References
- Altin H.E., Karsli H. Some approximation properties of a
nonlinear Szász-Mirakyan-Durrmeyer operators. An. Univ. Oradea
Fasc. Mat. 2021, 28 (1), 105–114.
- Bardaro C., Musielak J., Vinti G. Nonlinear integral operators and
applications. In: Appell J. (Ed.) De Gruyter Series in Nonlinear
Analysis and Applications, 9. De Gruyter, Berlin, 2003.
doi:10.1515/9783110199277
- Bodur M., Gürel Yilmaz Ö., Aral A. Approximation by
Baskakov-Szász-Stancu Operators Preserving Exponential Functions.
Constr. Math. Anal. 2018, 1 (1), 1–8.
doi:10.33205/cma.450708
- Deo N. On the rate of convergence of modified Baskakov type
operators on functions of bounded variation. Kyungpook Math. J.
2005, 45, 571–577.
- Gupta V., Arya K.V. On the rate of pointwise convergence of
modified Baskakov type operators for functions of bounded
variation. Kyungpook Math. J. 1998, 38,
283–291.
- Gupta V., Kumar D. Rate of convergence of modified Baskakov
operators. Demonstr. Math. 1997, 30 (2),
339–346.
- Gupta V. On the rate of pointwise convergence of modified
Baskakov operators. Soochow J. Math. 1996, 22 (4),
543–552.
- Gupta V., Srivastava G.S. An estimate of the rate of convergence
of modified Baskakov operators for functions of bounded variation.
Kyungpoog Math. J. 1996, 36, 237–247.
- Karsli H. On convergence of a sequence of nonlinear Durrmeyer
operators. PanAmer. Math. J. 2014, 24 (2),
1–24.
- Karsli H., Tiryaki I.U., Altin H.E. Some approximation properties
of a certain nonlinear Bernstein operators. Filomat 2014,
28 (6), 1295–1305. doi:10.2298/FIL1406295K
- Musielak J. On some approximation problems in modular spaces. C. R.
Acad. Bulgare Sci., Sofia, 1983.
- Paltanea R. Durrmeyer type operators on a simplex. Constr.
Math. Anal. 2021, 4 (2), 215–228.
doi:10.33205/cma.862942
- Sinha R.P., Agrawal P.N., Gupta V. On simultaneous approximation
by modified Baskakov operators. Bull. Soc. Math. Belg. Ser. B.
1991, 42 (2), 217–231.