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Bilateral estimates of some pseudo-derivatives of the transition
probability density of an isotropic a-stable stochastic process

Osypchuk M.M.

In the paper, the transition probability density of an isotropic a-stable stochastic process in a
finite dimensional Euclidean space is considered. The results of applying pseudo-differential op-
erators with respect spatial variables to this function are estimated from the both side: above and
below. Operators in the consideration are defined by the symbols |A|* and A|A|*~1, where 5 is some
constant. The first operator with negative sign is fractional Laplacian and the second one multiplied
by imaginary unit is fractional gradient.
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Introduction

Leta € (0,2) and ¢ > 0 be some constants. Consider an isotropic a-stable stochastic process
(x(t)) ;>0 in d-dimensional Euclidean space R?. As usual, we denote by (-, -) the inner product
and by_| -| the norm in R? (we use the last notation for denoting the absolute value of a real
number and the module of a complex number). The process (x(t)), , is a strong Markov pro-

cess with transition probability density (g(t, x,y)) r¢ 8iven by the following equality

t>0,xeR,ye
1 , .
(%) = o [ exp{i(x =y,2) = ctlA]"} da. M

The function (g(t,x,y)) is the Green’s function (or a fundamental solution) of

t>0,x€R4,ycR?
the following pseudo-differential equation %u(t, x) = —c(=A)2u(t,-)(x). Here and in what
follows Df(-,y)(x) denotes the operator D, acting on the function f with respect to the first
variable in the point x. In the case & = 2, the process (x(t)) 4> 18 @ Brownian motion, function
(1) has an explicit form and all calculation will be of different type. We do not consider this
case.

According to the results of R.M. Blumenthal and R.K. Getoor (see [1]), we have the follow-
ing estimations

Gyt
(tr + |x — y|)d+e
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of the function (g(t, x,y)) £0,x€RY yeRd” where G; and G, are some positive constants.

Let us define the following operators by their symbols: the operator A, has the symbol
(|A]*) regre, and V., has the symbol (A|A]*71) | 1, Here x is some constant. So far, we do not
limit the value of .

Remark 1. The operator —A,, is the fractional Laplacian of the order s and the operator iV ,,
is the fractional gradient of the order .

For 2 > 0 and a > 1 it is well-known the following estimation

M
(7 + [x — y[ )i+

DPg(t, ) ()| < t>0, xR, yeRY, Q

where M > 0 is some constant and D(*) means any pseudo-differential operator with smooth
enough and homogeneous of the degree > symbol. If s is additionally integer we have more
accurate estimation

Mt

: , t>0, xeRY yeR (4)
(te + |x — y[)d+ats

Dg(t, -, y)(x)| <

For details see [4, Ch. 4].

The goal of this paper is to obtain the similar to (2) estimations for V,.g(t,-,y) and
A,.g(t,-,y) (here t > 0 and y € RY are fixed) with a set of parameter s values as wide as
possible.

Our main results are presented in Section 2. There we give exact asymptotics as |x| — +o0
for A,.g(1,-,0)(x) and V,.g(1,-,0)(x) with >z > —(d A2) or >z > 1— (d A2), respectively. Using
the mentioned asymptotics, we establish estimations for A, g(t, -, v)(x) and V,.g(¢,-,y)(x) for
allt >0,x € R?and y € R?.

1 One auxiliary lemma

The following statement will be used in the paper to construct asymptotic and estimations
below. But it can have an independent meaning. Our proof method is similar to the proof of
R.M. Blumenthal and R.K. Getoor in a simpler case (see [1]).

Lemma 1. For any pair of real numbers v and y satisfied the assumptionv > |u| — 1 and a real
number a > 0 the following equality

: oo (e 2V _(v—u+1 v+u+1 (v —u)
v,—(1) 1 1 1
rhrfoo ; t'e Ju(t)dt nl”( 5 )F( 5 )COS B (5)

holds true, where |, denotes the Bessel function of the first kind of order .

