ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2024, **16** (1), 5–15 doi:10.15330/cmp.16.1.5-15

Comparative growth of an entire function and the integrated counting function of its zeros

Andrusyak I.V., Filevych P.V.

Let (ζ_n) be a sequence of complex numbers such that $\zeta_n \to \infty$ as $n \to \infty$, N(r) be the integrated counting function of this sequence, and let α be a positive continuous and increasing to $+\infty$ function on \mathbb{R} for which $\alpha(r) = o(\log(N(r)/\log r))$ as $r \to +\infty$. It is proved that for any set $E \subset (1, +\infty)$ satisfying $\int_E r^{\alpha(r)} dr = +\infty$, there exists an entire function f whose zeros are precisely the ζ_n , with multiplicities taken into account, such that the relation

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M(r)}{\log r \log(N(r) / \log r)} = 0$$

holds, where M(r) is the maximum modulus of the function f. It is also shown that this relation is best possible in a certain sense.

Key words and phrases: entire function, maximum modulus, Nevanlinna characteristic, zero, counting function, integrated counting function.

Lviv Polytechnic National University, 5 Mytropolyt Andrei str., 79016, Lviv, Ukraine E-mail: andrusyak.ivanna@gmail.com (Andrusyak I.V.), p.v.filevych@gmail.com (Filevych P.V.)

1 Introduction and results

Let \mathcal{Z} be the class of all complex sequences $\zeta = (\zeta_n)$ such that $0 < |\zeta_1| \le |\zeta_2| \le ...$ and $\zeta_n \to \infty$ as $n \to \infty$. For any sequence ζ belonging to the class \mathcal{Z} , by $\mathcal{E}(\zeta)$ we denote the class of all entire functions whose zeros are precisely the ζ_n , where a complex number that occurs m times in the sequence ζ corresponds to a zero of multiplicity m. For every $r \ge 0$, let $n_{\zeta}(r)$ and $N_{\zeta}(r)$ be the counting function and the integrated counting function of this sequence, respectively, that is

$$n_{\zeta}(r) = \sum_{|\zeta_n| \leq r} 1, \qquad N_{\zeta}(r) = \int_0^r rac{n_{\zeta}(t)}{t} dt.$$

For an entire function f and every $r \ge 0$, we denote by $M_f(r)$ and $T_f(r)$ the maximum modulus and the Nevanlinna characteristic of the function f, respectively, i.e.

$$M_f(r) = \max \left\{ |f(z)| : |z| = r \right\}, \qquad T_f(r) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta.$$

By *L* we denote the class of all positive continuous and increasing to $+\infty$ functions on \mathbb{R} .

Let $\zeta \in \mathcal{Z}$. It is well known that the growth of functions $f \in \mathcal{E}(\zeta)$, which is usually identified with the growth of $\log M_f(r)$ or $T_f(r)$, can be arbitrarily rapid compared to the

УДК 517.53

²⁰²⁰ Mathematics Subject Classification: 30D15, 30D20, 30D35.

growth of the functions $n_{\zeta}(r)$ and $N_{\zeta}(r)$. Many authors (see, for example, [1–5, 7, 8, 13, 15, 16]) investigated the opposite, in a certain sense, and more interesting question: how slow can the growth of a function $f \in \mathcal{E}(\zeta)$ be with respect to $n_{\zeta}(r)$ or $N_{\zeta}(r)$? In particular, the following two theorems that generalize two results of W. Bergweiler [8] were proved in [4].

Theorem A ([4]). Let $l \in L$. Then for any sequence $\zeta \in Z$ such that $n_{\zeta}(r) \ge l(r)$ for all large r and for every unbounded set $E \subset (1, +\infty)$ there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M_f(r)}{\log n_{\zeta}(r) \log l^{-1}(n_{\zeta}(r))} = 0.$$
(1)

Theorem B ([4]). Let $l \in L$, and let ψ be a positive function on \mathbb{R} satisfying

$$\liminf_{x \to +\infty} \frac{\psi(\log[x])}{\log x} = 0.$$
 (2)

Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $n_{\zeta}(r) \ge l(r)$ for all large r and $n_{\zeta}(r-0) = l(r)$ on an unbounded from above set of values of r and a set $F \subset (1, +\infty)$ of upper logarithmic density 1 such that for an arbitrary function $f \in \mathcal{E}_{\zeta}$ we have

$$\psi\big(\log n_{\zeta}(r)\big)\log l^{-1}\big(n_{\zeta}(r)\big)=o\big(\log\log M_{f}(r)\big)$$

as $r \to +\infty$ through the set *F*.

It is clear that if (2) is not satisfied for some positive function ψ on \mathbb{R} , then $\log n_{\zeta}(r)$ in (1) can be replaced by $\psi(\log n_{\zeta}(r))$. According to Theorem B, the same replacement is impossible when (2) is satisfied. Therefore, Theorem B shows that relation (1) is best possible.

Note also that the proof of Theorem B given in [4] shows that the set *F* in this theorem can be expressed in the form $F = \bigcup_{k=1}^{\infty} (s_k, r_k)$, where

$$1 < s_1 < r_1 < s_2 < r_2 < \dots, \qquad \lim_{n \to \infty} \frac{\log r_k}{\log s_k} = +\infty.$$
 (3)

In this article, we establish results of the type of Theorems A and B for the function $N_{\zeta}(r)$ instead of $n_{\zeta}(r)$.

