Comparative growth of an entire function and the integrated counting function of its zeros

Andrusyak I.V., Filevych P.V.

Let $\left(\zeta_{n}\right)$ be a sequence of complex numbers such that $\zeta_{n} \rightarrow \infty$ as $n \rightarrow \infty, N(r)$ be the integrated counting function of this sequence, and let α be a positive continuous and increasing to $+\infty$ function on \mathbb{R} for which $\alpha(r)=o(\log (N(r) / \log r))$ as $r \rightarrow+\infty$. It is proved that for any set $E \subset(1,+\infty)$ satisfying $\int_{E} r^{\alpha(r)} d r=+\infty$, there exists an entire function f whose zeros are precisely the ζ_{n}, with multiplicities taken into account, such that the relation

$$
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M(r)}{\log r \log (N(r) / \log r)}=0
$$

holds, where $M(r)$ is the maximum modulus of the function f. It is also shown that this relation is best possible in a certain sense.

Key words and phrases: entire function, maximum modulus, Nevanlinna characteristic, zero, counting function, integrated counting function.

Lviv Polytechnic National University, 5 Mytropolyt Andrei str., 79016, Lviv, Ukraine
E-mail: andrusyak.ivanna@gmail.com (Andrusyak I.V.), p.v.filevych@gmail.com (Filevych P.V.)

1 Introduction and results

Let \mathcal{Z} be the class of all complex sequences $\zeta=\left(\zeta_{n}\right)$ such that $0<\left|\zeta_{1}\right| \leq\left|\zeta_{2}\right| \leq \ldots$ and $\zeta_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For any sequence ζ belonging to the class \mathcal{Z}, by $\mathcal{E}(\zeta)$ we denote the class of all entire functions whose zeros are precisely the ζ_{n}, where a complex number that occurs m times in the sequence ζ corresponds to a zero of multiplicity m. For every $r \geq 0$, let $n_{\zeta}(r)$ and $N_{\zeta}(r)$ be the counting function and the integrated counting function of this sequence, respectively, that is

$$
n_{\zeta}(r)=\sum_{\left|\zeta_{n}\right| \leq r} 1, \quad N_{\zeta}(r)=\int_{0}^{r} \frac{n_{\zeta}(t)}{t} d t
$$

For an entire function f and every $r \geq 0$, we denote by $M_{f}(r)$ and $T_{f}(r)$ the maximum modulus and the Nevanlinna characteristic of the function f, respectively, i.e.

$$
M_{f}(r)=\max \{|f(z)|:|z|=r\}, \quad T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

By L we denote the class of all positive continuous and increasing to $+\infty$ functions on \mathbb{R}.
Let $\zeta \in \mathcal{Z}$. It is well known that the growth of functions $f \in \mathcal{E}(\zeta)$, which is usually identified with the growth of $\log M_{f}(r)$ or $T_{f}(r)$, can be arbitrarily rapid compared to the

[^0]growth of the functions $n_{\zeta}(r)$ and $N_{\zeta}(r)$. Many authors (see, for example, [1-5,7,8, 13, 15, 16]) investigated the opposite, in a certain sense, and more interesting question: how slow can the growth of a function $f \in \mathcal{E}(\zeta)$ be with respect to $n_{\zeta}(r)$ or $N_{\zeta}(r)$? In particular, the following two theorems that generalize two results of W. Bergweiler [8] were proved in [4].

Theorem A ([4]). Let $l \in L$. Then for any sequence $\zeta \in \mathcal{Z}$ such that $n_{\zeta}(r) \geq l(r)$ for all large r and for every unbounded set $E \subset(1,+\infty)$ there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$
\begin{equation*}
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M_{f}(r)}{\log n_{\zeta}(r) \log l^{-1}\left(n_{\zeta}(r)\right)}=0 \tag{1}
\end{equation*}
$$

Theorem B ([4]). Let $l \in L$, and let ψ be a positive function on \mathbb{R} satisfying

$$
\begin{equation*}
\liminf _{x \rightarrow+\infty} \frac{\psi(\log [x])}{\log x}=0 . \tag{2}
\end{equation*}
$$

Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $n_{\zeta}(r) \geq l(r)$ for all large r and $n_{\zeta}(r-0)=l(r)$ on an unbounded from above set of values of r and a set $F \subset(1,+\infty)$ of upper logarithmic density 1 such that for an arbitrary function $f \in \mathcal{E}_{\zeta}$ we have

$$
\psi\left(\log n_{\zeta}(r)\right) \log l^{-1}\left(n_{\zeta}(r)\right)=o\left(\log \log M_{f}(r)\right)
$$

as $r \rightarrow+\infty$ through the set F.
It is clear that if (2) is not satisfied for some positive function ψ on \mathbb{R}, then $\log n_{\zeta}(r)$ in (1) can be replaced by $\psi\left(\log n_{\zeta}(r)\right)$. According to Theorem B, the same replacement is impossible when (2) is satisfied. Therefore, Theorem B shows that relation (1) is best possible.

Note also that the proof of Theorem B given in [4] shows that the set F in this theorem can be expressed in the form $F=\bigcup_{k=1}^{\infty}\left(s_{k}, r_{k}\right)$, where

$$
\begin{equation*}
1<s_{1}<r_{1}<s_{2}<r_{2}<\ldots, \quad \lim _{n \rightarrow \infty} \frac{\log r_{k}}{\log s_{k}}=+\infty . \tag{3}
\end{equation*}
$$

In this article, we establish results of the type of Theorems A and B for the function $N_{\zeta}(r)$ instead of $n_{\zeta}(r)$.

First of all, we note that, by Theorem B, the growth of each function f from the class \mathcal{E}_{ζ} can be arbitrarily rapid compared to the growth of the counting function $n_{\zeta}(r)$ along a large set of values r. In other words, for an arbitrary function $h \in L$ there exist a sequence $\zeta \in \mathcal{Z}$ and a set $F \subset(1,+\infty)$ of upper logarithmic density 1 such that for every function $f \in \mathcal{E}_{\zeta}$ we have

$$
h\left(n_{\zeta}(r)\right)=o\left(\log \log M_{f}(r)\right)
$$

as $r \rightarrow+\infty$ through the set F.
A similar situation is impossible for the integrated counting function $N_{\zeta}(r)$. This follows from the following theorem of A.A. Gol'dberg.

Theorem C ([13]). Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$
\begin{equation*}
\log \log M_{f}(r)=o\left(N_{\zeta}(r)\right) \tag{4}
\end{equation*}
$$

as $r \rightarrow+\infty$ outside an exceptional set $E \subset(1,+\infty)$ of finite logarithmic measure.

This result is best possible in the following sense.
Theorem D ([13]). Let $\psi \in L$ be an arbitrary function satisfying $\psi(x)=o(x)$ as $x \rightarrow+\infty$. Then there exist a sequence $\zeta \in \mathcal{Z}$ and a set $F \subset(0, r)$ of upper linear density 1 such that for every function $f \in \mathcal{E}_{\zeta}$ we have

$$
\begin{equation*}
\psi\left(N_{\zeta}(r)\right)=o\left(\log \log M_{f}(r)\right) \tag{5}
\end{equation*}
$$

as $r \rightarrow+\infty$ through the set F.
The estimates for the sizes of the sets E and F in Theorems C and D can be sharpened.
Theorem E ([1]). Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then there exist a function $f \in \mathcal{E}_{\zeta}$ and a function $\alpha \in L$ such that (4) holds as $r \rightarrow+\infty$ outside an exceptional set $E \subset(1,+\infty)$ satisfying

$$
\begin{equation*}
\int_{E} r^{\alpha(r)} d r<+\infty \tag{6}
\end{equation*}
$$

Theorem F ([1]). Let $\psi \in L$ be an arbitrary function such that

$$
\begin{equation*}
\liminf _{x \rightarrow+\infty} \frac{\psi(x)}{x}=0 \tag{7}
\end{equation*}
$$

Then there exist a sequence $\zeta \in \mathcal{Z}$ and sequences $\left(s_{k}\right)$ and $\left(r_{k}\right)$ satisfying (3) such that for any function $f \in \mathcal{E}_{\zeta}$ we have (5) as $r \rightarrow+\infty$ through the set $F=\bigcup_{k=1}^{\infty}\left(s_{k} ; r_{k}\right)$.

