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SO(3) quasi-monomial polynomial families

Samaruk N.M.

Let H be a subgroup of the affine space group Aff(3), considered with its natural action on
the vector space of three-variable polynomials. The polynomial family {B,, , «(x,y,z)} is called
quasi-monomial with respect to H if the group operators in two different bases {x"y"z*} and
{Bunk(x,y,2z)} have identical matrices. We derive a criterion for quasi-monomiality when the
group H is the special orthogonal group SO(3). This criterion is expressed through the exponen-
tial generating function of the polynomial family {B,, , x(x,y,z)}. It has been proven that Appel’s
biorthogonal polynomials are quasi-monomials with respect to SO(3) and recurrence relations have
been found for them.

Key words and phrases: quasi-monomial polynomial, special orthogonal group, Appel’s biorthog-
onal polynomial, recurrence relation.
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Introduction

Let H be a subgroup of the space affine group Aff(3), considered with the natural action on
the vector space of three-variable polynomials. The polynomial family B,, ,, x(x,y, z) is called
quasi-monomial with respect to H if the group operators in two different bases {x"y"z*} and
{Buuk(x,y,2)} have identical matrices. Recently, quasi-monomials have found widespread
application in the analysis of 2D and 3D images. For the first time, polynomials with the
quasi-monomial property appeared in [1]. The authors proved that the family of polynomi-
als Hyn(x,y) = Hpu(x)Hy(y), where H,(x) are classical Hermitian polynomials, is quasi-
monomial with respect to the rotation group of the plane SO(2). Thus, this nice property
of Hermitian polynomials allowed for the efficient calculation of the SO(2)-invariant image
moments. Detailed information about image moment invariants can be found in [2,3].

In the article [4], these ideas were developed, and a complete description of all families of
polynomials that are quasi-monomials with respect to the rotation group of the plane SO(2)
was obtained. Also in that article, it was proven that the biorthogonal Appell polynomials
of two variables are quasi-monomials with respect to SO(2), and the recurrence relations for
these polynomials were found. Finding recurrence relations for quasi-monomials is very im-
portant because, when computing Appell polynomials numerically with explicit formulas, we
may encounter precision loss due to floating-point overflow or underflow. Using recurrence
relations allows for efficient and stable calculations, which is crucial for applications.

In the paper [5], a description of quasi-monomials was obtained for the case when the
group H is generated by scaling, rotations, and translations of the plane. In [6], biorthogonal
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S0O(3) quasi-monomial polynomial families 41

Appell polynomials of three variables were used to recognize 3D objects.

In this article, we offer a comprehensive description, similar to the 2D case, of families of
polynomials that are quasi-monomials with respect to the rotation group of the space SO(3).
It is proven that a family of polynomials will be quasi-monomials if and only if the exponential
generating function of this family is a function of three variables ux + vy + wz, x> + y* + 22,
and u? + v? + w? only. Additionally, we establish conditions under which the scaling of quasi-
monomials preserves the quasi-monomial property. We also prove that the biorthogonal Ap-
pell polynomials of three variables are SO(3) quasi-monomials and derive recurrence relations
for them.

1 SO(3) quasi-monomials

The 3D rotation group SO(3) (the special orthogonal group) is the group of all rotations
about the origin of three-dimensional Euclidean space. It is a three-parameters group with the
following matrix realization

cosae —sinx 0 cosp 0 —sinf cosy —siny 0
Ty = | sina cosa O, Tg= 0 1 0 , T, =|siny cosy 0],
0 0 1 sinf 0 cosf 0 0 1

where the parameters «, B,y € [0, 2] are the Euler angles. A rotation Tupy = TuTpT, maps a
point (x,y,z) to a new point (x/,y/,2") as follows:

(cosa cosy —sina cos Bsiny)x + (— cosa siny — sina cos B cos )y + sina sin Bz,

/
X
y' = (sinacos<y + cosa cos Bsiny) x + (cosa cos Bcosy — sinasiny)y — cosasinfz,

z' = sinBsiny x +sin fcosyy + cos fz.
From the orthogonality of the group, it follows that the transformations of the group preserve
the lengths of vectors, therefore, the subsequent identity

() + () + () =2+ P+ 2
holds true. The monomials x™y"z* are transformed under the rotation as

Tapr (W) = X1 C(Bym... ko) b thygmm g,
my+my+mg=m

nq+np+nz=n
k1+k2+k3:k
where C (a,B,y,m1,...,k3) is some complicated expression, the explicit form of which does
not interest us.
We are interested in polynomials that transform under rotation T, g, in the same way as

the monomials x™y"z* do. This leads us to the following definition.