First of all, we note that, by Theorem B, the growth of each function f from the class \mathcal{E}_{ζ} can be arbitrarily rapid compared to the growth of the counting function $n_{\zeta}(r)$ along a large set of values r. In other words, for an arbitrary function $h \in L$ there exist a sequence $\zeta \in \mathcal{Z}$ and a set $F \subset (1, +\infty)$ of upper logarithmic density 1 such that for every function $f \in \mathcal{E}_{\zeta}$ we have

$$h(n_{\zeta}(r)) = o(\log \log M_f(r))$$

as $r \to +\infty$ through the set *F*.

A similar situation is impossible for the integrated counting function $N_{\zeta}(r)$. This follows from the following theorem of A.A. Gol'dberg.

Theorem C ([13]). Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$\log \log M_f(r) = o(N_{\zeta}(r)) \tag{4}$$

as $r \to +\infty$ outside an exceptional set $E \subset (1, +\infty)$ of finite logarithmic measure.

This result is best possible in the following sense.

Theorem D ([13]). Let $\psi \in L$ be an arbitrary function satisfying $\psi(x) = o(x)$ as $x \to +\infty$. Then there exist a sequence $\zeta \in \mathcal{Z}$ and a set $F \subset (0, r)$ of upper linear density 1 such that for every function $f \in \mathcal{E}_{\zeta}$ we have

$$\psi(N_{\zeta}(r)) = o(\log \log M_f(r)) \tag{5}$$

as $r \to +\infty$ through the set *F*.

The estimates for the sizes of the sets *E* and *F* in Theorems C and D can be sharpened.

Theorem E ([1]). Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then there exist a function $f \in \mathcal{E}_{\zeta}$ and a function $\alpha \in L$ such that (4) holds as $r \to +\infty$ outside an exceptional set $E \subset (1, +\infty)$ satisfying

$$\int_E r^{\alpha(r)} dr < +\infty.$$
(6)

Theorem F ([1]). Let $\psi \in L$ be an arbitrary function such that

$$\liminf_{x \to +\infty} \frac{\psi(x)}{x} = 0. \tag{7}$$

Then there exist a sequence $\zeta \in \mathbb{Z}$ and sequences (s_k) and (r_k) satisfying (3) such that for any function $f \in \mathcal{E}_{\zeta}$ we have (5) as $r \to +\infty$ through the set $F = \bigcup_{k=1}^{\infty} (s_k; r_k)$.

In connection with the above results, the following question arises: *is it possible to find a function* $h \in L$ *such that for an arbitrary sequence* $\zeta \in Z$ *and every unbounded set* $E \subset (1, +\infty)$ *there exists a function* $f \in \mathcal{E}_{\zeta}$ *such that*

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M_f(r)}{h(N_{\zeta}(r))} = 0?$$

The answer to this question remains open, but it will be positive under additional (in some sense even minimal) assumptions about the size of the set *E*. This fact is confirmed by the following theorem, which directly follows from Theorem E.

Theorem G. Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then it is possible to find a function $\alpha \in L$ such that for an arbitrary set $E \subset (1, +\infty)$ satisfying

$$\int_E r^{\alpha(r)} dr = +\infty \tag{8}$$

there exists a function $f \in \mathcal{E}_{\zeta}$ for which

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M_f(r)}{N_{\zeta}(r)} = 0.$$
(9)

Let $\psi \in L$. If, for the function ψ , (7) is not satisfied, then Theorem G will remain correct when $N_{\zeta}(r)$ in (9) is replaced by $\psi(N_{\zeta}(r))$. It follows from Theorem F that such a replacement is impossible if (7) is satisfied. Therefore, (9) is best possible in the whole class \mathcal{Z} . We will show below that in wide subclasses of the class \mathcal{Z} this relation can be refined.

Denote by Ω the class of all non-negative, convex functions Φ on \mathbb{R} such that $\sigma = o(\Phi(\sigma))$ as $\sigma \to +\infty$. We remark that $N_{\zeta}(e^{\sigma})$ is a function from the class Ω for each sequence $\zeta \in \mathcal{Z}$.

Let $\Phi \in \Omega$. Then, as it is easy to see, the function $\varphi(\sigma) = \Phi(\sigma)/\sigma$ is continuous, increasing to $+\infty$ on $(\sigma_0, +\infty)$ for some $\sigma_0 > 0$.

