References

  1. Alomari M., Darus M., Dragomir S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. 2009, 12 (4), 1–19.
  2. Cerone P., Dragomir S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Math. 2004, 37 (2), 299–308. doi:10.1515/dema-2004-0208
  3. Dragomir S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30 (1), 53–58. doi:10.5556/j.tkjm.30.1999.4207
  4. Dragomir S.S. On Simpson’s quadrature formula for Lipschitzian mappings and applications. Soochow J. Mathematics 1999, 25 (2), 175–180.
  5. Dragomir S.S., Agarwal R.P., Cerone P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5 (6), 533–579.
  6. El-Deeb A.A., Elsennary H.A., Baleanu D. Some new Hardy-type inequalities on time scales. Adv. Difference Equ. 2020, 2020, article 441. doi:10.1186/s13662-020-02883-8
  7. El-Deeb A.A., Makharesh S.D., Baleanu D. Dynamic Hilbert-type inequalities with Fenchel-Legendre transform. Symmetry 2020, 12 (4), 582. doi:10.3390/sym12040582
  8. Dragomir S.S., Pečarić J., Persson L.-E. Some inequalities of Hadamard Type. Soochow J. Mathematics 1995, 21 (3), 335–341.
  9. Dragomir S.S., Pečarić J.E., Wang S. The unified treatment of trapezoid, Simpson and Ostrowski type inequalities for monotonic mappings and applications. J. Inequal. Appl. 2000, 31 (6–7), 61–70. doi:10.1016/S0895-7177(00)00046-7
  10. El-Deeb A.A., El-Sennary H.A., Khan Z.A. Some reverse inequalities of Hardy type on time scales. Adv. Difference Equ. 2020, 402, 1–18. doi:10.1186/s13662-020-02857-w
  11. Fedotov I., Dragomir S.S. An inequality of Ostrowski type and its applications for Simpson’s rule and special means. RGMIA Res. Rep. Coll. 1999, 2 (1), 13–20.
  12. İşcan İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 304 (2019), 1–11. doi:10.1186/s13660-019-2258-5
  13. Işcan İ., Kadakal M. On n-polynomial P-function and related inequalities. International J. Math. Combin. 2020, 3, 16–25.
  14. Kadakal M., Kadakal H., İşcan İ. Semi P-geometric-arithmetically functions and some new related inequalities. Filomat 2023, 37 (21), 7017–7028. doi:10.2298/FIL2321017K
  15. Kadakal M., İşcan İ. Logarithmic semi P-function and some new inequalities. Turkish J. Inequal. 2024, 8 (1), 57–67.
  16. Kadakal M., İşcan İ., Kadakal H. Hermite-Hadamard type integral inequalities for semi harmonically P-functions. Rocky Mountain J. Math. 2024.
  17. Niculescu C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3(2), 155–167. doi:10.7153/mia-03-19
  18. Numan S., İşcan İ. On (s,P)-functions and related inequalities. Sigma J. Eng. Nat. Sci. 2022, 40 (4), 585–592. doi:10.14744/sigma.2022.00063
  19. Pečarić J., Varošanec S. Simpson’s formula for functions whose derivatives belong to \(L_p\) spaces. Appl. Math. Lett. 2001, 14 (2), 131–135. doi:10.1016/S0893-9659(00)00124-5
  20. Ujević N. A generalization of the modified Simpson’s rule and error bounds. ANZIAM J. 2005, 47, E1–E13. doi:10.21914/anziamj.v47i0.2
  21. Ujević N. New error bounds for the Simpson’s quadrature rule and applications. Comput. Math. Appl. 2007, 53 (1), 64–72. doi:10.1016/j.camwa.2006.12.008