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Nagy type inequalities in metric measure spaces and some
applications

Babenko V.E.!, Babenko V.V.2, Kovalenko O.V.}, Parfinovych N.v.1

We obtain a sharp Nagy type inequality in a metric space (X, p) with measure y that estimates
the uniform norm of a function using its || - || gw-norm determined by a modulus of continuity w,
and a seminorm that is defined on a space of locally integrable functions. We consider charges v that
are defined on the set of y-measurable subsets of X and are absolutely continuous with respect to
. Using the obtained Nagy type inequality, we prove a sharp Landau-Kolmogorov type inequality
that estimates the uniform norm of a Radon-Nikodym derivative of a charge via a || - ||go-norm
of this derivative, and a seminorm defined on the space of such charges. We also prove a sharp
inequality for a hypersingular integral operator. In the case X = R"” x R?~™,0 < m < d, we obtain
inequalities that estimate the uniform norm of a mixed derivative of a function using the uniform
norm of the function and the || - || go-norm of its mixed derivative.
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1 Introduction

Inequalities that estimate norms of the intermediate derivatives of univariate or multivari-
ate functions using the norms of the functions and their derivatives of higher order play an
important role in many branches of mathematics, including analysis, approximation theory,
differential equations, theory of ill-posed problems, numeric methods and many others. It
appears that the richest applications are obtained from sharp inequalities of this kind, which
attracts much interest to the inequalities with the smallest possible constants. For univariate
functions, the results by E. Landau [23], A.N. Kolmogorov [19] and B.Sz. Nagy [29] are among
the brightest ones in this topic. A survey on the results for univariate and multivariate func-
tions for the case of derivatives of integer and fractional order, discussions about applications
and relations to other extremal problems, and further references can be found in [2,7,8,13]. The
article [12] (see also [13, Chapter 2]) contains a periodic analogue of Nagy’s inequality, some
recent results on the Nagy type inequalities are contained in [18]. Some inequalities of Landau-
Kolmogorov type for Radon-Nikodym derivative of charges defined on Lebesgue measurable
subsets of an open cone C C R that are absolutely continuous with respect to the Lebesgue
measure were obtained in [10].

YAK 517.5
2020 Mathematics Subject Classification: 26D10, 41A17, 41A44, 41A55 .

© Babenko V.E., Babenko V.V., Kovalenko O.V., Parfinovych N.V., 2023



564 Babenko V.F.,, Babenko V.V.,, Kovalenko O.V., Parfinovych N.V.

In this article, we study functional classes that are defined in terms of a majorant for mod-
ulus of continuity of the functions. The moduli of continuity as independent functions and
classes of functions with given majorants of moduli of continuity of functions or of their
derivatives were introduced by S.M. Nikol’skii in [26]. Such classes were studied by many
authors (see, e.g., [20, Chapter 7]). Extremal problems for such classes of non-real valued func-
tions were considered in [3-6,9,21,22]. Extremal problems for various hyper-singular integral
operators on classes of univariate and multivariate functions defined by a majorant on their
modulus of continuity were considered in [11, 14, 15,27].

Let X, Y, and Z be linear spaces equipped with seminorm || - ||x, norm || - ||y, and seminorm
|| - ||z, respectively. A linear operator S: X — Y is called bounded, if

ISI = [ISllx~y = sup [ISx[ly < co.
Jxllx<1

Otherwise the operator S is called unbounded. By £(X,Y) we denote the space of all linear
bounded operators S: X — Y.

Let A: X — Y,B: X — Z be homogeneous operators (not necessarily linear) with the
domains Dy, D C X, Dg C Dy. Letalso M = {x € Dp : ||Bx|, < 1}. For the operator A
and an operator S € £(X,Y) we set

U(A,S; M) =sup { |Ax — Sx|y : x € M}.
Note that for each x € Dg one has
[Ax — Sx[|y < U(A,S;M)[|Bx| 5.