Theorem 1. Let $\Phi \in \Omega$, and $\alpha \in L$. If

$$\alpha(r) = o(\log \varphi(\log r)), \qquad r \to +\infty, \tag{10}$$

then, for any sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \ge \Phi(\log r)$ for all sufficiently large r and for an arbitrary set $E \subset (1, +\infty)$ satisfying (8), there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M_f(r)}{\Phi^{-1}(N_{\zeta}(r)) \log \varphi \left(\Phi^{-1}(N_{\zeta}(r))\right)} = 0.$$
(11)

If $x \to +\infty$, then, taking $\sigma = \Phi^{-1}(x)$, we get

$$\Phi^{-1}(x)\log\varphi\left(\Phi^{-1}(x)\right) = \sigma\log\varphi(\sigma) = \frac{\log\varphi(\sigma)}{\varphi(\sigma)}\Phi(\sigma) = \frac{\log\varphi(\sigma)}{\varphi(\sigma)}x = o(x).$$

Therefore, (11) is stronger than (9). Moreover, as the following theorem shows, (11) is exact in the sense that in it $\log \varphi(\Phi^{-1}(N_{\zeta}(r)))$ cannot be replaced by $\psi(\log \varphi(\Phi^{-1}(N_{\zeta}(r))))$, where $\psi \in L$ is an arbitrary function satisfying (2). It is clear that such a replacement is possible for every $\psi \in L$ that does not satisfy (2).

Theorem 2. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \ge \Phi(\log r)$ for all sufficiently large r and $N_{\zeta}(r) = \Phi(\log r)$ on an unbounded from above set of values of r and sequences (s_k) and (r_k) satisfying (3) such that for any function $f \in \mathcal{E}_{\zeta}$ we have

$$\Phi^{-1}(N_{\zeta}(r))\psi\Big(\log\varphi\big(\Phi^{-1}(N_{\zeta}(r))\big)\Big) = o\big(\log T_f(r)\big)$$
(12)

as $r \to +\infty$ through the set $F = \bigcup_{k=1}^{\infty} (s_k; r_k)$.

Theorems 1 and 2 are easy to obtain from the following two theorems.

Theorem 3. Let $\zeta \in \mathcal{Z}$, and let $\alpha \in L$. If

$$\alpha(r) = o\big(\log(N_{\zeta}(r)/\log r)\big), \qquad r \to +\infty, \tag{13}$$

then for every set $E \subset (1, +\infty)$ satisfying (8) there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$\liminf_{r \in E, r \to +\infty} \frac{\log \log M_f(r)}{\log r \log \left(N_{\zeta}(r) / \log r \right)} = 0.$$
(14)

Theorem 4. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and sequences (s_k) and (r_k) satisfying (3) such that $N_{\zeta}(r_k) = \Phi(\log r_k)$ for all integers $k \geq 1$ and for any function $f \in \mathcal{E}_{\zeta}$ we have

$$\log r_k \psi \big(\log(N_{\zeta}(r_k) / \log r_k) \big) = o \big(\log T_f(s_k) \big), \quad k \to \infty.$$
⁽¹⁵⁾

Note that we can rewrite (15) in the form

$$\Phi^{-1}(N_{\zeta}(r_k))\psi\Big(\log\varphi\big(\Phi^{-1}\big(N_{\zeta}(r_k)\big)\big)\Big) = o\big(\log T_f(s_k)\big), \quad k \to \infty.$$

It follows that (12) holds as $r \to +\infty$ through the set $F = \bigcup_{k=1}^{\infty} (s_k; r_k)$. Therefore, Theorem 2 is an immediate consequence of Theorem 4.

To prove Theorems 1, 3 and 4 we will need some auxiliary results, which are given in the next section.

2 Auxiliary results

Let $z \in \mathbb{C}$, and let $p \ge 0$ be an integer. By E(z, p) we denote the usual Weierstrass primary factor, i.e.

$$E(z,p) = \begin{cases} 1-z, & \text{if } p = 0, \\ (1-z) \exp\left(\sum_{n=1}^{p} \frac{z^n}{n}\right), & \text{if } p \ge 1. \end{cases}$$

Lemma 1 ([2]). Let $\zeta = (\zeta_n)$ be a sequence from the class Z. Then there exists a non-negative sequence (λ_n) with the following properties:

- (i) $\lambda_n \sim \log n / \log |\zeta_n| \text{ as } n \to \infty$;
- (ii) for every sequence (p_n) of non-negative integers such that $p_n \ge [\lambda_n]$ for all sufficiently large *n*, the series

$$\sum_{n=1}^{\infty} \left(\frac{r}{|\zeta_n|}\right)^{p_n+1} \tag{16}$$

converges for every $r \ge 0$, and the product

$$\prod_{n=1}^{\infty} E\left(\frac{z}{\zeta_n}, p_n\right) \tag{17}$$

converges uniformly and absolutely to an entire function $f \in \mathcal{E}_{\zeta}$ on any compact subset of \mathbb{C} , and for all $r \ge 0$ we have $\log M_f(r) \le G(r)$, where G(r) is the sum of series (16).

Let *f* be an entire function, r > 0, and let $c_p(r)$ be the *p*th Fourier coefficient of the function $\log |f(re^{i\theta})|$, that is

$$c_p(r) = rac{1}{2\pi} \int_0^{2\pi} e^{-ip heta} \log \left| f\left(re^{i heta}
ight) \right| d heta, \quad p \in \mathbb{Z}.$$

If $f(0) \neq 0$, then in a neighborhood \mathbb{D} of the point z = 0 the function f has no zeros, and therefore there exists an analytic function

$$g(z) = \sum_{p=0}^{\infty} a_p z^p \tag{18}$$

in \mathbb{D} such that $f(z) = e^{g(z)}$ for all $z \in \mathbb{D}$. Then, for every integer $p \ge 1$ and all r > 0, by the Poisson-Jensen formula (see, for example, [14, p. 16–17]) we have

$$c_p(r) = \frac{1}{2}a_p r^p + \frac{1}{2p} \sum_{|\zeta_n| < r} \left(\left(\frac{r}{\zeta_n}\right)^p - \left(\frac{\overline{\zeta_n}}{r}\right)^p \right),\tag{19}$$

where ζ_n are the zeros of the function f. In addition, the following statement is well known (see, for example, [14, p. 62]).