Proof. As usual, we denote by K, the modified Bessel function of the second kind of order u

and by H;(,l) the first of the Hankel functions of order u (also named by the Bessel function of
the third kind). We use the known relations between Bessel functions, i.e.

Ju(z) =Re HV (2), Ky(z) = %eﬂ%iH;”(iz),

which hold for all complex numbers u and z (with —7r < argz < 71/2 in second equality).
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After the change of the variable (we put t = is) in the integral from formula (5), we obtain
the following equality

400 « z. [0 s\® ol
/ e (1) Ju(t)dt = —%Re <e(’/_?‘)21/ sve= ()" Ky(S)ds) : (6)
0 —ooi
Let us denote the last integral by K(r). Then we can write down the following equality
K(?’) — _/l zvef(%)“e‘xTKy(Z)dZ, (7)
B

where Iy = {z= selP g > 0} withsome g € (— 7, %(% — 1) A 0). Here we are using that for

7R = {z = Re'? : =% < ¢ < B} with any big enough R > 0, the following relations

/ Zve,(%)ﬂéewjiKy(Z)dZ < <IB+§) Rv—i—lef(%)“cos(ﬁwL%)tx 2%_)0 as R — +oo,
TR

are fulfilled, since, as it is well-known, K, (z) ~ /2-e"* as z — oo.

Now, we can pass to the limit as r — +-co in the integral (7). Indeed, the integrand in (7) is

estimated by the expressions V2718V~ 17508 for a big enough s = |z| and s~ I¥T (|u|) 2"l for
small s = |z|. Here we use the well-known relation K;,(z) ~ 27T (Ju|) 21 as z — 0.
Since for 9 = {z = Re'? : B < ¢ < 0} with some big enough R > 0 we have the inequality

)f% z'Ky, (z)dz) < —,BRV_% V2me Reosh 5 0as R — +oo, the following equalities

lim K(r) = — / 2K, (2)dz = — /0 K () dt ®)

r—4o0 lﬁ

hold true. The last integral in (8) can be calculated if v > |u| — 1. This can be checked by
using mathematical software. It equals to 2T <V_g +1> r <V+g+1 ) Finally, using this fact and
formulae (6) and (8), we obtain the lemma statement. O

2 Asymptotics and estimations

According to presentation (1) of the function (g(t,x,v)) yerd We can write down

t>0,xeR4
the following relations

Beglt9)) = oy [ A exp i =, ) — ctlA)

1 L .
Vst ) () = (g [ AT e il - 0) = A da,

if the corresponding integrals exist. It is easy to see that the constant sz must be greater
than —d. We assume that this condition is fulfilled.
To simplify the entries, we introduce the following notations

1 .
D(5,x) = W/w A% exp {i(x,A) — |A[*} dA, 9)
1 .
N(5,x) = W/Wm\%l exp {i(x,A) — |A|*} dA. (10)
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So, forallt >0, x € RY, yE R? and » > —d, we have
_dx _1
A.8(t - y)(x) = ()~ D (3, () H (x =), (1)

_disx _1
V.8t ) (x) = ()N (o, () Hx - ). (12)
The following statement indicates the boundedness of the functions (11), (12).

Theorem 1. For any » > —d, there exists a constant K > 0 such that for allt > 0, x € R?, and
y € R? the following estimation

d+x
«

|88t y) (x)] + Vg (t, - y) (x)| < Kt~ (13)

holds true.

Proof. As it follows from (9) and (10), the functions (D(s,x)),cge and (N(sz,x)) cge are
bounded for every s > —d. Using (11) and (12), we obtain the theorem statement. O

It is evident that N(s¢,x) = —iVD(3 —1,-)(x) for all x € R? and » > —d + 1. It is clear
that the functions (D (5, x))cge and (N(5¢, x)),cga are bounded on R? for all 5 > —d. The
next statement defines the asymptotic of the function (D (¢, x)), e if |x| = oo for fixed sz.

