References
- Alp P.Z. A new paranormed sequence space defined by Catalan conservative matrix. Math. Methods Appl. Sci. 2020, 44 (9), 7651–7658. doi:10.1002/mma.6530
- Altay B., Başar F. Some paranormed sequence spaces of non-absolute type derived by weighted mean. J. Math. Anal. Appl. 2006, 319 (2), 494–508. doi:10.1016/j.jmaa.2005.06.055
- Altay B., Başar F. Generalization of the sequence space \(\ell\left( p\right)\) derived by weighted mean. J. Math. Anal. Appl. 2007, 330 (1), 174–185. doi:10.1016/j.jmaa.2006.07.050
- Altay B., Başar F. Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space. J. Math. Anal. Appl. 2007, 336 (1), 632–645. doi:10.1016/j.jmaa.2007.03.007
- Altay B., Başar F., Mursaleen M. On the Euler sequence spaces which include the spaces \(\ell_{p}\) and \(\ell_{\infty}\) I. Inform. Sci. 2006, 176 (10), 1450–1462. doi:10.1016/j.ins.2005.05.008
- Aydin C., Başar F. Some new paranormed sequence spaces. Inform. Sci. 2004, 160 (1–4), 27–40. doi:10.1016/j.ins.2003.07.009
- Brualdi R.A. Introductory Combinatorics, 5th edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2010.
- Candan M. A new sequence space isomorphic to the space \(\ell\left( p\right)\) and compact operators. J. Math. Comput. Sci. 2014, 4 (2), 306–334.
- Candan M., Güneş A. Paranormed sequence space of non-absolute type founded using generalized difference matrix. Proc. Nat. Acad. Sci. India Sect. A 2015, 85 (2), 269–276. doi:10.1007/s40010-015-0204-6
- Choudhary B., Mishra S.K. A note on Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations. Int. J. Math. Math. Sci. 1995, 18 (4), 681–688.
- Dağlı M.C. A novel conservative matrix arising from Schröder numbers and its properties. Linear Multilinear Algebra 2023, 71 (8), 1338–1351. doi:10.1080/03081087.2022.2061401
- Dağlı M.C. Matrix mappings and compact operators for Schröder sequence spaces. Turkish J. Math. 2022, 46 (6), 2304–2320. doi:10.55730/1300-0098.3270
- Dağlı M.C., Yaying T. Some new paranormed sequence spaces derived by regular Tribonacci matrix. J. Anal. 2022, 31, 109–127. doi:10.1007/s41478-022-00442-w
- Başarır M., Et M. On some new generalized difference sequence spaces. Period. Math. Hungar. 1997, 35 (3), 169–175. doi:10.1023/A:1004597132128
- Et M., Çolak R. On some generalized difference sequence spaces. Soochow J. Math. 1995, 21 (4), 377–386.
- Grosseerdmann K.G. Matrix transformations between the sequence spaces of Maddox. J. Math. Anal. Appl. 1993, 180 (1), 223–238. doi:10.1006/JMAA.1993.1398
- İlkhan M. Matrix domain of a regular matrix derived by Euler totient function in the spaces \(c_{0}\) and \(c\). Mediterr. J. Math. 2020 17 (1), article number 27. doi:10.1007/s00009-019-1442-7
- İlkhan M. A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces \(c\) and \(c_{0}\). Linear Multilinear Algebra 2020, 68 (2), 417–434. doi:10.1080/03081087.2019.1635071
- İlkhan M., Demiriz S., Kara E.E. A new paranormed sequence space defined by Euler totient matrix. Karaelmas Sci. Eng. J. 2019, 9 (2), 277–282.