Lemma 2. Let *f* be an entire function. Then for every integer *p* and all r > 0 the inequality $|c_p(r)| \le 2T_f(r)$ holds.

3 Proof of Theorems

Proof of Theorem 3. Let $\zeta = (\zeta_n)$ be a sequence from the class \mathcal{Z} , and let $\alpha \in L$ be a function that satisfies (13). We suppose that $E \subset (1, +\infty)$ is a set satisfying (8) and prove that there exists a function $f \in \mathcal{E}_{\zeta}$ such that (14) holds.

We set $\gamma(r) = N_{\zeta}(r) / \log r$ for all r > 1 and note that

$$\log N_{\zeta}(r) = \log \gamma(r) + \log \log r = o\left(\log r \log \gamma(r)\right) = o\left(\log r \log\left(N_{\zeta}(r) / \log r\right)\right)$$
(20)

as $r \to +\infty$.

Let $r_0 > |\zeta_1|$ be a fixed number. Consider the set $E_1 = \{r > r_0 : n_{\zeta}(r) > r^{\alpha(r)+1}N_{\zeta}^2(r)\}$. Since $n_{\zeta}(r) = r(N_{\zeta}(r))'_+$ for all $r \ge 0$, setting $y_0 = N_{\zeta}(r_0)$, we have

$$\int_{E_1} r^{\alpha(r)} dr \leq \int_{E_1} \frac{n_{\zeta}(r)}{r N_{\zeta}^2(r)} dr \leq \int_{r_0}^{+\infty} \frac{n_{\zeta}(r)}{r N_{\zeta}^2(r)} dr = \int_{r_0}^{+\infty} \frac{dN_{\zeta}(r)}{N_{\zeta}^2(r)} = \int_{y_0}^{+\infty} \frac{dy}{y^2} < +\infty.$$

Thus, (8) implies that the set $E_2 = E \setminus E_1$ is unbounded. In addition, if $r > r_0$ and $r \in E_2$, then $\log n_{\zeta}(r) \le (\alpha(r) + 1) \log r + 2 \log N_{\zeta}(r)$, and therefore, using (13) and (20), we obtain

$$\log n_{\zeta}(r) = o\big(\log r \log \big(N_{\zeta}(r)/\log r\big)\big) \tag{21}$$

as $r \to +\infty$ through the set E_2 .

For the sequence ζ , let $\lambda = (\lambda_n)$ be a sequence whose existence is asserted by Lemma 1. For every integer $n \ge 1$, we put $q_n = \left[\frac{2 \log n}{\log |\zeta_n|}\right]$. Note that $q_n \ge [\lambda_n]$ for all sufficiently large n.

Consider the series

$$\sum_{n=0}^{\infty} \left(\frac{r}{|\zeta_n|}\right)^{q_n+1}$$

that converges for all $r \ge 0$. For every $r \ge 0$, we put

$$m_{\zeta}(r) = \min\left\{m \ge n_{\zeta}(r) + 2: \sum_{n=m}^{\infty} \left(\frac{r}{|\zeta_n|}\right)^{q_n+1} \le 1\right\},\tag{22}$$

and let $p_{\zeta}(r)$ be the smallest integer such that $p_{\zeta}(r) \ge q_n$ for all integers $n \in (n_{\zeta}(r), m_{\zeta}(r))$ and, in addition,

$$\sum_{a_{\zeta}(r) < n < m_{\zeta}(r)} \left(\frac{r}{|\zeta_n|}\right)^{p_{\zeta}(r)+1} \le 1.$$
(23)

We note further that for any polynomial $Q(r) = \sum_{n=1}^{m} b_n r^{x_n}$, where b_1, \ldots, b_n and x_1, \ldots, x_n are positive real numbers, the relation $\log Q(r) = O(\log r)$ holds as $r \to +\infty$. Thus, since the set E_2 is unbounded, in this set we can choose a sequence (r_k) increasing to $+\infty$ such that for all integers $k \ge 2$ we have simultaneously

$$\log \sum_{n \le m_{\zeta}(r_{k-1})} \left(\frac{r_k}{|\zeta_n|}\right)^{q_n+1} \le \frac{\log r_k}{k} \log \frac{N_{\zeta}(r_k)}{\log r_k},\tag{24}$$

$$\log \sum_{j=1}^{k-1} \sum_{\substack{n_{\zeta}(r_j) < n < m_{\zeta}(r_j)}} \left(\frac{r_k}{|\zeta_n|}\right)^{p_{\zeta}(r_j)+1} \le \frac{\log r_k}{k} \log \frac{N_{\zeta}(r_k)}{\log r_k},$$

$$n_{\zeta} \left(\sqrt{r_k}\right) \ge m_{\zeta}(r_{k-1}) + 2.$$
(25)

Let $k \ge 1$ be an integer. Put $l_k = n_{\zeta}(\sqrt{r_k})$, $n_k = n_{\zeta}(r_k)$ and $m_k = m_{\zeta}(r_k)$. Note that $l_k \le n_k < m_k \le l_{k+1} - 2$.

