Carpathian Math. Publ. 2025, **17** (1), 152–158 doi:10.15330/cmp.17.1.152-158

Карпатські матем. публ. 2025, Т.17, №1, С.152–158

Rings with prime units

Calci T.P.¹, Chen H.², Halicioglu S.¹

A ring R is said to be a UP ring if every invertible element in R is the sum of the identity and a strongly nilpotent element. In this paper, many characterizations of UP rings are given. We prove that for a UP ring R, the following conditions are equivalent: R is weakly exchange, R is exchange, R is clean, and R is nil clean. This is a partial answer to the question, which is asked by A.J. Diesl in [J. Algebra 2013, 383, 197–211].

Key words and phrases: UP ring, ring extension, exchange ring.

E-mail: tcalci@ankara.edu.tr(CalciT.P.), huanyinchen@aliyun.com(Chen H.), halici@ankara.edu.tr(Halicioglu S.)

1 Introduction

Throughout this paper, all rings are associative with identity unless otherwise stated. For a ring R, $a \in R$ is *strongly nilpotent* if every sequence $a = a_0, a_1, \ldots$, such that $a_{i+1} \in a_i R a_i$ is ultimately zero. Obviously, every strongly nilpotent element is nilpotent. The prime radical P(R) of a ring R, that is, the intersection of all prime ideals, consists of precisely the strongly nilpotent elements. For a ring R, U(R), J(R) and N(R) denote the group of units, the Jacobson radical and the set of all nilpotent elements of R, respectively. Let \mathbb{Z} be the ring of integers. For a positive integer n, \mathbb{Z}_n is the ring of integers modulo n. We write $M_n(R)$ for the ring of all $n \times n$ matrices and $T_n(R)$ for the ring of all $n \times n$ upper triangular matrices over R. Also, we write R[x] for the polynomial ring over a ring R.

The notion of cleanness was first introduced by W.K. Nicholson in [8]. An element a of a ring R is called *clean* if a can be expressed as e + u, where e is an idempotent and u is a unit of R. A ring R is clean if all its elements are clean. An element x of a ring R is called P-clean if there exist an idempotent $e \in R$ and $e \in R$ 0 such that $e \in R$ 1. A ring $e \in R$ 2 is called $e \in R$ 3 if each of its elements is $e \in R$ 3. Evidently, a ring $e \in R$ 4 if and only if every element is the sum of an idempotent and a strongly nilpotent that commute by [2]. It is clear that every $e \in R$ 3 ring is clean. But the converse is not true in general.

We call a ring R as UP ring or a ring with only prime units if 1 + P(R) = U(R). As mentioned above, we prove that if R is a UP ring, then every weakly exchange element of R is P-clean. Hence, every clean element of R is P-clean.

 $^{^{\}rm 1}$ Department of Mathematics, Ankara University, Dögol str., 06100 Beşevler, Ankara, Türkiye

² Department of Mathematics, Hangzhou Normal University, 2318 Yuhangtang Rd., Hangzhou, China

We summarize the contents of this paper. In Section 2, we shall characterize UP rings. We prove that a ring R is a UP ring if and only if $T_n(R)$ is UP for all $n \ge 2$. Furthermore, we show that if R is a UP ring, then R/P(R) is reversible and R is directly finite. Finally, in the last section, we focus on weakly exchange properties. For a UP ring R, we prove that the following conditions are equivalent: R is weakly exchange, R is exchange, R is clean, and R is nil clean. Moreover, a ring R is P-clean if and only if it is a weakly exchange UP ring.

2 *UP* rings

For any ring R, it is well known that, $1 + P(R) \subseteq U(R)$. However, this inclusion is strict. So the aim of this paper is to investigate when U(R) is contained in 1 + P(R). In this section, we define UP rings and investigate several useful properties of UP rings.

Definition 1. A ring R is called UP if

$$1 + P(R) = U(R)$$
.

We begin with a simple result.

Lemma 1. For any ring R, we have

$$U(R) + P(R) = U(R)$$
.

Proof. It is clear that $U(R) \subseteq U(R) + P(R)$.

To see the converse inclusion, let $x = u + p \in U(R) + P(R)$. Then $x = u(1 + u^{-1}p)$ and so $x \in U(R)$.