Theorem 2. For » > —(d A 2) the following relation

2% d 1
Him [x|*"¥D(s,x) = ——T < + %> r <z + 1) cos s
| oo 4+ 2 2 2

T (14)

is fulfilled.

Proof. Since the function D (s, -) is Fourier transform of the radial function, we can write down
(see [2, Ch1I, §7, p. 69]) the following representation

D(5,x) = (21) " 2|x| 71 (d, 5, |x|), (15)

where I(d, 3,7) == [ t%“{e_(%)“]%fl(t)dt.
It is easy to verify that the assumptions of Lemma 1 are fulfilled for v = % +xandy = % -1
if 52 > —(d A 2). Then we obtain

2% d 1
D(5,x) ~ |x| 4 *=—T (f + 1) r < * %> cos X o |x| = 400,
i+ \2 2 2

if 52 > —(d A 2). The theorem is proved. O

It is evident that this asymptotic is useless if s is an even integer. Therefore, we have to
consider this case separately. The corresponding statement is as follows.

Theorem 3. If »z > 0 and it is even integer, the relation

_ 2%+1x71 d -1
lim  |x|"H D (s, x) = ( %3 r <[X+%> r ( +[X+%> cos XXX 1, (16)
(x| foo 4 2 2 2

is fulfilled.
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Proof. Using the well-known relation (see, for example, [3]) ];l(t) = —EL(t) + Ju—a(t) if t #0,
we can write down the following equality

+0°d

1(d, »,7) :/ tz+%e<%>“];(t)dt+gz(d+z,%—z,r),
2

0

that holds true if s # 0 additionally. The case s = 0 was considered in [1]. Excluding this
case and integrating by part, we obtain the following relation

I(d, 5,r) = %I(d+2,%+oc—2,r) —l(d 42,5 —2,7).

Note that this equality is also true if >z = 0 or if it is not integer. It is easy exercise to verify, for
example by using Lopital’s rule, that lim r*I(d+2,x—2,r) = lirf I(d+2,2+a—2,r) for
r——+00

r—4o0
any s > 0. In addition, using Lemma 1 we obtain

2§ tsta-1 ((x—{—%) <d+a+%> o+ —1
r r _— CcCOS ——7T.

lim I(d+42,x—2,r) = 5 5 5

r—>—+00
Therefore using relation (15) we obtain the theorem statement. O
Remark 2. If »c = 0, then relation (16) leads us to the corresponding one obtained in [1].
The next statement provides the asymptotic of N (s, x) if |x| — 4o0.

Theorem 4. If 5 > 1 — (d A 2) and s is not an odd integer, then for any unit vector v € R? the
following relation

2% 1 d 1
(N(s¢,x),v) ~i T <%+ >F<i> Cos%nﬂ |x| = oo,

i 2 2 2 |x[der

holds true.

Proof. As it was mentioned above, we have N (s, x) = —iVD(» —1,-)(x) for all x € R¥ and
» > —d + 1. Using expression (9) and integrating by part, one can easily obtain the following
equality
(x,v)
(NG, x),v) = —ZW (aD(a +3—1,x) — (d+»—1)D(3c — 1,x)),
which is fulfilled for all x € RY and 3 > —d + 1. This equality and the statement of Theorem 2
lead us to the relations

(x,v)

(N(5,x),v) ~ —ZW

<0‘Da+%—1|x|7d7“7%+1 - (d + o — 1)D%—1|x|7d7%+1>
Ni(d—|—%—1)D%,1]x\’d’”’1(x,v), |x| = 400,

that hold for all s > 1 — (d A 2), where by D,, we denote the value of the limit presented by
formula (14). The theorem statement is already obvious. O

A special case is that the number s is an odd integer. The corresponding statement is as
follows.
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Theorem 5. If an odd integer s is such that »x > 1, then

(d+ 2 —1)(a — 2+ 1)27F872
(NG, x),v) ~—i T

a+x—1 d+a+x—1 (a+2)mT  (x,v)
x T < 5 ) I < 5 ) cos —— |x|datr1’