Definition. The polynomial family {B,, , x(x,y,z)} is called quasi-monomial with respect to
SO(3) if the following identity

sz,ﬁ,’y (er”/k(x’ Y Z)) = Z C ([X’ ﬁ’ Yemi ...y k3) Bm1+n1+k1,m2+n2+k2,m3+n3+k3

mq+my+mz=m
ny+npy+nz=n
k1+k2+k3:k

holds for allm,n, k € IN.
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Note that the coefficients C («, 8,7y, m1, ..., k3) here are the same as the coefficients in the
expression for Ty g, (X" z¥). The following theorem presents a simple criterion for the quasi-
monomiality of a polynomial family in terms of its exponential generating function.

Theorem 1. The polynomial family {B,, ,(x,y,z)} defined by the exponential generating

function

u™ o wk

G=0G(xyzuvw) = Z Bm,n,k(x/yrz)ﬁﬁﬂ

m,n,k=0
is quasi-polynomial if and only if G is a function of the three variables ux + vy + wz,
x? + y* + z? and u? + v* + w? only.

Proof. Necessity. We prove the forward implication first. We start with formulating an auxiliary
lemma.

Lemma. LetB,, , (x,y,z) is a quasi-monomial family. Then the following identities hold:

0B X, Y,z 0B X, Y,z
x m,n,g(y Y ) ) m,n,lé(x / ) = an+1,n—1,k(x/y/Z) _mBm—l,n—i-l,k(xr]//Z)/

0B X, Y,z JB X, Y,z
X m’n/g(z = s mng(x 2) = kByi1nk—1(%,¥,2) —mBy_15x11(x, ¥, 2),

0B X, Y,z 0B X, Y,z
m’n/g(z v2) o F m’nlg(y vy kB ns1k—1(%,Y,2) — 1By n_1x41(x, Y, 2).

Proof. Since any rotation Ty g  is the product T, g, = Ty TgT,, we find that the quasi-monomial
satisfies the following identity

TD( (Bm,l’l,k(x’ ]// Z)) = T“r,BrrY (ern/k(x’ y’ Z)) ’,B:’)’:O

= i i(_l)j (m) (7) (cosa)™ = (sina)" By i iy k(X 2).

1

After differentiating the relation with respect to & at « = 0, we find that the polynomial
By k(x,y, z) satisfies the following differential equation

aBm,n,k(xl Y, Z) aBm,n,k(xl Y, Z)
x -y
ay ox

= ”Bm—i-l,n—l,k(xr ]/,Z) - mBm—l,n—i—l,k(x/ y,Z).

In a similar way we get rest two equations. 0

We use the Lemma to investigate the derivatives of the generating function G. This im-
plies (similarly to the 2D case, see [4]) that G satisfied the following system of partial linear

differential equations
dG  dG _ dG  dG

xay Yox = %ou " "ou
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In fact, considering the lemma for the first equation, we obtain:

oG _ 96 _ ¢ (xaBm,n,k(x,y,Z)_ aBm,n,k(x,y,z)>ﬂgw_"

x@ Yox = R0 dy 4 dx m! n! k!
- u™ ph wk
- MBys1 143 ,2) — By 10114(x,,2) ) o
m,§:0< e e ) m! n! k!
00 um Unfl wk
=7 B _ k(x, ,Z) - -
m,nX,k::0< mln-1k Y ) m! (n—1)! k!
= um=l gngk 3G 9G
—u Z <Bm_1,n+1,k(x,y,z)) WEF = UE — u%.
m,n,k=0 L noK:

Thus, the generating function G satisfied the partial differential equation

969G _ 3G a6
dy Yox u v

Two other equations are proved similarly. A system of three differential equation that contains
a function of six variables cannot have more than three functionally independent solutions, see
[7]. But we can point to three such solutions at once: x> + y? + z2, u? + v + w?, xu + yv + zw.
Thus G is a function of x% + y2 + 22, 1% + 0% 4+ w?, xu + yv + zw, which has to be proved.