For any integer $n \ge 1$, we set $p_n = p_{\zeta}(r_k)$ in the case when $n \in (n_k, m_k)$ for some integer $k \ge 1$, and let $p_n = q_n$ in the opposite case. Note that $p_n \ge q_n$ for every integer $n \ge 1$, and therefore series (16) converges for all $r \ge 0$. Then, by Lemma 1, product (17) converges uniformly and absolutely to an entire function $f \in \mathcal{E}_{\zeta}$ on any compact subset of \mathbb{C} , and for all $r \ge 0$ we have $\log M_f(r) \le G(r)$, where G(r) is the sum of series (16). Let us prove that for this function (14) holds.

Assume that $k \ge 2$ is an integer, and put

$$A_{k} = \sum_{n \le m_{k-1}} \left(\frac{r_{k}}{|\zeta_{n}|} \right)^{p_{n}+1}, \quad B_{k} = \sum_{m_{k-1} < n < l_{k}} \left(\frac{r_{k}}{|\zeta_{n}|} \right)^{p_{n}+1}, \quad C_{k} = \sum_{l_{k} \le n \le n_{k}} \left(\frac{r_{k}}{|\zeta_{n}|} \right)^{p_{n}+1}, \quad D_{k} = \sum_{n > n_{k}} \left(\frac{r_{k}}{|\zeta_{n}|} \right)^{p_{n}+1}.$$

We next estimate each of these sums.

From (24) and (25) it follows that

$$\log A_k \le \frac{\log r_k}{k} \log \frac{N_{\zeta}(r_k)}{\log r_k} + \log 2, \tag{26}$$

and by (23) and (22) we have

$$D_k \le \sum_{n_k < n < m_k} \left(\frac{r_k}{|\zeta_n|}\right)^{p_{\zeta}(r_k)+1} + \sum_{n \ge m_k} \left(\frac{r_k}{|\zeta_n|}\right)^{q_n+1} \le 2.$$

$$(27)$$

Now we put

$$\mu_k = \max\left\{r_k^{p_n+1} : m_{k-1} < n < l_k\right\}.$$

Recalling that for every integer $n \in (m_{k-1}, l_k)$ the equality $p_n = q_n$ holds, we obtain

$$\log \mu_k \leq \left(rac{2\log n_\zeta(\sqrt{r_k})}{\log \left|\zeta_{m_{k-1}}
ight|}+1
ight)\log r_k.$$

Since $B_k \leq \mu_k G(1)$, and

$$N_{\zeta}(r) \ge N_{\zeta}(r) - N_{\zeta}\left(\sqrt{r}\right) = \int_{\sqrt{r}}^{r} \frac{n_{\zeta}(t)}{t} dt \ge n_{\zeta}\left(\sqrt{r}\right) \log \sqrt{r}$$

for each r > 0, we have

$$\log B_k \le \log \mu_k + \log G(1) \le \frac{2\log r_k}{\log |\zeta_{m_{k-1}}|} \log \frac{2N_{\zeta}(r_k)}{\log r_k} + \log r_k + \log G(1).$$
(28)

Next, we put

$$\nu_k = \max\left\{\left(\frac{r_k}{|\zeta_n|}\right)^{p_n+1} : l_k \le n \le n_k\right\}.$$

Since, for every integer $n \in [l_k, n_k]$, the equality $p_n = q_n$ and the inequality $|\zeta_n| \ge \sqrt{r_k}$ hold, we obtain

$$\log
u_k \leq \left(rac{2\log n_{\zeta}(r_k)}{\log |\zeta_{l_k}|} + 1
ight)\log \sqrt{r_k} \leq 2\log n_{\zeta}(r_k) + rac{1}{2}\log r_k.$$

Noting that $C_k \leq \nu_k n_k = \nu_k n_{\zeta}(r_k)$, we have

$$\log C_k \le \log \nu_k + \log n_{\zeta}(r_k) \le 3 \log n_{\zeta}(r_k) + \log r_k.$$
⁽²⁹⁾

Since $\log M_f(r_k) \le G(r_k) = A_k + B_k + C_k + D_k$, from (26), (27), (28), (29), and (21) we see that

$$\log \log M(r_k) = o\Big(\log r_k \log \big(N_{\zeta}(r_k) / \log r_k\big)\Big)$$

as $k \to \infty$. This implies (14), because (r_k) is a sequence of points in the set *E*. Theorem 3 is proved.

Proof of Theorem 1. First of all, we note that if *a*, *b*, and *c* are positive numbers such that $a < b \le c/e$, then the inequality $a \log(c/a) < b \log(c/b)$ holds. In fact, considering the function $y = x \log(c/x)$ for a fixed c > 0, we see that this function is increasing on (0, c/e]. This implies the required inequality.

