References

  1. Alexander J.W. Functions which map the interior of the unit circle upon simple regions. Ann. of Math. (2) 1915, 17 (1), 12–22. doi:10.2307/2007212
  2. Golusin G.M. Geometric Theory of Functions of a Complex Variable. In: Translation of Mathematical Monographs, 26. American Mathematical Society, Providence, 1969.
  3. Goodman A.W. Univalent function. Vol. II. Mariner Publishing Company, Hardcover, 1983.
  4. Gupta V.P. Convex class of starlike functions. Yokohama Math. J. 1984, 32, 55–59.
  5. Holovata O.M., Mulyava O.M., Sheremeta M.M. Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients. J. Math. Sci. 2020, 249, 369–388. doi:10.1007/s10958-020-04948-1 (translation of Mat. Metody Fiz.-Mekh. Polya 2018, 61 (1), 57–70. (in Ukrainian))
  6. Jack I.S. Functions starlike and convex of order \(\alpha\). J. Lond. Math. Soc. (2) 1971, s2–3 (3), 469–474. doi:10.1112/jlms/s2-3.3.469
  7. Kaplan W. Close-to-convex schlicht functions. Michigan Math. J. 1952, 1 (2), 169–185. doi:10.1307/mmj/1028988895
  8. Shah S.M. Univalence of a function \(f\) and its successive derivatives when \(f\) satisfies a differential equation, II. J. Math. Anal. Appl. 1989, 142, 422–430. doi:10.1016/0022-247X(89)90011-5
  9. Sheremeta M.M. Entire Dirichlet series. ISDO, Kyiv, 1993. (in Ukrainian)
  10. Sheremeta M.M. Full equivalence of the logarithms of the maximum modulus and the maximal term of an entire Dirichlet series. Math. Notes 1990, 47, 608–611. doi:10.1007/BF01170894 (translation of Mat. Zametki 1990, 47 (6), 119–123. (in Russian))
  11. Sheremeta M.M. Geometric properties of analytic solutions of differential equations. Publ. I.E. Chyzhykov, Lviv, 2019.
  12. Sheremeta M.M. On the derivative of an entire Dirichlet series. Math. USSR Sb. 1990, 65 (1), 135–145. doi:10.1070/SM1990v065n01ABEH002076 (translation of Mat. Sbornik, 1988, 137 (1), 128–139 (in Russian)).
  13. Sheremeta M.M. Pseudostarlike and pseudoconvex Dirichlet series of the order \(\alpha\) and the type \(\beta\). Mat. Stud. 2020, 54 (1), 23–31. doi:10.30970/ms.54.1.23-31
  14. Sheremeta Z.M., Sheremeta M.M. Convexity of entire solutions of a differential equation. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 181–185. (in Ukrainian)
  15. Sheremeta Z.M. On entire solutions of a differential equation. Mat. Stud. 2000, 14 (1), 54–58.