The Stechkin problem of approximation of a generally speaking unbounded operator by
linear bounded operators on the class 91 is formulated as follows. For a given number N find
the quantity

En(A,M) =inf{U (A, S$;M): S € L(X,Y),|S|| < N}. (1)

The statement of a somewhat more general problem, first important results, and solutions to
this problem for differential operators of small orders were presented in [28]. For a survey
of further results on this problem see [2]. The Stechkin problem, in turn, is intimately con-
nected to Landau-Kolmogorov type inequalities. The following well-known theorem (which
we formulate in a convenient for us form) describes this connection.

Theorem 1. For any x € Djp and arbitrary S € L(X,Y) the following Landau-Kolmogorov-
Nagy type inequality holds

[Ax[ly < [[Ax — Sx|[y + [IS[[lIx[lx < U(A,S;9)|[Bx[|z + [[SI] - [|lx][x, €)
and, therefore,
Vx€ Dy VN >0, [Ax|y <En(A M)|Bx|z+ Nlx|x-
If in addition there exist S € L(X,Y) and X € 9 such that
1A%]ly = [ A% = Sx[|y + [IS]| I%llx = U (A, $;9) +[|S]| - %] x.,

then B )
E|ls)| (4, M0) = U(A,S;m) = || A%|| - S]] [7]x,

and the operator S is optimal for problem (1).
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Remark 1. In S.B. Stechkin’s article [28] it is assumed that X and Y are Banach spaces. How-
ever, as it is easy to see, completeness and even presence of a norm in X is not necessary. It is
sufficient to have a seminorm in X. Completeness of Y is also not necessary.

In Section 2, we give necessary notations and definitions. In Section 3, we obtain a sharp
Nagy type inequality in a metric space (X, p) with measure y that estimates the uniform norm
of a function using its || - || gw-norm determined by a modulus of continuity w, and a semi-
norm that is defined on a space of locally integrable functions. In Section 4, we prove a sharp
inequality of Nagy type in the context of metric Sobolev spaces. Using the inequality from
Section 3, in Section 5 we prove a sharp Landau-Kolmogorov type inequality that estimates the
uniform norm of a Radon-Nikodym derivative of a charge from a particular class of charges
viaa || - ||go-norm of this derivative, and a seminorm defined on the space of charges. In Sec-
tion 6, we obtain a sharp Landau-Kolmogorov type inequality for generalized hypersingular
operators. Finally, in Section 7, we suppose that X = R x R, 0 < m < d, and obtain in-
equalities that estimate the uniform norm of a mixed derivative of a function f: X — R using
the uniform norm of the function and the norm of its mixed derivative which is defined with
the help of some modulus of continuity.

We use the following scheme to obtain the main results of the article. We define an ap-
propriate bounded operator S, give an estimate for the quantity U(A, S, ), and plugging it
into (2), we obtain a Nagy or Landau-Kolmogorov type inequality. Then we prove its sharp-
ness. Theorem 1 shows that we simultaneously obtain a solution to the corresponding Stechkin
problem.

2 Notations and definitions

Let (X,p) be a metric space with a Borel measure y. Assume that X is a commutative
monoid (i.e. an associative and commutative binary operation + is defined on X, and there
exists an element § € X such that x +6 = 64+ x = x for all x € X) such that for each
measurable set Q C X and each x € X one has

ux+Q) = u(Q)-
Suppose that for all x,y € X,
px +y,x) < p(y,0).
Everywhere below Bj, = Bj,(0) is an open ball of radius & > 0 with center 6. We suppose that
0 < u(Bp) < o0 and By, # {0} forallh > 0.

An invariant Haar measure on a locally compact group with metrical topology (see, e.g.,
[25]) is an important example.