Now let $\Phi \in \Omega$, $\alpha \in L$ be a function satisfying (10), $\zeta \in \mathcal{Z}$ be a sequence such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all $r \geq r_0$, and let $E \subset (1, +\infty)$ be a set for which (8) holds. Clearly we can assume that $r_0 > 1$ and $\varphi(\log r_0) \geq e$.

Since $N_{\zeta}(r) / \log r \ge \varphi(\log r)$ for all $r \ge r_0$, (10) implies (13). According to Theorem 3, there exists a function $f \in \mathcal{E}_{\zeta}$ such that (14) holds.

Suppose that $r \ge r_0$ is a fixed number, and set $s = \exp(\Phi^{-1}(N_{\zeta}(r)))$. Then

$$\log r \leq \Phi^{-1}(N_{\zeta}(r)) = \log s \leq \log s \frac{\varphi(\log s)}{e} \leq \frac{N_{\zeta}(r)}{e}$$

Recalling the remark formulated at the beginning of the proof, we get

$$\log r \log \frac{N_{\zeta}(r)}{\log r} \leq \log s \log \frac{N_{\zeta}(r)}{\log s} = \log s \log \varphi(\log s) = \Phi^{-1}(N_{\zeta}(r)) \log \varphi(\Phi^{-1}(N_{\zeta}(r))).$$

Therefore, (11) follows from (14). Theorem 1 is proved.

Proof of Theorem 4. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). We prove that there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and sequences (s_k) and (r_k) satisfying (3) such that $N_{\zeta}(r_k) = \Phi(\log r_k)$ for all integers $k \geq 1$ and for any function $f \in \mathcal{E}_{\zeta}$ we have (12).

We may suppose without loss of generality that there exists a number $\sigma_0 > 1$ such that $\Phi(\sigma) = 0$ for all $\sigma \leq \sigma_0$. Note also that for a fixed number $a \in \mathbb{R}$ the function

$$h(\sigma) = \frac{\Phi(\sigma) - \Phi(a)}{\sigma - a}$$

is continuous, increasing to $+\infty$ on the interval $(a, +\infty)$. Furthermore, according to (7), there exists a function $\gamma \in L$ such that the set *S* of all positive integers *n* satisfying the inequality

$$\gamma(\log n)\psi(\log n) \le \log n \tag{30}$$

is infinite. From what has been said it follows that there exists a positive, increasing to $+\infty$ sequence (r_k) with $r_1 = \exp(\sigma_0)$ such that it together with the sequence

$$n_k = \frac{\Phi(\log r_{k+1}) - \Phi(\log r_k)}{\log r_{k+1} - \log r_k}, \quad k = 1, 2, \dots,$$

have the following properties:

- (i) $n_k \in S$ for all integers $k \ge 1$, and $n_k = o(n_{k+1})$ as $k \to +\infty$;
- (ii) $\log^3 r_k < \log r_{k+1}$ for all integers $k \ge 1$;
- (iii) $\log^2 r_k = o(\gamma(\log n_k))$ as $k \to \infty$.

Put $s_1 = e$ and let $s_{k+1} = \exp(\log r_{k+1} / \log r_k)$ for an arbitrary integer $k \ge 1$. It is clear that the sequences (s_k) and (r_k) satisfy (3) according to (ii).

Let $m_1 = n_1$, and let $m_k = n_k - n_{k-1}$ for each integer $k \ge 2$. Note that $\sum_{j=1}^k m_j = n_k$ for any integer $k \ge 1$.

We form the required sequence $\zeta = (\zeta_n)$ as follows

$$\underbrace{r_1,\ldots,r_1}_{m_1 \text{ times}}, \underbrace{r_2,\ldots,r_2}_{m_2 \text{ times}}, \ldots, \underbrace{r_k,\ldots,r_k}_{m_k \text{ times}}, \ldots,$$

that is, we set $\zeta_n = r_k$ for all integers $n \in (n_k - m_k, n_k]$ and $k \ge 1$. Then $n_{\zeta}(r) = 0$ if $r \in [0, r_1)$, and $n_{\zeta}(r) = n_k$ if $r \in [r_k, r_{k+1})$ for some integer $k \ge 1$.

Since $N_{\zeta}(r) = \Phi(\log r) = 0$ for all $r \in (0, r_1]$, and, for every integer $k \ge 1$,

$$N_{\zeta}(r_{k+1}) - N_{\zeta}(r_k) = \int_{r_k}^{r_{k+1}} \frac{n_k}{t} dt = n_k \left(\log r_{k+1} - \log r_k\right) = \Phi\left(\log r_{k+1}\right) - \Phi\left(\log r_k\right),$$

we see that $N_{\zeta}(r_k) = \Phi(\log r_k)$ for all integers $k \ge 1$. In addition, since $N_{\zeta}(r)$ is a linear function of log *r* and $\Phi(\log r)$ is a convex function of log *r* on each of the segments $[r_k, r_{k+1}]$, we have $N_{\zeta}(r) \ge \Phi(\log r)$ for all r > 0.

Suppose that $f \in \mathcal{E}(\zeta)$ is an arbitrary function. We prove that the function *f* satisfies (15).