Theorem 1. For a ring R the following are equivalent:

- (1) R is a UP ring;
- (2) $U(R/P(R)) = \{1\};$
- (3) $xu vx \in P(R)$ for any $u, v \in U(R)$ and $x \in R$;
- (4) U(R) + U(R) = P(R);
- (5) R/P(R) is a UP ring.

Proof. (1) \Rightarrow (2) Let \overline{u} be invertible in R/P(R). Then there exists $v \in R$ such that $uv \in 1 + P(R)$. Hence, $uv \in U(R)$, since $1 + P(R) \subseteq U(R)$. Thus, u is right invertible in R. Similarly, u is left invertible in R. So $u \in U(R) = 1 + P(R)$ by hypothesis. Consequently, \overline{u} is the trivial unit in R/P(R).

- $(2) \Rightarrow (1)$ It is obvious.
- (1) \Rightarrow (3) Let $u, v \in U(R)$ and $x \in R$. Then $u = 1 + p_1$ and $v = 1 + p_2$ for some $p_1, p_2 \in P(R)$. Clearly, $xu vx \in P(R)$.
- $(3) \Rightarrow (4)$ By hypothesis, for x = 1, $u v \in P(R)$ for any $u, v \in U(R)$. This shows that $U(R) + U(R) \subseteq P(R)$. To see the converse inclusion, let $p \in P(R)$. Then we obtain $p = 1 + (-1 + p) \in U(R) + U(R)$.
 - $(4) \Rightarrow (1)$ Let $u \in U(R)$. By hypothesis, $u + v \in P(R)$ for any $v \in U(R)$. So $u \in 1 + P(R)$.
 - (2) \Leftrightarrow (5) It is evident, since $P(R/P(R)) = \{0\}$.

Proposition 1. The ring $\bigoplus_{i \in \mathcal{I}} R_i$ is *UP* if and only if R_i are *UP* for all $i \in \mathcal{I} = \{1, 2, ..., n\}$.

Proof. Since
$$P(\bigoplus_{i\in\mathcal{I}}R_i)=\bigoplus_{i\in\mathcal{I}}P(R_i)$$
 and $U(\bigoplus_{i\in\mathcal{I}}R_i)=\bigoplus_{i\in\mathcal{I}}U(R_i)$, we easily get the result. \square

It is well known that $P(R) \subseteq N(R)$ and $P(R) \subseteq J(R)$. But these inclusions might be strict. So we have the following, which is very useful to determine whether a ring is UP.

Proposition 2. If R is a UP ring, then

$$P(R) = J(R) = N(R).$$

Proof. It is clear that J(R) is always in 1 + U(R). Since R is UP, we get 1 + U(R) = P(R). Hence, $J(R) \subseteq P(R)$. The converse inclusion is clear. Thus, P(R) = J(R).

Further, clearly $P(R) \subseteq N(R)$. Let $n \in N(R)$. Then $1 - n \in U(R)$. By hypothesis there exists $p \in P(R)$ such that 1 - n = 1 + p. Hence, $n = -p \in P(R)$, as asserted.

Example 1. Consider the formal power series ring F[[x]] over a field F. Then $J(F[[x]]) = \langle x \rangle$ but $x \notin N(F[[x]])$. Hence, F[[x]] is not a UP ring by Proposition 2.

The converse statement of Proposition 2 is not true in general.

Remark 1. Consider the ring \mathbb{Z} . Then

$$P(\mathbb{Z}) = J(\mathbb{Z}) = N(\mathbb{Z}),$$

but \mathbb{Z} is not a UP ring.

Recall that an ideal I of a ring R is called *locally nilpotent* if for any $x \in I$, RxR is nilpotent. Further, a ring R is *Boolean* if every element in R is an idempotent.

Proposition 3. If R/J(R) is Boolean and J(R) is locally nilpotent, then R is a UP ring.

Proof. Assume that R/J(R) is Boolean and J(R) is locally nilpotent. Let $x \in U(R)$. Then $\overline{x} = \overline{1}$ as R/J(R) is Boolean. Hence, $x - 1 \in J(R)$. Since J(R) is locally nilpotent, R(x - 1)R is nilpotent and so $x - 1 \in P(R)$. Therefore, $x \in 1 + P(R)$.