For a measurable set Q C X by L1(Q) (respectively Lo (Q)) we denote the space of func-
tions f: Q — R integrable (respectively essentially bounded) on Q with the corresponding
norm. By Lj,.(X) we denote the space of all functions f: X — R that are integrable on each
open ball of X. In the space Lj,.(X) we introduce a family of seminorms

fu)du(u)|, h>0,

1 fIn=sup

xeX

X+Bh

and a seminorm

| fT= sup]fTn-

h>0
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By L., (X) (respectively L I ((X)) we denote the family of functions f € Lj.(X) with a finite
seminorm | - [, (respectively | - [). Itis clear that the space L; (X) is contained in each of these
sets.

By C(X) we denote the space of all continuous functions f: X — R, by Cp(X) the space of
functions f € C(X) with a finite norm

Ifllcx) = sup |f(x)
xeX

by B(X) we denote the space of bounded functions f: X — R with a norm
1 fllB(x) = sup |f(x)].
xeX

Everywhere below we assume that the measure y is such that C(X) C Lo (X).

Let w be a modulus of continuity, i.e. a non-negative, non-decreasing, semi-additive func-
tion w: [0,00) — [0,00) such that w(0) = 0. By H¥(X) we denote the space of functions
f: X — Rsuch that

< 00,

Ul = sup O =S
HY(X) Xty w(p(59))

3 A Nagy type inequality
For each 1 > 0 we define an operator S: L|.[, (X) — B(X) by the following rule

1
#(By)

It is clear that this operator is bounded and

S1f () = gy [, SO+ ) due)

1
S . 3

We need the following result, which is sometimes called an Ostrowski type inequality. A
rather general version of such kind of results is contained in [6, Theorem 2].

Lemma 1. If f € HY(X), then for each h > 0 one has

1 e ()
1FC) = Suf )l gz < “u(By)

Inequality (4) is sharp and becomes equality for all functions

,, loe,0)) dye) @)

fo(x) =ctw(p(u,0)), ceR.

Proof. For each x € X we have

) =S ()] = |£(0) = s [ o+ ) dpt)

T
= u(By)

Bh / |f(x) = flx+u)| du(u)

[ wlplet ) dulu) < % /B w(p(u,0)) du(w)
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and inequality (4) is proved. For the function f,, one has

| feoll o (x) = 1- (5)
Indeed, for all x, y € X, we obtain
[fo(x) = fo ()] = |w(p(x,0)) —w(p(y,0))| < w(lp(x,0) —p(y,0)]) < w(p(x,y)),
hence || fuw || o (x) < 1. Since there exists y € By, \ {0}, we obtain
sup |fo(x) = fu(0)] = |fu(y) — fu(0)| = w(p(y,0)),

xeX, x#6

which implies || fu || o (x) > 1, and hence (5) holds. Moreover,

1
-5 -8 / u,0))du(u),
1FC) = Suf Ol gy = 1£(8) = Suf(0)] = (By) w(p(u,0)) dp(u)
which together with (5) implies that inequality (4) is sharp. ]

The following theorem contains a variant of the Nagy type inequality. For &« € R we set
ay = max{a,0}.

Theorem 2. If h > 0 and f € H(X) N L., (X), then

IflBx) < I1f = Sufllae) +ISulle | x-seollfllL; x)

11l e () 1fIn
<TWE) ) B0+

The inequality is sharp and turns into equality for the function
fen(x) = (w(h) = w(p(x,6))) - (7)
Moreover, f,;, € HY(X) N L|.[(X), | fen[=]fen[n, and hence for each h > 0 the inequality

Il e ()
< = 7

holds and it is sharp on the class H(X) N L|.[(X).

(6)

T
(o) dutw) + s ®

Remark 2. In the case, when w(t) = t*, 0 < a« < 1, and the space (X,p, i) satisfies the
following s-regularity type condition

db >0, ds >0, Vh >0, u(By) > bh®,
inequality (8) can be written in a multiplicative form. We do not adduce the details.

