References

  1. Alp P.Z. A new paranormed sequence space defined by Catalan conservative matrix. Math. Methods Appl. Sci. 2020, 44 (9), 7651–7658. doi:10.1002/mma.6530
  2. Altay B., Başar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. J. Math. Anal. Appl. 2006, 319 (2), 494–508. doi:10.1016/j.jmaa.2005.06.055
  3. Altay B., Başar F. Generalization of the sequence space \(\ell\left( p\right)\) derived by weighted mean. J. Math. Anal. Appl. 2007, 330 (1), 174–185. doi:10.1016/j.jmaa.2006.07.050
  4. Altay B., Başar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J. Math. Anal. Appl. 2007, 336 (1), 632–645. doi:10.1016/j.jmaa.2007.03.007
  5. Altay B., Başar F., Mursaleen M. On the Euler sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) I. Inform. Sci. 2006, 176 (10), 1450–1462. doi:10.1016/j.ins.2005.05.008
  6. Aydin C., Başar F. Some new paranormed sequence spaces. Inform. Sci. 2004, 160 (1–4), 27–40. doi:10.1016/j.ins.2003.07.009
  7. Brualdi R.A. Introductory Combinatorics, 5th edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2010.
  8. Candan M. A new sequence space isomorphic to the space \(\ell\left( p\right)\) and compact operators. J. Math. Comput. Sci. 2014, 4 (2), 306–334.
  9. Candan M., Güneş A. Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proc. Nat. Acad. Sci. India Sect. A 2015, 85 (2), 269–276. doi:10.1007/s40010-015-0204-6
  10. Choudhary B., Mishra S.K. A note on Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations. Int. J. Math. Math. Sci. 1995, 18 (4), 681–688.
  11. Dağlı M.C. A novel conservative matrix arising from Schröder numbers and its properties. Linear Multilinear Algebra 2023, 71 (8), 1338–1351. doi:10.1080/03081087.2022.2061401
  12. Dağlı M.C. Matrix mappings and compact operators for Schröder sequence spaces. Turkish J. Math. 2022, 46 (6), 2304–2320. doi:10.55730/1300-0098.3270
  13. Dağlı M.C., Yaying T. Some new paranormed sequence spaces derived by regular Tribonacci matrix. J. Anal. 2022, 31, 109–127. doi:10.1007/s41478-022-00442-w
  14. Başarır M., Et M. On some new generalized difference sequence spaces. Period. Math. Hungar. 1997, 35 (3), 169–175. doi:10.1023/A:1004597132128
  15. Et M., Çolak R. On some generalized difference sequence spaces. Soochow J. Math. 1995, 21 (4), 377–386.
  16. Grosseerdmann K.G. Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl. 1993, 180 (1), 223–238. doi:10.1006/JMAA.1993.1398
  17. İlkhan M. Matrix domain of a regular matrix derived by Euler totient function in the spaces \(c_{0}\) and \(c\). Mediterr. J. Math. 2020 17 (1), article number 27. doi:10.1007/s00009-019-1442-7
  18. İlkhan M. A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces \(c\) and \(c_{0}\). Linear Multilinear Algebra 2020, 68 (2), 417–434. doi:10.1080/03081087.2019.1635071
  19. İlkhan M., Demiriz S., Kara E.E. A new paranormed sequence space defined by Euler totient matrix. Karaelmas Sci. Eng. J. 2019, 9 (2), 277–282.
