References

  1. Abbas M., Nazir T. Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph. Fixed Point Theory Appl. 2013, 2013, article 20. doi:10.1186/1687-1812-2013-20
  2. Abdeljawad T., Mlaiki N., Aydi H., Souayah N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6 (12), 320. doi:10.3390/math6120320
  3. Acar O., Altun I. Two Suzuki type fixed point theorems on partial metric spaces. Vietnam J. Math. 2015, 43, 793–800. doi:10.1007/s10013-015-0131-5
  4. Alamgir N., Kiran Q., Aydi H., Gaba Y.U. On controlled rectangular metric spaces and an application. J. Funct. Spaces 2021, 2021, 5564324. doi:10.1155/2021/5564324
  5. Alamgir N., Kiran Q., Aydi H., Mukheimer A. A Mizoguchi-Takahashi type fixed point theorem in complete extended \(b\)-metric spaces. Mathematics 2019, 7 (5), 478. doi:10.3390/math7050478
  6. Alamgir N., Kiran Q., Işik H., Aydi H. Fixed point results via a Hausdorff controlled type metric. Adv. Differ. Equ. 2020, 2020, article 24. doi:10.1186/s13662-020-2491-8
  7. Alqahtani B., Fulga A., Karapinar E. Non-unique fixed point results in extended \(b\)-metric space. Mathematics, 2018, 6 (5), 68. doi:10.3390/math6050068
  8. Altun I., Acar O. Multivalued almost contractions in metric space endowed with a graph. Creat. Math. Inform. 2015, 24 (1), 1–8.
  9. Asim M., Imdad M., Radenović S. Fixed point results in extended rectangular \(b\)-metric spaces with an application. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81 (2), 43–50.
  10. Babu A.S., Došenović T., Ali M.M., Radenović S., Rao K.P.R. Some Prešić type results in \(b\)-dislocated metric spaces. Constr. Math. Anal. 2019, 2 (1), 40–48. doi:10.33205/cma.499171
  11. Bakhtin I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
  12. Czerwik S. Contraction mappings in \(b\)-metric spaces. Acta Math. Inform. Univ. Ostraviensis. 1993, 1 (1), 5–11.
  13. George R., Radenović S., Reshma K.P., Shukla S. Rectangular \(b\)-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8 (6), 1005–1013. doi:10.22436/jnsa.008.06.11
  14. Jachymski J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136 (4), 1359–1373.
  15. Kamran T., Samreen M., Ain Q.U. A generalization of \(b\)-metric space and some fixed point theorems. Mathematics 2017, 5 (2), 19. doi:10.3390/math5020019
  16. Karapinar E. A short survey on the recent fixed point results on \(b\)-metric spaces. Constr. Math. Anal. 2018, 1 (1), 15–44. doi:10.33205/cma.453034
  17. Kiran Q., Alamgir N., Mlaiki N., Aydi H. On some new fixed point results in complete extended \(b\)-metric spaces. Mathematics 2019, 7 (5), 476. doi:10.3390/math7050476
  18. Mlaiki N., Aydi H. Souayah N., Abdeljawad T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6 (10), 194. doi:10.3390/math6100194
  19. Nazam M., Acar O. Fixed points of \((\alpha,\psi)\)-contractions in Hausdorff partial metric space. Math. Meth. Appl. Sci. 2019, 42, 5159–5173. doi:10.1002/mma.5251
  20. Ozturk M., Girgin E. Some fixed point theorems for generalized contractions in metric spaces with a graph. Casp. J. Math. Sci. 2015, 4 (2), 257–270.
  21. Samet B. Discussion on “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari. Publ. Math. Debrecen 2010, 76 (4), 493–494. doi:10.5486/pmd.2010.4595
  22. Sarma I.R., Rao J.M., Rao S.S. Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2 (3), 180–182. doi:10.22436/jnsa.002.03.06
  23. Shatanawi W., Abodayeh K., Mukheimer A. Some fixed point theorems in extended \(b\)-metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80 (4), 71–78.
  24. Souayah N., Aydi H., Abdeljawad T., Mlaiki N. Best proximity point theorems on rectangular metric spaces endowed with a graph. Axioms 2019, 8 (1), 17. doi:10.3390/axioms8010017
  25. Souayah N., Mrad M. On fixed-point results in controlled partial metric type spaces with a graph. Mathematics 2020, 8 (1), 33. doi:10.3390/math8010033
  26. Souayah N., Mrad M. Some fixed point results on rectangular metric-like spaces endowed with a graph. Symmetry 2019, 11 (1), 18. doi:10.3390/sym11010018
  27. Subashi L., Gjini N. Some results on extended \(b\)-metric spaces and Pompeiu-Hausdorff metric. J. Progr. Res. Math. 2017, 12 (4), 2021–2029.
  28. Suzuki T. Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 458098. doi:10.1155/2014/458098
  29. Vetro C. A fixed-point problem with mixed-type contractive condition. Constr. Math. Anal. 2020, 3 (1), 45–52. doi:10.33205/cma.684638