Proof. For each x € X, due to Lemma 1, the definition of the operator S, and the equality (3),
we have

f)] < |f(0) = Suf ()| + [Suf ()] < [|£(x) = Suf ()| gy + I1Sullz, [, x0—~Bx) ) f T

11l e (x) 1fIn
< By, @) dutw) + g,
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which implies inequality (6). Inequality (8) is a consequence of inequality (6).
For the function f, , we have || fo |l 5(x) = fen(0) = w(h), ||fenllpo(x) =1, and
foali= @ n(Bi) = | w(p(u,0)) du(w).
h

Indeed, on the one hand,
Voalwz [, fenlu) dute) = wp(B) = [ w(p(u,0)) dp(u)

and on the other hand, for each x € X, due to monotonicity of w,

[y fortyante) = [ () da)
< /B; fen(u)du(u) = w(h)u(By) — /B; w(o(u,0)) du(u).

Direct computations now show that inequality (6) becomes equality on the function f, .
Finally, the same arguments as during computation of the quantity |f,[, show that
| fen|=1fen[n, and hence inequality (8) is also sharp. O

Corollary 1. If h > 0 and f € HY(X) N L1(X), then

1

£ e ()
1F G 5z < “u(By) /Bh“’(P(u,@)) du(u) + By 1, ) -

The inequality is sharp. It becomes equality on the function f,, defined by (7).

Proof. Since L1(X) C Ly.1,(X) and || fenllr,(x) =] fen[n, the statement of the corollary follows
from Theorem 2. O

4 Nagy type inequalities in metric Sobolev spaces

In this section, we consider metric Sobolev spaces with essentially bounded upper gradi-
ents, which are defined as follows. Let (X, px) and (Y, py) be metric spaces such as in the pre-
vious sections. For a modulus of continuity w we define the space W’ (X,Y) as the space of
all functions f: X — Y with the following property (cf. [1, Chapter 5] and [17, Chapter 10.2]).
There exists a non-negative function G = Gy € Leo(X) and a set N = Ny C X such that
#(N) =0and

o (F(2), f)) < (G(x) + G(v)) - w(px(x,y)) forall xye€X\N. ©)

We call G an upper gradient of f.

Let (Y, py) be the space of reals with the usual metric. The technique developed in the
proof of the previous theorem allows to prove the following result, which thus can be in some
sense considered as a corollary of Theorem 2.

Theorem 3. Let f € W'(X,R) N L.f,(X) and Gy be an upper gradient of f. Then for any
h > 0 the following inequality holds

2||Gyllr (x) il
Ifliaco < g5 f, @lox(6,u0) dp(u) + gt (10)

Inequality (10) is sharp in the sense that there exists a function f and its upper gradient Gy for
which the inequality becomes equality.
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Proof. For almost all x € X, we have

1 1
1091 < |10~ s [ S0 a0+ s [ A ant)
1 il
< B foop PO = F) )
1 1S

and inequality (10) is proved. The inequality becomes equality for the function f = f, , defined
in (7) and its upper gradient G = 1. Indeed, the fact that inequality (10) becomes equality for
such functions f and G can be verified directly. The fact that G is indeed an upper gradient
for f (with N = @) can be proved as follows. Let x,y € X, u = px(x,0) and v = px(y,90).
We can assume that u < v. If h < u < v, then f(x) = f(y) = 0 and inequality (9) holds. If
0<u<h<uo,then

f(x) = f(y)] = wh) —w(u) < wh—-u) <wlo-u) =w(ex(y,0)—pex(x,0) < w(px(x,y)).
The case 0 < u < v < h can be considered similarly. O

Similarly to Corollary 1 one can prove the following result.

Corollary 2. Let f € W'(X,R) N L1(X) and G¢ be an upper gradient of f. Then forany h > 0
the following inequality holds

2(Gllrw(x) 1Al (x)
Il < "G5, @(ox(®,0) dptu) + .

The inequality is sharp in the sense that there exists a function f and its upper gradient Gy for
which the inequality becomes equality.

