ∈ W.
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Ґунґор Н.Б. Деякi теореми про нерухому точку для експансивностi ортогональної p-контракт-

ностi // Карпатськi матем. публ. — 2024. — Т.16, №2. — C. 617–630.

Ортогональнi множини та ортогональнi метричнi простори − це два новi поняття, якi були
визначенi у 2017 роцi. У цьому типi метричних просторiв представлено узагальнення теореми
Банаха про нерухому точку. Потiм у 2019 роцi було дослiджено новi теореми про нерухо-
му точку з використанням функцiй змiненої вiдстанi. Натхненнi роботами [Rhoades B.E. Some

theorems on weakly contractive maps. Nonlinear Anal. 2001, 47 (4), 2683–2693] та [Gordji M.E., Rameani
M., De La Sen M., Cho Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017,
18 (2), 569–578], у цiй статтi ми запропонували теореми про нерухому точку для розширен-
ня ортогональної p-контрактностi через функцiї змiненої вiдстанi. Додатково запропоновано
наслiдки та обмежувальний приклад.

Ключовi слова i фрази: нерухома точка, функцiя змiненої вiдстанi, ортогональний метри-
чний простiр.


