References
- Alomari M., Darus M., Dragomir S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. 2009, 12 (4), 1–19.
- Cerone P., Dragomir S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Math. 2004, 37 (2), 299–308. doi:10.1515/dema-2004-0208
- Dragomir S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30 (1), 53–58. doi:10.5556/j.tkjm.30.1999.4207
- Dragomir S.S. On Simpson’s quadrature formula for Lipschitzian mappings and applications. Soochow J. Mathematics 1999, 25 (2), 175–180.
- Dragomir S.S., Agarwal R.P., Cerone P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5 (6), 533–579.
- El-Deeb A.A., Elsennary H.A., Baleanu D. Some new Hardy-type inequalities on time scales. Adv. Difference Equ. 2020, 2020, article 441. doi:10.1186/s13662-020-02883-8
- El-Deeb A.A., Makharesh S.D., Baleanu D. Dynamic Hilbert-type inequalities with Fenchel-Legendre transform. Symmetry 2020, 12 (4), 582. doi:10.3390/sym12040582
- Dragomir S.S., Pečarić J., Persson L.-E. Some inequalities of Hadamard Type. Soochow J. Mathematics 1995, 21 (3), 335–341.
- Dragomir S.S., Pečarić J.E., Wang S. The unified treatment of trapezoid, Simpson and Ostrowski type inequalities for monotonic mappings and applications. J. Inequal. Appl. 2000, 31 (6–7), 61–70. doi:10.1016/S0895-7177(00)00046-7
- El-Deeb A.A., El-Sennary H.A., Khan Z.A. Some reverse inequalities of Hardy type on time scales. Adv. Difference Equ. 2020, 402, 1–18. doi:10.1186/s13662-020-02857-w
- Fedotov I., Dragomir S.S. An inequality of Ostrowski type and its applications for Simpson’s rule and special means. RGMIA Res. Rep. Coll. 1999, 2 (1), 13–20.
- İşcan İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 304 (2019), 1–11. doi:10.1186/s13660-019-2258-5
- Işcan İ., Kadakal M. On n-polynomial P-function and related inequalities. International J. Math. Combin. 2020, 3, 16–25.
- Kadakal M., Kadakal H., İşcan İ. Semi P-geometric-arithmetically functions and some new related inequalities. Filomat 2023, 37 (21), 7017–7028. doi:10.2298/FIL2321017K
- Kadakal M., İşcan İ. Logarithmic semi P-function and some new inequalities. Turkish J. Inequal. 2024, 8 (1), 57–67.
- Kadakal M., İşcan İ., Kadakal H. Hermite-Hadamard type integral inequalities for semi harmonically P-functions. Rocky Mountain J. Math. 2024.
- Niculescu C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3(2), 155–167. doi:10.7153/mia-03-19
- Numan S., İşcan İ. On (s,P)-functions and related inequalities. Sigma J. Eng. Nat. Sci. 2022, 40 (4), 585–592. doi:10.14744/sigma.2022.00063
- Pečarić J., Varošanec S. Simpson’s formula for functions whose derivatives belong to \(L_p\) spaces. Appl. Math. Lett. 2001, 14 (2), 131–135. doi:10.1016/S0893-9659(00)00124-5
- Ujević N. A generalization of the modified Simpson’s rule and error bounds. ANZIAM J. 2005, 47, E1–E13. doi:10.21914/anziamj.v47i0.2
- Ujević N. New error bounds for the Simpson’s quadrature rule and applications. Comput. Math. Appl. 2007, 53 (1), 64–72. doi:10.1016/j.camwa.2006.12.008