As the following example shows the condition "R/J(R) is Boolean" in Proposition 3 is not superfluous.

Example 2. Consider the ring $R = \mathbb{Z}$. Then $J(R) = \{0\}$. Hence, J(R) is locally nilpotent. However, $-1 \in U(R)$ and $-1 \notin 1 + P(R)$. Thus, R is not UP.

Proposition 4. If R is a UP ring, then R/J(R) is a UP ring. The converse holds if J(R) is locally nilpotent.

Proof. If R is UP, then R/P(R) is UP by Theorem 1. Hence, R/J(R) is UP by Proposition 2. Let $u \in U(R)$. Then $\overline{u} \in U(R/J(R))$. Therefore, $\overline{u} \in 1 + P(R/J(R))$. By Proposition 2, P(R/J(R)) = J(R/J(R)) = 0. Hence, $\overline{u} = \overline{1}$. Thus, $u - 1 \in J(R)$. Since J(R) is locally nilpotent, $u - 1 \in P(R)$. Consequently, U(R) = 1 + P(R).

Theorem 2. Every subring of a UP ring is UP.

Proof. Let R be a UP ring and S be a subring of R. To see that S is UP, let $u \in U(S)$. Then $u \in U(R)$. Hence, u = 1 + p for some $p \in P(R)$ by hypothesis. Thus, $1 - u \in P(R) \cap S$. Since $P(R) \cap S \subseteq P(S)$, we get $u \in 1 + P(S)$. So, S is a UP ring.

Corollary 1. Every finite subdirect product of UP ring is UP.

Recall that a ring R is called UU (see [1]), if all units are unipotent.

Theorem 3 ([4, Theorem 6.1]). *The following are equivalent:*

- (1) R is a UP ring;
- (2) R is a 2-primal UU ring;
- (3) U(R) is a 2-group, $2 \in N(R)$ and R is a 2-primal ring.

Corollary 2. *If* R *is a UP ring, then char* $(R) = 2^n$ *for some* $n \ge 0$.

Proof. By Theorem 3, there exists $n \ge 0$ such that $2^n = 0$ as asserted.

Proposition 5. *If R is a UP ring, then*

- (1) R/P(R) is reversible;
- (2) *R* is directly finite.

Proof. (1) Let $\overline{ab} = \overline{0}$. Then $\overline{ba} \in N(R/P(R))$, an so $\overline{1} + \overline{ba} \in U(R/P(R))$. By Theorem 1, $\overline{1} + \overline{ba} = \overline{1}$. Hence $\overline{ba} = \overline{0}$, as asserted.

(2) Let ab = 1. Then $\overline{ab} = \overline{1}$. By (1), we obtain that R/P(R) is directly finite, and so $\overline{ba} = \overline{1}$. Hence, $ba \in 1 + P(R) \subset U(R)$. Further, $(ba)^2 = ba$. Thus, ba = 1.

Recall that a ring *R* is called *abelian* if all idempotents in *R* are central.

Corollary 3. Let R be a UP ring. Then R/P(R) is abelian.

Proof. Since reversible rings are abelian, the proof is clear by Proposition 5. □

Being R/I is a UP ring does not imply that R is a UP ring. For example, $\mathbb{Z}/2\mathbb{Z}$ is a UP ring, but \mathbb{Z} is not. So we have the following assertion.

Theorem 4. Let I be a locally nilpotent ideal of R. Then R is a UP ring if and only if R/I is a UP ring.

Proof. Necessity. Assume that R is UP and $\overline{x} \in U(R/I)$. Then there exists \overline{y} such that $\overline{xy} = \overline{1}$. Hence, $xy - 1 \in I$. By hypothesis, $xy - 1 \in P(R)$ and so $xy \in U(R)$. Thus, x is right invertible. Similarly, x is left invertible. So $x \in U(R)$. Since R is a UP ring, there exists $p \in P(R)$ such that x = 1 + p. Hence, $\overline{x} = \overline{1 + p}$. Therefore, $\overline{x} \in 1 + P(R/I)$, because P(R/I) = P(R)/I, since $I \subseteq P(R)$.