For every r > 0, let $c_p(r)$ be the *p*th Fourier coefficient of the function $\log |f(re^{i\theta})|$. The function *f* has no zeros in the circle $\mathbb{D} = \{z \in \mathbb{C} : |z| < r_1\}$, and therefore for every integer $p \ge 1$ and all r > 0 we have (19), where the numbers a_p are Maclaurin coefficients of an analytic function in \mathbb{D} of the form (18). Since $r_1 > e$, there exists a constant C > 0 such that $|a_p| \le 2C$ for every integer $p \ge 1$. Therefore, according to (19),

$$|c_p(r)| \ge \frac{1}{2p} \sum_{|\zeta_n| < r} \left(\left(\frac{r}{\zeta_n} \right)^p - \left(\frac{\zeta_n}{r} \right)^p \right) - Cr^p.$$
(31)

Let $k \ge 1$ be an integer. We put $p_k = \left[\frac{\log n_k}{2\log r_k}\right]$. Note that by (iii) and by (30) with $n = n_k$ we have $p_k \to +\infty$ as $k \to \infty$. Since by (i) we have $m_k \sim n_k$ as $k \to +\infty$, we get

$$\log\left(\frac{m_k}{p_k}\left(\frac{s_{k+1}}{r_k}\right)^{p_k}\right) = p_k \log s_{k+1} + \log m_k - p_k \log r_k - \log p_k \ge p_k \log s_{k+1} + \frac{1}{3} \log n_k, \quad (32)$$

if $k \ge k_1$. Therefore, using (31) with $r = s_{k+1}$ and $p = p_k$, and taking into account that by (ii) we have $\log r_k = o(\log s_{k+1})$ as $k \to \infty$, we obtain

$$|c_{p_k}(s_{k+1})| \ge \frac{m_k}{2p_k} \left(\left(\frac{s_{k+1}}{r_k} \right)^p - \left(\frac{r_k}{s_{k+1}} \right)^p \right) - Cs_{k+1}^{p_k} \ge \frac{m_k}{3p_k} \left(\frac{s_{k+1}}{r_k} \right)^{p_k} - Cs_{k+1}^{p_k} \ge \frac{m_k}{4p_k} \left(\frac{s_{k+1}}{r_k} \right)^{p_k},$$

if $k \ge k_2$. Therefore, according to Lemma 2 and (32),

$$\log T_f(s_{k+1}) \ge \log |c_{p_k}(s_{k+1})| - \log 2 \ge p_k \log s_{k+1}, \quad k \ge k_3.$$

Further, taking into account that for each integer $k \ge 1$ we have

$$N_{\zeta}(r_{k+1}) = \int_{r_1}^{r_{k+1}} \frac{n_{\zeta}(t)}{t} dt \le \int_{r_1}^{r_{k+1}} \frac{n_k}{t} dt \le n_k \log r_{k+1},$$

and using (30) with $n = n_k$, for all integers $k \ge k_4$ we obtain

$$\frac{\log T_f(s_{k+1})}{\log r_{k+1}\psi(\log(N_{\zeta}(r_{k+1})/\log r_{k+1}))} \ge \frac{p_k \log s_{k+1}}{\log r_{k+1}\psi(\log n_k)} = \frac{p_k}{\log r_k}\frac{1}{\psi(\log n_k)}$$
$$\ge \frac{\log n_k}{3\log^2 r_k}\frac{\gamma(\log n_k)}{\log n_k} = \frac{\gamma(\log n_k)}{3\log^2 r_k}.$$

This and (iii) imply (15). Theorem 4 is proved.

4 Some open problems

In connection with Theorems E and G, the following two problems arise.

Problem 1. *Is it possible to find a function* $\alpha \in L$ *such that for every sequence* $\zeta \in \mathcal{Z}$ *there exist a function* $f \in \mathcal{E}_{\zeta}$ *for which* (4) *holds as* $r \to +\infty$ *outside an exceptional set* $E \subset (1, +\infty)$ *satisfying* (6)?

Problem 2. *Is it possible to find a function* $\alpha \in L$ *such that for every sequence* $\zeta \in Z$ *and an arbitrary set* $E \subset (1, +\infty)$ *satisfying* (8) *there exists a function* $f \in \mathcal{E}_{\zeta}$ *for which* (9) *holds?*

In other words, does α in Theorem E (in Theorem G) necessarily depend on ζ ?

It is clear that if the answer to Problem 1 is positive, then the answer to Problem 2 is also positive. A negative answer to Problem 1 will mean that the estimate given in Theorem E for the size of the exceptional set *E* is best possible. In this regard, we note that questions about the sizes of exceptional sets in various asymptotic relations between characteristics of entire functions were investigated, for example, in [6,9–12,17–19].

The following problem arises in connection with Theorem 1.

Problem 3. Let $\Phi \in \Omega$, and let $\alpha \in L$ be a function such that (10) is not satisfied. Is it true that there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \ge \Phi(\ln r)$ for all sufficiently large r and a set $E \subset (1, +\infty)$ satisfying (8) such that (11) is false for every function $f \in \mathcal{E}_{\zeta}$?