Sufficiency. Suppose now that G = G (xu + yv + zw, X2+ y?+ 22 u 0+ wz). Then the
following identity

Topy (Gru+yo+zw, 4+ y*+ 2% uP+ 0+ @) = G(xit +yo + 2, 2+ y*+ 2%, i+ 07+ @),
holds, where

il = (coswcosy — sinw cos Bsiny)u + (sinw cos y + cosa cos B sin y)v + sin B sin yw,

0 = (—cosasiny —sina cos Bcosy) u + (cosa cos fcosy —sinasinvy) v + sin B cos yw,

IS0
I
®»

in« sin fu — cos a sin fo + cos fw.
In fact, by direct calculation we obtain:

Ty gy (X1 + yov + zw)
= ((cosa cosy — sina cos Bsiny)x + (— cosasiny — sina cos B cos y)y + sina sin fz)u
+ ((sina cos 7y + cos a cos B sin y)x + (cos & cos B cosy — sina sin-y)y — cosa sin fz)v

+ (sin B sin yx + sin B cos yy + cos Bz)w = xii + yo + zw.

Note that
(1,0,@) = T4, p,—o(1,0,w).

Also, the orthogonality of SO(3) implies that u? + v* + w? = 2 + 9* + @>.
Now, we have already on one side (we dropped the arguments (x, y, z) for simplicity)

2, .2, 2.2, 2, 2 °° u™ ph gk
Ta,5,7<G(xu+yv+zw,x +y +z5u"+ 0" +w )) = Z Tvé,ﬁ,v(Bm,n,k)WEF/

m,n,k=0
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and on another side we get

L JUTR JUTN U, S, R | - a" o' ot
Toc,ﬁ,’Y(G) = LaBy <G(xu + yo +zw, x” + y +z5,0°+ 0+ w )) — Zk: OBm,n,kﬁaﬁ-
m,nk=
Thus
© u™ o wk 00 a5 o
5 g B SO § I
m,n,k=0 1,1 k=0

We need to find the expression for Ty g, (By,nk) from here. We could expand a"o" ok,

obtain a series in terms of u™v"wk, and then equate the corresponding coefficients. However,
we will take a different approach. Let us rewrite this identity for the polynomials
Bunk(x,y,2z) = x™y"zF. We can do this because in this case the generating function has the

required form G = **TY?T2% We have

© m ,n .k 00 _m o= o~k
YT myn k) BT W Yo n kU U W
B,y Yy !l K .
m,n,k=0 o m,n,k=0 o
Since, by definition
Topy(X"y'2) = Y Cla B ymy,... kg) amimrhymetmthagmstnths
mq+mpy+mz=m
ni+npt+nz=n
k1+k2+k3:k

in the right-hand side, when expanding brackets and returning to the variables u,v, w, we
must have

e M = ok
Z m.n_ kU4 0w
I ke
R0 m! n! k!
3 u™ o wk
= Z Z C(UC,,B/')’/mll-..,k3)xml+”1+k1ym2+”2+kzzm3+n3+k3 wvw
mnk=0 | mytmy+ma=m m! n! k!
ny+np+nz=n
k1+k2+k3:k

On the other hand, when expanding brackets and returning to the variables u, v, w in
L B

m,n,k=0

since i, 0, W do not depend on x, y, z, we should obtain an expression of the same form

Bm k7T 1y
71hr I ! ki
R0 m! n! k!
00 m ,n .,k
urotw
= X Y. ClwBym e ks)Buy i tkymytnatkomstmy s | 21T
mn k=0 mq+my+mz=m : : :
nq+npy+nz=n

kl +k2+k3:k
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Comparing the coefficients of the powers of u,v, w in these expressions, we can deduce the
expression for Ty g (By; nk), namely