  20. İlkhan M., Kara E.E. A new Banach space defined by Euler totient matrix operator. Oper. Matrices 2019, 13 (2), 527–544. doi:10.7153/oam-2019-13-40
  21. İlkhan M., Kara E.E., Usta F. Compact operators on the Jordan totient sequence spaces. Math. Methods Appl. Sci. 2021, 44 (9), 7666–7675. doi:10.1002/mma.6537
  22. İlkhan M., Şimşek N., Kara E.E. A new regular infinite matrix defined by Jordan totient function and its matrix domain in \(\ell_{p}\). Math. Methods Appl. Sci. 2021, 44 (9), 7622–7633. doi:10.1002/mma.6501
  23. Kara E.E., Başarır M. On some Euler \(B^{\left( m\right)}\) difference sequence spaces and compact operators. J. Math. Anal. Appl. 2011, 379 (2), 499–511. doi:10.1016/j.jmaa.2011.01.028
  24. Kara E.E., Demiriz S. Some new paranormed difference sequence spaces derived by Fibonacci numbers. Miskolc Math. Notes 2015, 16 (2), 907–923. doi:10.18514/MMN.2015.1227
  25. Kara E.E., İlkhan M. Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra 2016, 64 (11), 2208–2223. doi:10.1080/03081087.2016.1145626
  26. Kara M.İ., Kara E.E. Matrix transformations and compact operators on Catalan sequence spaces. J. Math. Anal. Appl. 2021, 498 (1), 124925. doi:10.1016/j.jmaa.2021.124925
  27. Karakas M. On the sequence spaces involving bell numbers. Linear Multilinear Algebra 2023, 71 (14), 2298–2309. doi:10.1080/03081087.2022.2098225
  28. Karakaya V., Şimşek N. On some properties of new paranormed sequence space of nonabsolute type. Abstr. Appl. Anal. 2012, 2012, 921613. doi:10.1155/2012/921613
  29. Maddox I.J. Spaces of strongly summable sequences. Q. J. Math. 1967, 18 (1), 345–355. doi:10.1093/qmath/18.1.345
  30. Maddox I.J. Paranormed sequence spaces generated by infinite matrices. Math. Proc. Cambridge Philos. Soc. 64 (2), 335–340. doi:10.1017/S0305004100042894
  31. Maddox I.J. Elements of Functional Analysis. Cambridge University Press, Cambridge, 1988.
  32. Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat. Vesnik 1997, 49, 187–196.
  33. Malkowsky E., Özger F. A note on some sequence spaces of weighted means. Filomat 2012, 26 (3), 511–518. doi:10.2298/FIL1203511M
  34. Malkowsky E., Özger F., Alotaibi A. Some notes on matrix mappings and their Hausdorff measure of noncompactness. Filomat 2014, 28 (5), 1059–1072.
  35. Malkowsky E., Özger F., Veličkovič V. Some mixed paranorm spaces. Filomat 2017, 31 (4), 1079–1098. doi:10.2298/FIL1704079M
  36. Malkowsky E., Özger F., Veličkovič V. Matrix transformations on mixed paranorm spaces. Filomat 2017, 31, 2957–2966. doi:10.2298/FIL1710957M
  37. Malkowsky E., Savas E. Matrix tansformations between sequence spaces of generalized weighted mean. Appl. Math. Comput. 2004, 147 (2), 333–345. doi:10.1016/S0096-3003(02)00670-7
  38. Mursaleen M., Noman A.K. On some new difference sequence spaces of non-absolute type. Math. Comput. Model. 2010, 52 (3–4), 603–617. doi:10.1016/j.mcm.2010.04.006
  39. Nakano H. Modulared sequence spaces. Proc. Jpn. Acad. 1951, 27 (2), 508–512.
  40. Özger F., Başar F. Domain of the double sequential band matrix \(B(\tilde{r},\tilde{s})\) on some Maddox’s spaces. AIP Conf. Proc. 2012, 1470 (1), 152–155. doi:10.1063/1.4747662
  41. Simons S. The sequence spaces \(\ell\left(p_{v}\right)\) and \(m\left(p_{v}\right)\). Proc. Lond. Math. Soc. 1965, s3-15 (1), 422–436. doi:10.1112/plms/s3-15.1.422
  42. Yaying T. On the paranormed Nörlund difference sequence space of fractional order and geometric properties. Math. Slovaca 2021, 71 (1), 155–170. doi:10.1515/ms-2017-0459
  43. Yaying T. Paranormed Riesz difference sequence spaces of fractional order. Kragujevac J. Math. 2022, 46 (2), 175–191. doi:10.46793/KgJMat2202.175Y
  44. Yaying T., Hazarika B. On sequence spaces defined by the domain of a regular Tribonacci matrix. Math. Slovaca 2020, 70 (3), 697–706. doi:10.1515/ms-2017-0383
  45. Yaying T., Kara M.I. On sequence spaces defined by the domain of tribonacci matrix in \(c_{0}\) and \(c\). Korean J. Math. 2021, 29 (1), 25–40. doi:10.11568/kjm.2021.29.1.25
  46. Yaying T., Kara M.I., Hazarika B., Kara E.E. A study on \(q\)-analogue of Catalan sequence spaces. Filomat 2023, 37 (3), 839–850. doi:10.2298/FIL2303839Y
  47. Yeşilkayagil M., Başar F. On the paranormed Nörlund sequence space of nonabsolute type. Abstr. Appl. Anal. 2014, 2014, 858704. doi:10.1155/2014/858704