- İlkhan M., Kara E.E. A new Banach space defined by Euler totient matrix operator. Oper. Matrices 2019, 13 (2), 527–544. doi:10.7153/oam-2019-13-40
- İlkhan M., Kara E.E., Usta F. Compact operators on the Jordan totient sequence spaces. Math. Methods Appl. Sci. 2021, 44 (9), 7666–7675. doi:10.1002/mma.6537
- İlkhan M., Şimşek N., Kara E.E. A new regular infinite matrix defined by Jordan totient function and its matrix domain in \(\ell_{p}\). Math. Methods Appl. Sci. 2021, 44 (9), 7622–7633. doi:10.1002/mma.6501
- Kara E.E., Başarır M. On some Euler \(B^{\left( m\right)}\) difference sequence spaces and compact operators. J. Math. Anal. Appl. 2011, 379 (2), 499–511. doi:10.1016/j.jmaa.2011.01.028
- Kara E.E., Demiriz S. Some new paranormed difference sequence spaces derived by Fibonacci numbers. Miskolc Math. Notes 2015, 16 (2), 907–923. doi:10.18514/MMN.2015.1227
- Kara E.E., İlkhan M. Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra 2016, 64 (11), 2208–2223. doi:10.1080/03081087.2016.1145626
- Kara M.İ., Kara E.E. Matrix transformations and compact operators on Catalan sequence spaces. J. Math. Anal. Appl. 2021, 498 (1), 124925. doi:10.1016/j.jmaa.2021.124925
- Karakas M. On the sequence spaces involving bell numbers. Linear Multilinear Algebra 2023, 71 (14), 2298–2309. doi:10.1080/03081087.2022.2098225
- Karakaya V., Şimşek N. On some properties of new paranormed sequence space of nonabsolute type. Abstr. Appl. Anal. 2012, 2012, 921613. doi:10.1155/2012/921613
- Maddox I.J. Spaces of strongly summable sequences. Q. J. Math. 1967, 18 (1), 345–355. doi:10.1093/qmath/18.1.345
- Maddox I.J. Paranormed sequence spaces generated by infinite matrices. Math. Proc. Cambridge Philos. Soc. 64 (2), 335–340. doi:10.1017/S0305004100042894
- Maddox I.J. Elements of Functional Analysis. Cambridge University Press, Cambridge, 1988.
- Malkowsky E. Recent results in the theory of matrix transformations in sequence spaces. Mat. Vesnik 1997, 49, 187–196.
- Malkowsky E., Özger F. A note on some sequence spaces of weighted means. Filomat 2012, 26 (3), 511–518. doi:10.2298/FIL1203511M
- Malkowsky E., Özger F., Alotaibi A. Some notes on matrix mappings and their Hausdorff measure of noncompactness. Filomat 2014, 28 (5), 1059–1072.
- Malkowsky E., Özger F., Veličkovič V. Some mixed paranorm spaces. Filomat 2017, 31 (4), 1079–1098. doi:10.2298/FIL1704079M
- Malkowsky E., Özger F., Veličkovič V. Matrix transformations on mixed paranorm spaces. Filomat 2017, 31, 2957–2966. doi:10.2298/FIL1710957M
- Malkowsky E., Savas E. Matrix tansformations between sequence spaces of generalized weighted mean. Appl. Math. Comput. 2004, 147 (2), 333–345. doi:10.1016/S0096-3003(02)00670-7
- Mursaleen M., Noman A.K. On some new difference sequence spaces of non-absolute type. Math. Comput. Model. 2010, 52 (3–4), 603–617. doi:10.1016/j.mcm.2010.04.006
- Nakano H. Modulared sequence spaces. Proc. Jpn. Acad. 1951, 27 (2), 508–512.
- Özger F., Başar F. Domain of the double sequential band matrix \(B(\tilde{r},\tilde{s})\) on some Maddox’s spaces. AIP Conf. Proc. 2012, 1470 (1), 152–155. doi:10.1063/1.4747662
- Simons S. The sequence spaces \(\ell\left(p_{v}\right)\) and \(m\left(p_{v}\right)\). Proc. Lond. Math. Soc. 1965, s3-15 (1), 422–436. doi:10.1112/plms/s3-15.1.422
- Yaying T. On the paranormed Nörlund difference sequence space of fractional order and geometric properties. Math. Slovaca 2021, 71 (1), 155–170. doi:10.1515/ms-2017-0459
- Yaying T. Paranormed Riesz difference sequence spaces of fractional order. Kragujevac J. Math. 2022, 46 (2), 175–191. doi:10.46793/KgJMat2202.175Y
- Yaying T., Hazarika B. On sequence spaces defined by the domain of a regular Tribonacci matrix. Math. Slovaca 2020, 70 (3), 697–706. doi:10.1515/ms-2017-0383
- Yaying T., Kara M.I. On sequence spaces defined by the domain of tribonacci matrix in \(c_{0}\) and \(c\). Korean J. Math. 2021, 29 (1), 25–40. doi:10.11568/kjm.2021.29.1.25
- Yaying T., Kara M.I., Hazarika B., Kara E.E. A study on \(q\)-analogue of Catalan sequence spaces. Filomat 2023, 37 (3), 839–850. doi:10.2298/FIL2303839Y
- Yeşilkayagil M., Başar F. On the paranormed Nörlund sequence space of nonabsolute type. Abstr. Appl. Anal. 2014, 2014, 858704. doi:10.1155/2014/858704