Ttx,ﬁ,’y (Bm,n,k) = Z C(DC’ IBI 2L VERRY: k3)Bm1+n1+k1,m2+n2+k2,m3+n3+k3-
mq+my+mg=m
n11+n§+n;:n
ky+ko+k3=k
Thus, the elements of the group SO(3) act on By, , x in the same way as they do on the mono-
mials x™y"z*. Therefore, the family {B,, ,x(x,y,z)} is quasi-monomial as required. O

Example. The family H,, ,, 1 (x,v,z) = Hu(x)Hy(y)Hi(z), where Hy,(x) is the Hermite polyno-
mial, is a quasi-monomial one. In fact, since

2xu—u? }OO: u 2yv—0? }oo: o" 2zw—w? }oo: w"
e = Hm(.X) m!, e - Hn(]/) ’ e = OHn(Z> n!/
n=

the exponential generating function for H,, ,, 1 (x,y, z) has the form

erufuzeZyvazeZzwfwz _ eZ(xu+yv+zw)f(u2+vz+w2)

Thus, Hy, , (X, Y, z) is a quasi-monomial family.

The quasi-monomiality property could potentially be compromised if the polynomials are
subject to multiplicative constant scaling, a common practice to maintain the value range
within reasonable limits. The subsequent theorem investigates the types of scaling that up-
hold the property.

Theorem 2. Suppose that the family {B,, ,x(x,y,z)} is quasi-monomial. The polynomial
family { B, . x(x,v,2)}, where

By ni(%,y,2) =y kBunn(X,Y,2),

is quasi-polynomial if and only if the coefficient a,, , ; is an arbitrary function of the one
variable m +n + k.

Proof. 1f Em,n,k(x, Y,z) is quasi-monomial, then it satisfies the identities of the Lemma, and we
get

oB X,Y,z oB X,Y,z ~ ~
x m,n,lé(y Y ) -y mﬂ,’é(x / ) = an—i—l,n—l,k(x/y/Z) _mBm—l,n—i-l,k(xr]//Z)-

Then

aBm,n,k(xf Y, Z) aBm,n,k(xz Y, Z)
X -y
dy ox
— Nmtln-1kp

Xm—1,n+1k
m—i—l,n—l,k(x/ y,Z) - muBm—l,n—o—l,k(xr y, Z)-

Xm,n X,k
From this, we can immediately deduce that

Xm+1,n—1k -1 Xm—1,n+1k -1

and
Xk Xk
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Let us do it for each identity, we obtain the system of recurrence equations

Em+1n—1k = Xmnks
Xm—1n+1k = Xmnks
m+1,nk—1 = Xmnks
Xm—1,nk+1 = Xmnks

Xmn—1k+1 = Xm,nks

Xmn+1k—1 = Kmn k-

It is easily seen that a solution of the system is a,, , y = ¢(m + n + k), where f is an arbitrary
function. In fact, consider an arbitrary index (m, n, k). We can reach the index (0,0, m + n + k)
through a series of transformations, as demonstrated below. First, decrease m while increasing
nuntil m = 0: & 4 k = &y n k- Then, decrease n while increasing k until n = 0: &g g 1 ptk =
X0 n+mk- As a result, we obtain

Emnk = X0n+mk = X0,0,m+n+k-
We can now define a function ¢(x) = «go. Then, ay, ,x = ¢(m + n + k), showing that any
solution of the system is a function of one variable m + n + k.
Let us prove the reverse implication. Suppose now that By, ,, k(x,y,z) is a quasi-monomial
and that the coefficient «,, ,  is an arbitrary function ¢ of the single variable m + n +k, i.e.
Xk = $(n+ m + k). We need to prove that the family

Em,n,k(x, v,z) =¢(m+n+k)By ,k(x,y,2)
is quasi-monomial. To do this, let us first check that Em,n,k(x, y,z) satisfies the identity of the
Lemma above. Taking into account the quasi-monomiality of B,, , (X, y, z), we have

aank(x Y,z ) agm,n,k(xr]// Z) . aBm,n,k(xr]// Z) aBm,n,k(x/yrz)

ay Y 0x = plmtntk) (x ay Y 0x
= (P(m +n+ k) (an+1,n—1,k(x/ Y, Z) - mBmfl,VhLl,k(xr %Z))

- n4)((m+1) (Vl—l) + k) Bm—i—l,n—l,k(x/ Y, Z)

—mp((m=1) + (n+1) + k) By—1,n1,(x, ¥, 2)

= an—i—l,n—l,k(xr Y, Z) - mBm—l,n+1,k(x/ y,Z).
Similarly, we can verify the other two identities. Theorem 1 now implies that the family
Em,n,k(x, Y,z) is a quasi-monomial family. O

In the following section, we will consider two examples of quasi-monomial families of poly-
nomials.

