References

  1. Ansari S.I. Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 1997, 148 (2), 384–390. doi:10.1006/JFAN.1996.3093
  2. Aron R.M., Bès J. Hypercyclic differentiation operators. Contemporary Math. 1999, 232, 39–46. doi:10.1090/conm/232/03382
  3. Bayart F., Matheron E. Dynamics of linear operators. In: Bertoin J. (Ed.) Cambridge Tracts in Mathematics, 179. Cambridge University Press, New York, 2009.
  4. Bermúdez T., Kalton N.J. The range of operators on von Neumann algebras. Proc. Amer. Math. Soc. 2002, 130 (5), 1447–1455.
  5. Bernal-González L. On hypercyclic operators on Banach spaces. Proc. Amer. Math. Soc. 1999, 127, 1003–1010. doi:10.1090/S0002-9939-99-04657-2
  6. Bes J., Chan K.C., Sanders R. Weak-Star Hypercyclicity and Supercyclicity of Shifts on \(l^\infty\). Integral Equations Operator Theory 2006, 55, 363–376.
  7. Birkhoff G.D. Démonstration d'un théorème élémentaire sur les fonctions entières. Gauthier-Villars, Paris 1929.
  8. Bourdon P.S., Shapiro J.H. Cyclic phenomena for composition operators. Mem. Amer. Math. Soc. 1997, 125 (596), 1–46. doi:10.1090/memo/0596
  9. Chan K.C., Shapiro J.H. The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 1991, 40, 1421–1449.
  10. Chan K.C. Hypercyclicity of the operator algebra for a separable Hilbert space. J. Operator Theory 1999, 42, 231–244.
  11. Chernega I., Holubchak O., Novosad Z., Zagorodnyuk A. Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces. Eur. J. Math. 2020, 6, 153–163. doi:10.1007/s40879-019-00390-z
  12. Devaney L.R. An introduction to chaotic dynamical systems. Addison-Wesley, Reedwood City, 1989.
  13. Godefroy G., Shapiro H.J. Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 1991, 98 (2), 229–269. doi:10.1016/0022-1236(91)90078-J
  14. Lopushansky O., Zagorodnyuk A. Hardy type spaces associated with compact unitary groups. Nonlinear Anal. 2011, 74 (2), 556–572. doi:10.1016/j.na.2010.09.009
  15. Lopushansky O., Zagorodnyuk A. Representing measures and infinite-dimensional holomorphy. J. Math. Anal. Appl. 2007, 333 (2), 614–625.
  16. Manoussos A. A Birkhoff type transitivity theorem for non-separable completely metrizable spaces with applications to linear dynamics. J. Operator Theory 2013, 70 (1), 165–174. doi:10.7900/jot.2011may12.1971
  17. Montes-Rodríguez A., Romero-Moreno C. Supercyclicity in the operator algebra. Studia Math. 2002, 150, 201–213. doi:10.4064/sm150-3-1
  18. Mozhyrovska Z.H., Zagorodnyuk A.V. Hypercyclic behavior of translation operators on spaces of analytic functions on Hilbert spaces. J. Funct. Spaces 2015, 2015, article ID 139289. doi:10.1155/2015/139289
  19. Novosad Z., Zagorodnyuk A. Analytic Automorphisms and Transitivity of Analytic Mappings. Mathematics 2020, 8 (12), 2179. doi:10.3390/math8122179
  20. Novosad Z., Zagorodnyuk A. Polynomial automorphisms and hypercyclic operators on spaces of analytic functions. Arch. Math. 2007, 89, 157–166. doi:10.1007/s00013-007-2043-4
  21. Rolewicz S. On orbits of elements. Studia Math. 1969, 32 (1), 17–22.
  22. Zagorodnyuk A., Novosad Z. Topological Transitivity of Shift Similar Operators on Nonseparable Hilbert Spaces. J. Funct. Spaces 2021, 2021, article ID 9306342. doi:10.1155/2021/9306342