Sufficiency. To see R is UP, let $u \in U(R)$. Then $\overline{u} \in U(R/I)$. Since R/I is UP and $I \subseteq P(R)$, we get $\overline{u} = \overline{1+p}$ for some $p \in P(R)$. Hence, $u-1-p \in I$. Since $I \subseteq P(R)$, we obtain $u \in 1+P(R)$, as asserted.

Corollary 4. A ring R is UP if and only if $2 \in N(R)$ and R/2R is UP.

Proposition 6. Let R be a commutative ring and $\sigma: R \to R$ be an automorphism of R. Then $R[x,\sigma]$ is a UP ring if and only if

- (1) R is UP;
- (2) every minimal strongly σ -prime ideal of R is completely prime.

Proof. It is clear by [9, Proposition 3.2] and Theorem 3.

Corollary 5. A commutative ring R is UP if and only if R[x] is UP.

Proposition 7. Let *R* be a ring. Then the following are equivalent:

- (1) R is UP;
- (2) $T_n(R)$ is UP for all $n \geq 2$.

Proof. (1) \Rightarrow (2) Without loss of generality we may consider n = 2.

Let
$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in U(T_2(R))$$
. Then $a, c \in U(R)$. By hypothesis, $a = 1 + p$ and $c = 1 + q$,

where
$$p, q \in P(R)$$
. Hence, $A \in I_2 + P(T_2(R))$ since $P(T_2(R)) = \begin{pmatrix} P(R) & R \\ 0 & P(R) \end{pmatrix}$.

$$(2) \Rightarrow (1)$$
 Let $u \in U(R)$. Then $\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \in U(T_2(R))$. Hence, $\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \in 1 + P(T_2(R))$. Thus, $u \in 1 + P(R)$.

The following shows that Proposition 7 is not true for full matrix rings.

Remark 2.
$$M_2(R)$$
 is not UP for any arbitrary ring R . Choose $U = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in U(M_2(R))$. Then $I_2 - U = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \notin P(M_2(R))$. Hence, $M_2(R)$ is not UP .

3 Weakly exchange properties

A ring R is *exchange* if for any $a \in R$ there exists an idempotent $e \in R$ such that $e \in aR$ and $1 - e \in (1 - a)R$. Further, in [10] a ring R is called *weakly exchange* if for any $x \in R$ there exists $e^2 = e \in xR$ such that $1 - e \in (1 - x)R$ or $1 - e \in (1 + x)R$. Moreover, an element a in a ring R is called *nil clean* if there exist $e^2 = e \in R$ and $n \in N(R)$ such that a = e + n. If also en = ne, then an element a is called *strongly nil clean*. A ring R is called *nil clean* (strongly *nil clean*) if each of its elements is nil clean (strongly *nil clean*). It is proved in [6] that every *nil clean* ring is clean and it is asked is there any *nil clean* element also clean. So, the following can be seen as a partial answer to this question.

Theorem 5. Let R be a UP ring. Then the following are equivalent:

- (1) R is weakly exchange;
- (2) R is exchange;
- (3) R is clean;
- (4) R is nil clean.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) Since *R* is *UP*, $2 \in J(R)$. Hence, we get result by [3].

- $(3) \Rightarrow (4)$ Let $x \in R$ be clean. So, x = e + u for some $e^2 = e \in R$ and $u \in U(R)$. Then we have $p \in P(R)$ such that u = 1 + p. Hence, x = e + 1 + p = 1 e + 2e + p, where $2e + p \in P(R) \subseteq N(R)$. Thus, x is nil clean.
- (4) \Rightarrow (3) Let $x \in R$ be nil clean. Then there exist $e^2 = e \in R$ and $n \in N(R)$ such that x = e + n. Hence, x = 1 e + 2e 1 + n. Since R is a UP ring, we get 1 + n = 1 + p for some $p \in P(R)$. Thus we have x = 1 e + 2e 1 + p, which implies that x is clean as $2 \in P(R)$.

Corollary 6. Let R be a weakly exchange UP ring. Then $M_n(R)$ is nil clean for all $n \ge 1$.

Proof. Assume that R is a weakly exchange UP ring. Then R is exchange UU. Hence, it is strongly nil clean by [3]. Further R is 2-primal since it is UP. Thus, $M_n(R)$ is nil clean by [7].