]x\ — 400,

for any unit vector v € R,

Proof. The proof is similar to the proof of Theorem 4 if use the statement of Theorem 3 instead
of Theorem 2. O

Using the statements of Theorems 2-5 we obtain bilateral estimations of the functions

(As8(t, - y)(x)) £>0,x€R4,ye R and (V.g(t, -, y)(x)) #>0,x€R?,yeR?"
Let us introduce the notations:

2% d+ » x+1
D%.—ﬂgHF( > )F(E—i-l)cos > T

for ¢ > —(d A 2) except of an even integer;

W — )25l g d+a+ a+x—1
r r COS ——F———TT

Dica =1 2 2 2

2% 1 d 1
N, = ——; 1T<%+ )F( +j2{+ )cos%—n

for >z > 1 — (d A\ 2) except of an odd integer;

_ _ ntu—2 _ _
(d4+sx—1)(a —3+1)2 r<rx—|—% 1>r<d—|—rx—|—% 1>Cos(oc—|—%)rc

N%,DC =

R 2 2 2

for a € (0,2) and an odd integer » > 1.
The following statement is simple consequence of Theorems 2-5.

Theorem 6. For any fixed 0 < & < 1 there exists a constant K > 0 such that for all t > 0,
x € RY and y € RY, satisfying the inequality |x — y| > Ktx, there are fulfilled the following
inequalities:

(1 —esignD,,)D, |x — y[’d’” < ALg(t,-,y)(x) < (1+esignD,)D,|x — y[’d’” (17)

for » > —(d A 2), which is not even integer;

<1 —esign (N (x — y,v)))N%% <i(V.g(t - y)(x),v)

. X — ,V
< <1 + esign (N%(x - y,V)))N%M%

for > > 1 — (d A 2), which is not odd integer, and any v € RY;

(1 — esign Do) Dyalx —y| ™% < Ag(t,y)(x) < (1+esignDia)Doalx —y| %7
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for even integer s > 0;

' X—y,v
<1 — 851gn(N%(x — ]/,V)))N%,tx X E y|d—%a+)%+1

. . X —Yy,v
<i(Vug(t - y)(x),v) < <1 + esign (N, o (x — y,v)))N%,,X . E y’dzwr)wrl

for odd integer 3 > 1 and any v € R¥.

Proof. For the proof, one has to use relations (11), (12) in addition to Theorems 2-5 state-
ments. 0

Remark 3. For the differential operators under consideration, estimates (13) —(17) lead us to
(3) or (4), but the last one was obtained only for »« > 0 and it is the estimation from above.
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Y cTaTTi poO3TASAAETHCS IIIABHICTD IMOBIPHOCTI epeXOAY i30TPOITHOIO A-CTilAIKOrO BUITAAKOBO-
IO TIPOLIeCy B CKIHUEHHOBUMIPHOMY eBKAiA0BOMY mpocTopi. OLIHIOIOTECS 3 060X CTOpiH, 3BepXy i
3HU3Y, pe3yAbTaTy 3aCTOCYBaHHsI AO L€l (pyHKIIT IceBAOAMDEpeHITiaAbHIX OIlepaTOpiB BiAHOCHO
HPOCTOPOBUX 3MiHHMX. PO3rASHYTO OmepaTopu, IO BU3HAYAIOTHCST cuMBoAaMu |A|* i A|A|*71, ae
» — Aesika cTaa. [lepumii 3 Iyx omepaTopiB B3SITVIA 31 3HAKOM MIHYC € APOGOBMM AaIlAaciaHOM, a
APYTUIi TIOMHOXXEHIIA Ha YSIBHY OAMHMITIO € APOOOBYM I'PaAi€cHTOM.

Kniouosi cnosa i ppasu: crivikwi mpouec, pyHkiist I piHa, Apo6oBii Aaraacias, Apo6GOBIL IpaAi-
€HT.