2 Three variable Appel polynomials

Let us consider the two polynomial families {Vn(;ilk(x, Y, z)} and {U]Sf,)nlk(x, Y, z)} defined
by the following exponential generating functions:
1
(1 —2(xu +yv+ zw) + u? + v + w?)
1 u™ v wk
Z umnkxy’ ) |n| k"

m,n=0

k
uvw
V
% Z e m! n! k'’

mn=0

Njw

<(1 — (ux + oy + wz))z— (12 + 02 4+ w?) (x2+y2—{—22—1))
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The origin of these polynomials can be attributed to the contributions of C. Hermite, F. Didon,
J. Kampé de Fériet and P. Appell, see [8-12].

As follows directly from Theorem 1, the polynomial families are quasi-monomials. The
explicit formulas (up to constant factor m!n!k!) for the polynomials are given in [13, p.42, p.45].
After simplification we get the expressions

—

1]

(2] [5] [2 s ) (1) (f—
(s) B m\ (1 (K (L+5 ) mnsk—iojot(G=m)i(G—n);(E=K)e . 0 0 oi o
ank XY,z _Z Z <l><]><t> 22(i+j+t)—(m+n+k) x" zyn Iz ’

i=0 j=01t=0

Uy (2 ,2) = (25—

m E k -
Xz:i[ : S 0L i )27(_k)2txm—2iyn—2jzk—2t <1—x2—y2—22)1+]+t.
i=0j=0t=0 22T DIt (s S)itjtt

Here (x), is the Pochhammer symbol

1, n=0
(xX)n =
x(x+1)(x+2)---(x+n—-1), n>0.
Below are some first such polynomials for the case s = 1:

Vooo =1, Vigo = 3x, Vo10 = 3y, Vo1 = 3z, Voo = 15523, Voo = 15423,
Vito = 15xy, Vig1 = 15xz, V11 = 15xz, Vag0 = 105x° —45x, Vo 19 = 105x%y — 15y;

Uono =1, Upp = x, Up1o =y, U1 =z, Uppo =3x* +y* +2> — 1,
Uoop = x>+ y* +32> — 1, Uy10 = 2xy, Us 1 = 2xz, Ugpy = 2xz,
Uz 00 = 152° + 9xy” +9xz> —9x, Up10 = 9%y +3y° +3yz> — 3y.

The polynomials are biorthogonal on the sphere B with the weight function

s—1
ws(x,y,z) = <1 - <x2 + 1 +22) ) ’
In particular, for s = 1, by using the result [9, p.262] we get
drt(m +n+k)! m'n'k!

/// Vi, (%, Y, 2) Ut g 0 (X, Y, 2) dx dy dz = 2(m+n+k) +3 O, m! O’ Ok k-
x2412422<1

While computing Appell polynomials numerically with explicit formulas, we may enco-
unter precision loss due to floating-point overflow or underflow. This issue is familiar in the
context of many 1D orthogonal polynomials, where it can be resolved using three-term recur-
rence relations. For Appell polynomials, these recurrence relations can be employed to ensure
efficient and stable calculations. We will derive explicit recurrence relations for Appell poly-
nomials. Note that these formulas, without proof, were first presented in [6].

