References

  1. Altin H.E., Karsli H. Some approximation properties of a nonlinear Szász-Mirakyan-Durrmeyer operators. An. Univ. Oradea Fasc. Mat. 2021, 28 (1), 105–114.
  2. Bardaro C., Musielak J., Vinti G. Nonlinear integral operators and applications. In: Appell J. (Ed.) De Gruyter Series in Nonlinear Analysis and Applications, 9. De Gruyter, Berlin, 2003. doi:10.1515/9783110199277
  3. Bodur M., Gürel Yilmaz Ö., Aral A. Approximation by Baskakov-Szász-Stancu Operators Preserving Exponential Functions. Constr. Math. Anal. 2018, 1 (1), 1–8. doi:10.33205/cma.450708
  4. Deo N. On the rate of convergence of modified Baskakov type operators on functions of bounded variation. Kyungpook Math. J. 2005, 45, 571–577.
  5. Gupta V., Arya K.V. On the rate of pointwise convergence of modified Baskakov type operators for functions of bounded variation. Kyungpook Math. J. 1998, 38, 283–291.
  6. Gupta V., Kumar D. Rate of convergence of modified Baskakov operators. Demonstr. Math. 1997, 30 (2), 339–346.
  7. Gupta V. On the rate of pointwise convergence of modified Baskakov operators. Soochow J. Math. 1996, 22 (4), 543–552.
  8. Gupta V., Srivastava G.S. An estimate of the rate of convergence of modified Baskakov operators for functions of bounded variation. Kyungpoog Math. J. 1996, 36, 237–247.
  9. Karsli H. On convergence of a sequence of nonlinear Durrmeyer operators. PanAmer. Math. J. 2014, 24 (2), 1–24.
  10. Karsli H., Tiryaki I.U., Altin H.E. Some approximation properties of a certain nonlinear Bernstein operators. Filomat 2014, 28 (6), 1295–1305. doi:10.2298/FIL1406295K
  11. Musielak J. On some approximation problems in modular spaces. C. R. Acad. Bulgare Sci., Sofia, 1983.
  12. Paltanea R. Durrmeyer type operators on a simplex. Constr. Math. Anal. 2021, 4 (2), 215–228. doi:10.33205/cma.862942
  13. Sinha R.P., Agrawal P.N., Gupta V. On simultaneous approximation by modified Baskakov operators. Bull. Soc. Math. Belg. Ser. B. 1991, 42 (2), 217–231.