5 Landau-Kolmogorov type inequalities for charges

By 91(X) we denote the family of charges v defined on the family of all y-measurable sub-
sets of X and that are absolutely continuous with respect to the measure y (see, e.g., [16, Chap-
ter 5]). By the Radon-Nikodym theorem, for a charge v € 91(X) there exists an integrable
function f: X — R such that for an arbitrary measurable set Q C X we have

Q) = /Qf(X)du(x)~ (11)

This function f is called the Radon-Nikodym derivative of the charge v with respect to the
measure y and will be denoted by D,v. The family 91(X) is a linear space with respect to
the standard addition and multiplication by a real number. Define a family of seminorms
{1-ln:h>0}by

Tln= v+ Bi)|5x)-

It is clear that if a charge v and a function f are related via (11), then

Tvln=]f[n-

For h > 0 by 91|, (X) we denote the set of charges v € 9(X) with a finite seminorm | - |,.
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Theorem 4. If h > 0 and v € My, |, (X) is such that Dyv € H*(X), then

IDv[|pxy < 1D = Swvl gy + ISnllony |, (x)-800) 1v L

IDpv | e (x) v|n
S BT @m0 duta) + ek

where the operator Sy, : M., (X) — B(X) is defined by

v(x + Bu)
u(By)

The inequality is sharp, and becomes an equality for the charge v, ), such that Dyv,, = f.;,
where the function f, j, is defined by (7).

Spv(x) =

Remark 3. This theorem generalizes the result of [10, Theorem 3].

Proof. Tt is enough to apply Theorem 2 to the function f = D,v and notice that after a change
of variables in the integral, we obtain S,v = S, f. 0

Corollary 3. If h > 0, v € ’TtHh (X) is such that Dy € Wlf“’(X,]R), and G, is an arbitrary
upper gradient of D,v, then the following inequality holds

ZHGVHLOQ(X)
1(By)

The inequality is sharp in the sense that there exists a charge v and an upper gradient G, for
which the inequality becomes equality.

1D < [ @lox(6,w) dy() +
h

Proof. The theorem follows from Theorem 3. O

6 Inequalities for generalized hypersingular integrals

Let P: R4 — Ry be a locally integrable function such that
/ P(p(u,0)) du(u) < oo forsome h > 0.
X\By,

Define the following operator

Opf(x) = [ (F(x) = flx+u)P(p(u,0)) du(u),

X

which can be considered as a hypersingular integral. We also consider the following truncated
hypersingular integral

Deaf(x) = [ (F(x) = f(x+ ) Pp(u,0)) dp(u).

X\By,

It is easy to see that
Beallc e =2 [, Plow,0)) duu).
X\By,
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Theorem 5. Let f € H¥(X) N Cyp(X). If for some h > 0

/Bh w(p(u,0))P(p(u,0)) du(u) < oo and B, P(p(u,0)) du(u) < oo,

then
1Dpfllax) < I1Dpf = Dpufllax) + 1Dpullc,x)—cyx) I fllc,x)

< e 0000 00) (ol 60) () 420l [, Pt ) dta.

The inequality is sharp and turns into equality for the function

w(p(1,6)) ~ Jw(h), p(u,6) <,

few(u) = {%w(m, o(u,8) > h.

Proof. We have

[ (FG) = £+ 1) Po(a,0)) )

By,

1Dpf —Dpufllax) = sup

xeX

<sup |fllery | @(p(,x+u)P(p(u,0)) dn(u)

xeX h

< fllmey [, @ (o(u,0))P(o(u,0)) dp(u).

h

Thus
[Dpf ()| 5x) < 1Dpf = Deafllsx) + 1Dpullc,0-c,x) I flc,x)
< fllae ) (o000 Plo(w,) () + 20 f ey [, | Plolot0)) )

\By
and the inequality (12) is proved. For the function fe ., it is clear that || fow|lc,(x) = Tw(h),
er,wHHw(x) =1,and