In the following two theorems, recurrent relations for Appell polynomials are presented,
which were used for their efficient and stable computation.
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Theorem 3. The polynomials U,y = U,mi(x,y,z) satisfies the following recurrence
relations:

Upiink =x2m +n+k+ 1)Uy, i + kmxzUy, , 1 + mnxyUy, ;1 + 2kmnxyzU,, 1 -1
+ m((y2 +22 = 1)m+ (4222 — 1)k + (22 +2* — 1)n) Uy 10k
+mkz (2 = 1) (m+k = 1) + (3% = 1)) Upp 1,001
+ mny<(322 —Dk+ (2=1)(m+n-— 1)) U1 1k
— 2kmnyz(m+n—+k —2)Uy—14-14-1,

Up,ny1 e =Y (m+2n 4k + 1) Uy g + knyzUpy g1 + mnxyly 1k + 2kmnxyzUs 101
+ n<(x2 +22 = D)n+ (K +222 = 1)k + (2 + 22 - 1)m> Upn—1k
k2 (2 = 1) (k71— 1) + (3% = 1)m ) Upy 141
(32 = 1)k + (22 = 1) (m 41— 1) ) Up 10 14
— 2kmnxz(m+n—+k—2)Upy—14-14-1,
Up i1 =2z(m+n+ 2k 4+ 1)Uy, + kmxzUy—q i + knzyUy, n—1 x + 2kmnxyzUy, 1 41
(4P = Dk+ (262 4+ 2 = V)m+ (32 4297 = 1)1 ) Upup
k(2 = 1) (m+ k= 1) + (32 = 1)1 ) U1 p 1
+ kny((x2 —1)(k+n—1) + (3% — 1)m) U n—1k-1

— 2kmnyx(m+n+k—2)Uy_14-1)—1,

with the initial condition
Uooo =1,

and V,, , , = 0 if at least one of the indices is negative.
Proof. Direct verification shows that

oG

where
f=0- (ux+vy+wz))2— <u2+vz~|—w2) <x2+y2—|—22 —1) fu= of G- L
’ ou’ Vi
Suppose that there exists an identity of the form

9, 3G, G, -
gl au gz av g3 aw g4 -
for some polynomials g1, g2, €3, g4 of x, y, z. Let us multiple it by —2f, after cancelation G we
get
S1fu + &2fo + 83fw —2fg4 = 0.
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Suppose that g; are polynomials of degree 2. We can solve the polynomial equation and find 4
linearly independent solutions, each of which defines a differential equation. We are omitting
the calculations and presenting only the resulting differential identities:

2 a_G_|_ a_G_|_ a_G_|_G +u a_G+ a_G G +<2+1)8_G+ a_G_|_ a_G

T\ %0 T Yw W T e U T au "0 T
G . aG . G G 3G G [, G G
y(ua—-l—Z a—+ a +G>+XU£+UZ%—GU+MU$+<U +1>%+0w%,
G, 3G (3G 3G 3G _\_ G 3G [, \OG

Any such differential identity implies some recurrence relation for V,, , x(x,y,z) and its
derivatives. For instance, if we expand the left side of the first identity, namely

2ua—G—|— a—G—I- a—G~|—G +u a—G+uza—G
o ou " Y%w Y30 ow’

by writing out G and its derivatives as series in terms of u, v, w (similarly to the proof of
Theorem 1), we obtain a series with the following general term

x(Zm +n+k+ 1>um,n,k(xr Y Z) +m (yumfl,n%*l,k(xr Y Z) + Zumfl,n,k%*l (xr Y Z)) :
Similarly, by transforming the left side of that identity, namely

oG aG aG oG 9 (u*G oG oG
Gut (w2 +1) 57+ w5 +uwss = 57+ (gu)+ vgp T, G

we obtain a series with the following general term

um+1,n,k + m(m - 1>um71,n,k + mnvmfl,n,k‘i_ mkumfl,n,k - mumfl,n,k
=m(m+n+k) Uy 10k + Uniink

By equating these left and right sides, we obtain the following recurrence equation
xX(2m 41+ k + 1)Uy e+ m(YUn—1,011k + 2Um—1,nk41) = m(m +n+ k) U1 + Un1,nk-
Similar reasoning provides us with two more recurrence equations:
y(m+2n+k+ 1)Uy i +n(xUpyi1 p-1 o+ 2Umn—1k+1) = n(m+n+k) Uy y—1 oWt ko
2(m 41+ 2k + DUy g k(X Un1,n -1+ Y Umnr1,k-1) = kmAn+k) U1+ Upn k1

The obtained recurrence equations are not yet suitable for calculating the values of polyno-
mials, so they need to be transformed into the form

Up+1,nx = an expression of U with indices smaller than (m+1,n,k).

