References
- Belbachir H., Belkhir A., Djellas I.-E. Permanent of
Toeplitz-Hessenberg matrices with generalized Fibonacci and Lucas
entries. Appl. Appl. Math. 2022, 17 (2),
558–570.
- Callan D. Some bijections and identities for the Catalan and Fine
numbers. Sém. Lothar. Combin. 2005, 53, article
B53e.
- Chen Z., Pan H. Identities involving weighted Catalan, Schröder
and Motzkin paths. Adv. Appl. Math. 2017, 86,
81–98. doi:10.1016/J.AAM.2016.11.011
- Deng E.Y.P., Yan W.-J. Some identities on the Catalan, Motzkin
and Schröder numbers. Discrete Appl. Math. 2008,
156 (14), 2781–2789. doi:10.1016/j.dam.2007.11.014
- Deutsch E. Dyck path enumeration. Discrete Math. 1999,
204, 167–202. doi:10.1016/S0012-365X(98)00371-9
- Deutsch E., Shapiro L. A survey of the Fine numbers.
Discrete Math. 2001, 241 (1–3), 241–265.
doi:10.1016/S0012-365X(01)00121-2
- Elouafi M. A unified approach for the Hankel determinants of
classical combinatorial numbers. J. Math. Anal. Appl. 2015,
431 (2), 1253–1274. doi:10.1016/j.jmaa.2015.06.034
- Goy T., Shattuck M. Determinant formulas of some
Toeplitz-Hessenberg matrices with Catalan entries. Proc. Indian
Acad. Sci. Math. Sci. 2019, 129 (4), article number 46.
doi:10.1007/s12044-019-0513-9
- Goy T., Shattuck M. Determinants of Toeplitz-Hessenberg matrices
with generalized Fibonacci entries. Notes Number Theory Discrete
Math. 2019, 25 (4), 83–95.
doi:10.7546/nntdm.2019.25.4.83-95
- Goy T., Shattuck M. Determinant identities for
Toeplitz-Hessenberg matrices with tribonacci number entries. Trans.
Comb. 2020, 9 (2), 89–109.
doi:10.22108/TOC.2020.116257.1631
- Goy T., Shattuck M. Some Toeplitz-Hessenberg determinant
identities for the tetranacci numbers. J. Integer Seq. 2020,
23, article 20.6.8.
- Goy T., Shattuck M. Determinants of some Hessenberg-Toeplitz
matrices with Motzkin number entries. J. Integer Seq. 2023,
26, article 23.3.4.
- Komatsu T., Ramı́rez J.L. Some determinants involving incomplete
Fubini numbers. An. Şt. Univ. Ovidius Constanţa. Ser. Mat. 2018,
26 (3), 143–170. doi:10.2478/auom-2018-0038
- Merca M. A note on the determinant of a Toeplitz-Hessenberg
matrix. Spec. Matrices 2013, 1, 10–16. doi:10.2478/spma-2013-0003
- Mu L., Wang Y. Hankel determinants of shifted Catalan-like
numbers. Discrete Math. 2017, 340 (6), 1389–1396.
doi:10.1016/j.disc.2016.09.035
- Muir T. The Theory of Determinants in the Historical Order of
Development. Vol. 3. Dover Publications, 1960.
- Shapiro L.V., Wang C.J. A bijection between \(3\)-Motzkin paths and Schröder paths with
no peak at odd height. J. Integer Seq. 2009, 12,
article 09.3.2.
- Sloane N.J.A. et al. The On-Line Encyclopedia of Integer Sequences,
2023. Available at https://oeis.org
- Qi F. On negativity of Toeplitz-Hessenberg determinants whose
elements contain large Schröder numbers. Palestine J. Math. 2022,
11 (4), 373–378.
- Qi F., Guo B.-N. Explicit and recursive formulas, integral
representations, and properties of the large Schröder numbers.
Kragujevac J. Math. 2017, 41 (4), 121–141.
- Qi F., Shi X.-T., Guo B.-N. Two explicit formulas of the Schröder
numbers. Integers 2016, 16, article 23.