”i)Pfe,w”%(X) = —Dpfew(?) :/

[ (p(u,0))P(o(w,0)) dieC) + (k) [ P(o(u,0)) du(w),

X\By,

thus the inequality becomes equality for the function f, (. O

7 Inequalities for mixed derivatives

Assume that X = ]Rfm L= R xR*™,0 < m < d, u is the Lebesgue measure in ]Rfm e

p(x,y) = max_ |x; — 4|, so that B, = (0, )™ x (—h, h)?~™. In this section, for brevity we write
i=1,...,

dx instead of dy(x). For a locally integrable function f: X — RsetI = (1,...,1) € R% and

o f
anf = 0x1...0x,4

4

where the derivatives are understood in the distributional sense.
Let {¢;} be the standard basis in R%. Fori = 1,...,d and h > 0 we set

ASf(x) = f(x+he;) = f(x)  and  Ayyf(x) == f(x +he;) — f(x — he;).
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In virtue of the Fubini theorem, for almost all x € ]Rd 4 one has

/x+B orf(u)du = (Afh o... OA:’;h oApt1n 0. 00p)f(x). (13)
i

Define an operator & : Leo(C) — Leo(C), setting

1

Snf(x) = ST <Aih 0...0 Az,h 0Ny f1p0...0 Ad,h) f(x), h>0.
Theorem 6. If h > 0 and f € B(RY, ,) is such that 9;1f € H*(RY, ,), then

O1f lpwe, ) < 191f = Sufllpme, ) + 1Snllllfll 5wa

HaIfHHw(]Rd ) om (14)
m,+
Y X /Bh w(p(u,0)) du + 7 1f | (we
In the case, when w(t) = t*, « € (0,1], the following multiplicative inequality
d + u zx P
Iouf e, < 2755 (£ ) W Doufls (15)

holds. Form = 0 and m = 1 these inequalities are sharp.
Remark 4. This theorem generalizes the result [10, Theorem 5].

Proof. Applying inequality (6) to d; f and taking into account that (By,) = 24-"h, we obtain
HaIfHB(]R%#) < |lorf — th”g( + ”Gh”Hf”B (R4 )

”aIfHHw(]Rd ) 1
< m,+ /
S =T w(p(u,0)) du + Sdmd SUP

/x ., ()

G]Rﬂw
Representation (13) implies
1 24 2
m,+

which implies inequality (14).
In the case w(t) = t%, using the layer cake representation (see, e.g., [24, Theorem 1.13]),
symmetry considerations, and writing | x|« instead of p(x, #), we obtain

0)) d :2“1/ ¢ g zzdm/oo € (0,h): [, > ¢\ dt
o 0)) du o s Cu{oe @m g >

h* d—m
__ nd—m d__ % _ nd—mypd+a & _ d-2 d+a
=2 /0 (h t)dt 2" (1 d+(x> ita

So that the right-hand side of (14) becomes

d 5 " 2"
j” IfHHw(]R%#) +h_d”fHB(]R"’
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Minimizing this expression with respect to i1 > 0, i.e. choosing

1
T
h:m%<d+“.JNmM”)> ,
& (10 fll e rs, )
we obtain the right-hand side of (15).
Next we prove sharpness of inequality (14) for the case m = 0. Consider the function

Se (X / / fen(u

where f, , is defined in (7). Then 01g,, = f. 5, and hence

Halge,hHB(Rd) = w(h), Halge,h”Hw(le) =1

Moreover,

Iseallsin = [ [ () —o(lule) = o) — [ [" ol

and due to symmetricity of [—h, h]?, we get

/Bhw(|u|oo) du:2d/0h.../0hw(|u|oo) du

Direct computations now show that inequalities (14) and (15) become equality for the func-
tion g, ..