All subsequent lengthy transformations aim to gradually convert these recurrence equations
into the desired form.
By performing the index shifting m +— m — 1 to two last identities, we get some new identies

y(m+2n + k) Uy 1,0k + n(xUpu-16+ 2Un-1,n-1441)

=n(m—1+n+k) Uy 101k + Un-1,n11k
z(m +n +2k) U1,k + k(XU n -1+ YUm-1,n4+1k-1)

=k(m —1+n+k)Uy-1nk-1+Un-1nk+1,
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or

Un—1ni1k =ym+2n+ k) Uy 1 np +n(xUpp—1x + 2Up—1,0-1k41)
—n(m—1+n+k) Uy 1114

U1 i1 = z(m+n+2k) Uy 1 i + k(xUppp—1 + YUn—10416-1)
—k(m —14+n+k)Uy_1 k1

Substitute it into first equation, we get

Uik =% (2m + 1+ k4 1)Uy g + kmxzUy, y g—1 + mnxyUy, ;1 x
m((yz +2%— 1)m+ (y2 +27% — 1k + (2]/2 +27%— 1)n) U 10k
—m(m+n+k—1)(kzUpy—1np—1+ nyUpn_1,4-1x)

+ kmyzumfl,nqtl,kfl + mnyzumfl,nfl,kJrl-

The obtained expression has not yet reached the desired form, as the right-hand side still
contains sets of indices (m —1,n+ 1,k —1), (m —1,n — 1,k + 1), which are larger than the set
(m+1,n,k).

Once more, perform the index shifting for the last two identities. We obtain

um—l,n—i—l,k—l = ]/(m +2n+k— 1)um 1,nk—1 +n xum,n—l,k—l + Zum—l,n—l,k)

(

—n(m—=2+n+k)Uy_1,4-1%1,

Up—1n-1j+1 =zm+n+2k = 1) Uy_1n-1 % +k(xUpn—1 -1+ YUm—1k-1)
—k(m —=2+n+k)Uy—1,n-1k1-

After eliminating Uyy_1 ns1 1 and Uy,_1 n_1 41, We get
U1 =X (2m +n+k+ 1)Uy, g + kmxzUy, 1 + mnxylUy, , 1 g + 2kmnxyzUy, ;1,1
(2 +22 = Dm+ (2 +222 = Dk + (22422 = 1)) Uy 10
+mkz((y? = 1) (m 4k =1) + (3 = 1)n) Uy 101
+ mny<(322 —Dk+(2-1)(m+n-— 1))Um,1,n,1,k
— 2kmnyz(m+n+k —2)Uy—14-1%-1-

Finally, we have obtained the desired expression for U, ;1 y, -
Similar calculations, which we omit, provide us with such recurrence relations for the sec-
ond and third indices:

Upniik = y(m +2n+k+ 1) Uy i + knyzUy, , k-1 +mnxyUy,_q , x + 2kmnxyzUy,_q , k-1
- n((x2 +22 = 1)n+ (¥ +222 = D)k + (263 + 2% — 1)m> Upn1k
+ nkz((x2 —1)(k+n—1)+ (3x* - 1)m) U n—1k-1
+ mnx((322 —Dk+ (2=1)(m+n-— 1))Um_1,n_1,k
— 2kmnxz(m+n+k —2)Uy_1 4141,
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and
Uy nir1 =2z (m+ 1+ 2k + 1)Uy, + kmxzUy, 1 + knzylUy, u—1 ¢ + 2kmnxyzUy, 1,1k
+ k((x2 +y2 = Dk+ (232 +y* = V)m + (P42 — 1)11) Ui k-1
+ mkx((y2 —1)(m+k—1)+ (3y* — 1)”) Up—1,nk-1
+ kny((x2 ~1)(k+n—1) + (3% - 1)m) Uy n—1k—1
— 2kmnyx(m +n+k —2)Uy—1n—1-1-
0

The recurrence relations for the polynomials V turned out to be simpler, and we managed
to obtain formulas for an arbitrary s. The way of their derivation is similar, and we will only
present the final result.

