References

  1. Akhiezer N.I., Krein M.G. On the best approximation, by trigonometric sums, of differentiable periodic functions. Dokl. AN SSSR 1937, 15 (3), 107–112. (in Russian)
  2. Bushanskii A.V. Best harmonic approximation in the mean of certain functions. In: Studies in the theory of approximation of functions and their applications. Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1978, 29–37. (in Russian)
  3. Dzyadyk V.K. Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions. Izv. Akad. Nauk SSSR Ser. Mat. 1959, 23 (6), 933–950. (in Russian)
  4. Dzyadyk V.K. Best approximation in classes of periodic functions defined by integrals of linear combinations of absolutely monotonous kernels. Mat. Zametki 1974, 16 (5), 691–701.
  5. Hrabova U.Z., Serdyuk A.S. Order estimates for the best approximations and approximations by Fourier sums of the classes of \((\psi,\beta)\)-differential functions. Ukrainian Math. J. 2014, 65 (9), 1319–1331. doi:10.1007/s11253-014-0861-7
  6. Favard J. Sur l'approximation des fonctions périodiques par des polynomes trigonométriques. C. R. Math. Acad. Sci. Paris 1936, 203, 1122–1124. (in French)
  7. Favard J. Sur les meilleurs procédes d'approximations de certains classes de fontions par des polynomes trigonometriques. Bull. Sci. Math. 1937, 61, 209–224, 243–256. (in French)
  8. Korneichuk N.P. Exact constants in approximation theory. Encyclopedia of Mathematics and its Applications, 38. Cambridge University Press, Cambridge, 1991.
  9. Korneichuk N.P., Babenko V.F., Ligun A.A. Extremal properties of polynomials and splines. Naukova Dumka, Kiev, 1992. (in Russian)
  10. Krein M.G. The theory of best approximation of periodic functions. Dokl. AN SSSR 1938, 18 (4–5), 245–249. (in Russian)
  11. Kushpel' A.K. Estimates for the widths of classes of analytic functions. Ukrainian Math. J. 1989, 41 (4), 493–496.
  12. Sz.-Nagy B. Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall. Ber. Verh. Sächs. Akad. Wiss. Leipzig 1938, 90, 103–134. (in German)
  13. Pinkus A. n-Widths in approximation theory. In: Ambrosio L. (Ed.) Ergebnisse der Mathematik und ihrer Grenzgebiete. Folge 3. Springer-Verlag, Berlin, 1985.
  14. Romanyuk A.S. Approximating Characteristics of the Classes of Periodic Functions of Many Variables. Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. Kyiv, 2012. (in Russian)
  15. Serdyuk A.S. On the best approximation of classes of convolutions of periodic functions by trigonometric polynomials. Ukrainian Math. J. 1995, 47 (9), 1435–1440. doi:10.1007/BF01057518
  16. Serdyuk A.S. Estimates for the widths and best approximations of classes of convolutions of periodic functions. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 1998, 20, 286–299. (in Ukrainian)
  17. Serdyuk A.S. Widths and best approximations for classes of convolutions of periodic functions. Ukrainian Math. J. 1999, 51 (5), 748–763. doi:10.1007/BF02591709
  18. Serdyuk A.S. On best approximation in classes of convolutions of periodic functions. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos. 2002, 35, 172–194. (in Ukrainian)
  19. Serdyuk A.S. Best approximations and widths of classes of convolutions of periodic functions of high smoothness. Ukrainian Math. J. 2005, 57 (7), 1120–1148. doi:10.1007/s11253-005-0251-2
  20. Serdyuk A.S. Approximation of classes of analytic functions by Fourier sums in the uniform metric. Ukrainian Math. J. 2005, 57 (8), 1275–1296. doi:10.1007/s11253-005-0261-0
  21. Serdyuk A.S., Bodenchuk V.V. Exact values of Kolmogorov widths of classes of Poisson integrals. J. Approx. Theory 2013, 173, 89–109. doi:10.1016/j.jat.2013.05.002
  22. Serdyuk A.S., Sokolenko I.V. Asymptotic behavior of best approximations of classes of Poisson integrals of functions from \(H_\omega\). J. Approx. Theory 2011, 163 (11), 1692–1706. doi:10.1016/j.jat.2011.06.008
  23. Serdyuk A.S. Sokolenko I.V. Uniform approximation of classes of \((\psi,\bar\beta)\)-differentiable functions by linear methods. Zb. prats Inst. mat. NAN Ukr. Kyiv 2011, 8 (1), 181–189. (in Ukrainian)
  24. Serdyuk A.S., Sokolenko I.V. Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness. J. Math. Sci. (N.Y.) 2021, 252 (4), 526–540. doi:10.1007/s10958-020-05178-1
  25. Serdyuk A.S., Stepanyuk T.A. Estimations of the best approximations for the classes of infinitely differentiable functions in uniform and integral metrics. Ukrainian Math. J. 2015, 66 (9), 1393–1407. doi:10.1007/s11253-015-1018-z
  26. Serdyuk A.S., Stepanyuk T.A. Order estimates for the best approximations and approximations by Fourier sums in the classes of convolutions of periodic functions of low smoothness in the uniform metric. Ukrainian Math. J. 2015, 66 (12), 1862–1882. doi:10.1007/s11253-015-1056-6
  27. Serdyuk A.S., Stepanyuk T.A. Uniform Approximations by Fourier Sums in Classes of Generalized Poisson Integrals. Anal. Math. 2019, 45 (1), 201–236. doi:10.1007/s10476-018-0310-1
  28. Shevaldin V.T. Widths of classes of convolutions with Poisson kernel. Math. Notes 1992, 51 (6), 611–617. doi:10.1007/BF01263308
  29. Stechkin S.B. On the best approximation of certain classes of periodic functions by trigonometric polynomials. Izv. Akad. Nauk SSSR. Ser. Mat. 1956, 20, 643–648. (in Russian)
  30. Stepanets A.I. Classification and Approximation of Periodic Functions. In: Hazewinkel M. (Ed.) Mathematics and Its Applications, 333. Kluwer Academic Publishers, Dordrecht, 1995.
  31. Stepanets A.I. Methods of Approximation Theory. Utrecht, VSP, 2005.
  32. Stepanets A.I., Serdyuk A.S. Lower bounds for the widths of classes of convolutions of periodic functions in the metrics of \(C\) and \(L\). Ukrainian Math. J. 1995, 47 (8), 1271–1282. doi:10.1007/BF01057715
  33. Sun Y.-S. On the best approximation of periodic differentiable functions by trigonometric polynomials. II. Izv. Akad. Nauk SSSR. Ser. Mat. 1961, 25 (1), 143–152. (in Russian)
  34. Temlyakov V.N. On estimates for the widths of classes of infinitely differentiable functions. Mat. Zametki 1990, 47 (5), 155–157. (in Russian)
  35. Temlyakov V.N. Approximation of periodic functions. Comput. Math. Anal. Ser., Nova Science Publishers, Inc. Commack, NY, 1993.
  36. Tikhomirov V.M. Some questions in approximation theory. Izdat. Moskov. Univ., Moscow, 1976. (in Russian)