References

- Andrusyak I.V., Filevych P.V. The growth of an entire function with a given sequence of zeros. Mat. Stud. 2008, 30 (2), 115–124.
- [2] Andrusyak I.V., Filevych P.V. The minimal growth of entire function with given zeros. Nauk. Visn. Chernivets'kogo Univ. Mat. 2008, 421, 13–19. (in Ukrainian)
- [3] Andrusyak I.V., Filevych P.V. The growth of entire function with zero sets having integer-valued exponent of convergence. Mat. Stud. 2009, 32 (1), 12–20. (in Ukrainian)
- [4] Andrusyak I.V., Filevych P.V. The minimal growth of entire functions with given zeros along unbounded sets. Mat. Stud. 2020, 54 (2), 146–153. doi:10.30970/ms.54.2.146-153

- [5] Andrusyak I.V., Filevych P.V., Oryshchyn O.H. Minimal growth of entire functions with prescribed zeros outside exceptional sets. Mat. Stud. 2022, 58 (1), 51–57. doi:10.30970/ms.58.1.51-57
- [6] Bergweiler W. On meromorphic functions that share three values and on the exceptional set in Wiman-Valiron theory. Kodai Math. J. 1990, 13 (1), 1–9. doi:10.2996/kmj/1138039154
- [7] Bergweiler W. Canonical products of infinite order. J. Reine Angew. Math. 1992, 430, 85–107. doi: 10.1515/crll.1992.430.85
- [8] Bergweiler W. A question of Gol'dberg concerning entire functions with prescribed zeros. J. Anal. Math. 1994, 63 (1), 121–129. doi:10.1007/BF03008421
- [9] Filevych P.V. On the London theorem concerning the Borel relation for entire functions. Ukrainian Math. J. 1998, 50 (11), 1801–1804. doi:10.1007/BF02524490
- [10] Filevych P.V. On an estimate of the size of the exceptional set in the lemma on the logarithmic derivative. Math. Notes 2000, 67 (4), 512–515. doi:10.1007/BF02676408
- [11] Filevych P.V. An exact estimate for the measure of the exceptional set in the Borel relation for entire functions. Ukrainian Math. J. 2001, 53 (2), 328–332. doi:10.1023/A:1010489609188
- [12] Filevych P.V. Asymptotic relations between maximums of absolute values and maximums of real parts of entire functions. Math. Notes 2004, 75 (3-4), 410–417. doi:10.1023/B:MATN.0000023320.27440.57
- [13] Gol'dberg A.A. The representation of a meromorphic function in the form of a quotient of entire functions. Izv. Vyssh. Uchebn. Zaved. Mat., 1972, (10), 13–17. (in Russian)
- [14] Gol'dberg A.A., Ostrovskii I.V. Value Distribution of Meromorphic Functions. In: Translations of Mathematical Monographs, 236. Amer. Math. Soc., Providence, RI, 2008.
- [15] Miles J. On the growth of entire functions with zero sets having infinite exponent of convergence. Ann. Acad. Sci. Fenn. Math. 2002, 27, 69–90.
- [16] Sheremeta M.M. A remark to the construction of canonical products of minimal growth. Zh. Mat. Fiz. Anal. Geom., 2004, 11 (2), 243–248.
- [17] Skaskiv O.B., Filevych P.V. On the size of an exceptional set in the Wiman theorem. Mat. Stud. 1999, 12 (1), 31–36.
- [18] Skaskiv O.B., Salo T.M. Entire Dirichlet series of rapid growth and new estimates for the measure of exceptional sets in theorems of the Wiman-Valiron type. Ukrainian. Math. J., 2001, 53 (6), 978–991. doi:10.1023/A:1013308103502
- Skaskiv O.B., Salo T.M. Minimum modulus of lacunary power series and h-measure of exceptional sets. Ufa Math. J. 2017, 9 (4), 135–144. doi:10.13108/2017-9-4-135

Received 17.06.2023

Андрусяк І.В., Філевич П.В. Відносне зростання цілої функції та інтегральної лічильної функції її нулів // Карпатські матем. публ. — 2024. — Т.16, №1. — С. 5–15.

Нехай (ζ_n) — комплексна послідовність така, що $0 < |\zeta_1| \leq |\zeta_2| \leq \dots$ і $\zeta_n \to \infty$, $n \to \infty$, N(r) — усереднена лічильна функція цієї послідовності, а α — додатна, неперервна, зростаюча до $+\infty$ на \mathbb{R} функція, для якої $\alpha(r) = o(\ln(N(r)/\ln r)), r \to +\infty$. Доведено, що для кожної множини $E \subset (1, +\infty)$, яка задовольняє оцінку $\int_E r^{\alpha(r)} dr = +\infty$, існує ціла функція f з нулями в точках ζ_n і лише в них (з урахуванням кратності), для якої правильне співвідношення

$$\lim_{r \in E, r \to +\infty} \frac{\ln \ln M(r)}{\ln r \ln (N(r) / \ln r)} = 0$$

де M(r) — максимум модуля функції f. Показано також, що наведене співвідношення є в певному сенсі остаточним.

Ключові слова і фрази: ціла функція, максимум модуля, характеристика Неванлінни, нуль, лічильна функція, усереднена лічильна функція.