s)

Theorem 4. The polynomials Vn( (X, ,z) satisfies the five-term recurrence relations

A 4+m~+n+k)+5)x Vi uik(x,y,2) = Ve ni (6,9, 2) —n(n—=1) Vi1 4ok (%, y,2)
—k(k=1)Viys1nk—2(x,y,2)+m(m +2n+2k+1+5)Vy 1 ,1(x,y,2),
(2014 m 41+ 8+ )8 Vi (54,2) = Vi ,2) — m(m — DViyar14(x,9,2)
- k(k - 1)Vm,n+1,k—2(x/ y,z)—{—n(n +2m + 2k +1+ S)Vm,n—l,k(x/ y,Z),
A +m+n+k)+9)zViuk(X,Y,2) = Vi1 (x,4,2) —m(m — 1)V oy x1(x, Y, 2)
—n(n—=1)Vynokr1(x,y,2)+k(k+2m+2n+14+5)V, nx-1(x,y,2),

with the initial conditions
VO,O,O(x/ y, Z) == 1/ Vl,O,O(x/ Y, Z) - (S + 2) X, VO,l,O(xl y, Z) - (S + 2) Y,

VZ,O,O(xry/Z) = (S + 2) <x25 =+ 4x2 - 1) ’ Vl,l,O(xry/Z) =Xy (S + 4) (S + 2) .

3 Conclusion

This study provides a comprehensive description of families of polynomials that are quasi-
monomials with respect to the rotation group of the space SO(3), extending the results from
previous work in 2D case. We have demonstrated that a family of polynomials can be consid-
ered quasi-monomials if and only if their exponential generating function depends on three
specific variables. Furthermore, we have established the conditions under which the scaling
of quasi-monomials maintains their quasi-monomial property.

Significantly, we have proven that biorthogonal Appell polynomials of three variables are
SO(3) quasi-monomials, which contributes to the understanding of these polynomials in the
context of 3D object recognition. The derivation of recurrence relations for these polynomials
addresses the challenge of potential precision loss in numerical calculations, allowing for more
efficient and stable computations in practical applications.

This work advances our understanding of quasi-monomials and their properties, opening
up new possibilities for further research and applications in various fields, such as image anal-
ysis and 3D object recognition. Future studies could explore other transformation groups and
additional properties of quasi-monomials, further expanding their applicability.
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Hexait H e miarpymoro adirnoi mpocroposoi rpymm Aff(3), posrasiHyTa 3i CBO€I0 IPMPOAHOO
Al€0 Ha AiliCHOMY BeKTOPHOMY IPOCTOPi MHOTOUYAEHIB Bip Tpbox 3miHHMX. CiM'I0 MHOTOYAEHiB
{Bunk(x,y,z)} HasMBaIOTh KBa3i-MOHOMIAABHOIO BIAHOCHO H, SIKIIIO Omeparopy IPyImt ¥ ABOX
pisemx 6asucax {x™y"zF} ta {B,,,x(x,¥,z)} MawoTb oaHaxoBi MaTpuii. Mu oTpumanu xpure-
pifi KBa3i-MOHOMIAABHOCTI y BMIIAAKY, KOAM Tpyna H e cremiarbHOIO OPTOrOHAABHOIO TPYTIOK
SO(3). Leit kpurepiit BupakeHyii depe3 eKCIIOHEHIiaAbHY TeHepyIoUuy (PYHKIIIO ciM'T MHOTOUAEHIB
{Bumnk(x,y,2)}. Byro TakoX AOBeAEHO, IO 6iOPTOrOHAABHI TIOAIHOMM ATIIIEAs € KBa3i-MOHOMiaAb-
HVMM BiAHOCHO S O(S), i AAS HMX OyAM 3HAVIA€HI peKypeHTHi CIIiBBiAHOITIEHHS.

Kontouosi cnosa i ¢ppasu: Kpasi-MOHOMiaAbHMII MHOTOUAEH, CIlelliaAbHa OPTOTOHaAbHa TPYyIIa,
6iopTOroHaABHMIT MHOTOUAEH ATIIEAs], peKypeHTHe CITiBBi AHOIIIEeHHSI.