Theorem 6. A ring R is P-clean if and only if

- (1) R is weakly exchange;
- (2) R is a UP ring.

Proof. Necessity. This is obvious.

Sufficiency. Since R is a UP ring, we see that $2 \in R$ is nilpotent. Hence, $2 \in J(R)$. In light of [3, Proposition 2.5], R is an exchange ring. Since R is a UP ring, it is UU (see [5]). Thus, R is strongly nil clean by [4]. To see R is P-clean, let $x \in N(R)$. Since R is UP, UP, UP for some UP is UP, UP for UP is UP in UP. Hence, UP is UP in UP for UP is UP in UP i

Corollary 7. A ring R is P-clean if and only if it is a clean UP ring.

Example 3. Consider the ring $R = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{pmatrix}$. Then we have $P(R) = \begin{pmatrix} 0 & \mathbb{Z}_2 \\ 0 & 0 \end{pmatrix}$ and $R/P(R) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Since $\mathbb{Z}_2 \times \mathbb{Z}_2$ is a Boolean ring, R is a UP ring by [2] and Theorem 6.

Example 4. Let $R = \prod_{n=1}^{\infty} \mathbb{Z}_{2^n}$. Then R/P(R) is not Boolean. However, R is exchange. Thus, R is not a UP ring by [2] and Theorem 6.

Corollary 8. Let *R* be a ring. Then the following are equivalent:

- (1) R is a UP ring;
- (2) every weakly exchange element of R is P-clean.

Corollary 9. *A ring R is UP if and only if every unit of R is P-clean*.

Proof. Necessity. It is clear by Corollary 8.

Sufficiency. Let $u \in U(R)$. Then u = e + p, where $e^2 = e \in R$ and $p \in P(R)$. Hence, $e = u - p = u(1 - u^{-1}p) \in U(R)$. Thus, e = 1 and so $u \in 1 + P(R)$.

References

- [1] Călugăreanu G. UU rings. Carpathian J. Math. 2015, 31 (2), 157–163.
- [2] Chen H., Köse H., Kurtulmaz Y. Strongly P-clean rings and matrices. Int. Electron. J. Algebra 2014, 15 (15), 116–131. doi:10.24330/ieja.266242
- [3] Danchev P.V. On weakly exchange rings. J. Math. Univ. Tokushima 2014, 48, 17–22.
- [4] Danchev P.V. Rings with Jacobson units. Toyama Math. J. 2016, 38, 61–74.
- [5] Danchev P.V., Lam T.Y. Rings with unipotent units. Publ. Math. Debrecen, 2016, 88 (3–4), 449–466. doi: 10.5486/pmd.2016.7405
- [6] Diesl A.J. Nil clean rings. J. Algebra 2013, 383, 197–211. doi:10.1016/j.jalgebra.2013.02.020
- [7] Koşan T., Wang Z., Zhou Y., *Nil-clean and strongly nil-clean rings*. J. Pure Appl. Algebra 2016, **220** (2), 633–646. doi:10.1016/j.jpaa.2015.07.009
- [8] Nicholson W.K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 1977, 229, 269–278. doi: 10.2307/1998510
- [9] Marks G. Skew polynomial rings over 2-primal rings. Comm. Algebra 1999, **27** (9), 4411–4423. doi: 10.1080/00927879908826705
- [10] Wei J.-C. Weakly-Abel rings and weakly exchange rings. Acta Math. Hungar. 2012, **137** (4), 254–262. doi: 10.1007/s10474-012-0253-0

Received 20.05.2023

Калчі Т.П., Чень Х., Халічоглу С. *Кільця з простими одиницями //* Карпатські матем. публ. — 2025. — Т.17, №1. — С. 152–158.

Кільце R називають UP-кільцем, якщо кожен оборотний елемент у R є сумою одиниці та сильно нільпотентного елемента. У цій статті наведено багато характеристик UP-кільць. Доведено, що для UP-кільця R такі умови є еквівалентними: R є слабко обмінним, R є обмінним, R є чистим і R є ніль-чистим. Це є частковою відповіддю на питання, поставлене A. Дізлом у [J]. Algebra 2013, 383, 197–211].

Ключові слова і фрази: UP-кільце, розширення кілець, обмінне кільце.