Finally, we prove sharpness of inequality (14) in the case m = 1. In this case, we have
B, = (0,h) x (—h,h)4~1. There exists 0 < a < h such that

/{xeth fa) (w(h) - w(\x]oo)> dx = /{xEBh oa) <w(h) - w(]x\oo)) dx

2/ w(|xls) ) dx.

The set B, consists of equal cubes with edge lengths equal to /1; § = 6, is one of the vertices
for each of these cubes. The hyperplane x; = a divides these cubes into pieces ¢y, ..., ¢;;_, that
have # among vertices, and pieces cf L., 0;71 that have (a,6,;_1) among their vertices.

It is clear that

sy (00— = X [ (00 (i)

2d71

and

/{xeBh;w} COREESIES ):/ w([x|) ) dx.

From the symmetry considerations it follows that each of 2¢~! summands in each of the right-
hand sides of these equalities are equal. Thus for eachi,j =1,..., 24-1

/Ci <w(h)—w(|x|oo)>dx:/ﬁ <w(h)—w(|x| dx_—/ w(|x]oo ))dx.
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An extremal function in this case we define as follows

X1 X2 X4
Ge,h(x) = /ﬂ /0 NN /0 alfe,h(u) dud e dul,

where f, j, is defined in (7). For this function we have

Genlsing ) = 2 [ (00 ~(iele)) dx = ot = L [ o(lale)
e,h B(]R’fl+) - 2d Bh &%) - 2 2d Bh e} 7
[01Ge,n |B(]R‘1{+) =w(h), ||oiGen ’Hw(]Rfli,Q =1

Direct computations now show that inequalities (14) and (15) with m = 1 become equalities

on the function G, ;. O

Remark 5. It is not clear, whether inequality (14) is sharp form = 2,...,d, even in the case
d=2and w(t) =t.
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Mu A0BoAMMO TOUHY HepiBHicTh Tty Haast y Merpuaromy mpocropi (X, p) 3 mMipowo p, sika
OLIiHIOE PiBHOMIpHY HOpMY (PYHKIII 32 AOIIOMOIOIO i || - || yw-HOpMY, 110 BM3HAUEHA MOAYAEM He-
TIlepepBHOCTI w, i HaliBHOPMOIO, sIKa BU3HaUeHa y IPOCTOPi AOKAABHO iHTerpoBHMX (PyHKIIN. AAsT
3apsIAIB v, BU3HAUeHMX Ha MHOXVHI }/-BUMIpHMX IAMHOXVH IpocTopy X, i ki € abcoAroTHO He-
MepepPBHUMMM 110 BiAHOILICHHIO AO MipM }{, BUKOPUCTOBYIOUM OTpMMaHy HepiBHicTh Tumy Haast, mu
AOBOAVMIMO TOUHY HepiBHiCTh Ty AaHaay-KoaMoroposa, sika OLiHIOe piBHOMipHY HOpMY MOXiAHOI
Paaona-HikoarMa 3apsiay 3a AOIIOMOTOIO || - || jw-HOpMM Iiiel TOXiAHOI 1 HamiBHOPMY, 1110 BU3HAYEH]
Ha MHOXJHI Takyx 3apsiaiB. My TakoX AOBOAVMO TOYHY HEPiBHICTh AAS TEPCUMHIYASIPHUX iHTe-
rpaAbHMX omepaTopiB. Y Bumaaky X = R x R4™, 0 < m < d, Mmu OTpMMaAM HepiBHICTb, IO
OLIiHIOE PiBHOMipHY HOpMY MillTaHOT MOXiAHOT PYHKIIIT 3a AOIIOMOro0 piBHOMIpHOI HOpMM (PYHKITIT
i - ||go-HOpMMU II MiITaHOT TIOXIAHOI.

Kntouosi cnoea i ppasu: HepisHicTh Tvmy Haast, HepisHicTS Tvmy AaHaay-Koamoroposa, 3apada
CreuxiHa, 3apsia, MOAYAD HellepepBHOCTI, MilllaHa ITOXiAHA.