In connection with the above results, the following question arises: is it possible to find a function $h \in L$ such that for an arbitrary sequence $\zeta \in \mathcal{Z}$ and every unbounded set $E \subset(1,+\infty)$ there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M_{f}(r)}{h\left(N_{\zeta}(r)\right)}=0 ?
$$

The answer to this question remains open, but it will be positive under additional (in some sense even minimal) assumptions about the size of the set E. This fact is confirmed by the following theorem, which directly follows from Theorem E.
Theorem G. Let $\zeta \in \mathcal{Z}$ be an arbitrary sequence. Then it is possible to find a function $\alpha \in L$ such that for an arbitrary set $E \subset(1,+\infty)$ satisfying

$$
\begin{equation*}
\int_{E} r^{\alpha(r)} d r=+\infty \tag{8}
\end{equation*}
$$

there exists a function $f \in \mathcal{\mathcal { E } _ { \zeta }}$ for which

$$
\begin{equation*}
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M_{f}(r)}{N_{\zeta}(r)}=0 \tag{9}
\end{equation*}
$$

Let $\psi \in L$. If, for the function $\psi,(7)$ is not satisfied, then Theorem G will remain correct when $N_{\zeta}(r)$ in (9) is replaced by $\psi\left(N_{\zeta}(r)\right)$. It follows from Theorem F that such a replacement is impossible if (7) is satisfied. Therefore, (9) is best possible in the whole class \mathcal{Z}. We will show below that in wide subclasses of the class \mathcal{Z} this relation can be refined.

Denote by Ω the class of all non-negative, convex functions Φ on \mathbb{R} such that $\sigma=o(\Phi(\sigma))$ as $\sigma \rightarrow+\infty$. We remark that $N_{\zeta}\left(e^{\sigma}\right)$ is a function from the class Ω for each sequence $\zeta \in \mathcal{Z}$.

Let $\Phi \in \Omega$. Then, as it is easy to see, the function $\varphi(\sigma)=\Phi(\sigma) / \sigma$ is continuous, increasing to $+\infty$ on $\left(\sigma_{0},+\infty\right)$ for some $\sigma_{0}>0$.

Theorem 1. Let $\Phi \in \Omega$, and $\alpha \in L$. If

$$
\begin{equation*}
\alpha(r)=o(\log \varphi(\log r)), \quad r \rightarrow+\infty, \tag{10}
\end{equation*}
$$

then, for any sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and for an arbitrary set $E \subset(1,+\infty)$ satisfying (8), there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$
\begin{equation*}
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M_{f}(r)}{\Phi^{-1}\left(N_{\zeta}(r)\right) \log \varphi\left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)}=0 . \tag{11}
\end{equation*}
$$

If $x \rightarrow+\infty$, then, taking $\sigma=\Phi^{-1}(x)$, we get

$$
\Phi^{-1}(x) \log \varphi\left(\Phi^{-1}(x)\right)=\sigma \log \varphi(\sigma)=\frac{\log \varphi(\sigma)}{\varphi(\sigma)} \Phi(\sigma)=\frac{\log \varphi(\sigma)}{\varphi(\sigma)} x=o(x)
$$

Therefore, (11) is stronger than (9). Moreover, as the following theorem shows, (11) is exact in the sense that in it $\log \varphi\left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)$ cannot be replaced by $\psi\left(\log \varphi\left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)\right)$, where $\psi \in L$ is an arbitrary function satisfying (2). It is clear that such a replacement is possible for every $\psi \in L$ that does not satisfy (2).
Theorem 2. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and $N_{\zeta}(r)=\Phi(\log r)$ on an unbounded from above set of values of r and sequences $\left(s_{k}\right)$ and $\left(r_{k}\right)$ satisfying (3) such that for any function $f \in \mathcal{E}_{\zeta}$ we have

$$
\begin{equation*}
\Phi^{-1}\left(N_{\zeta}(r)\right) \psi\left(\log \varphi\left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)\right)=o\left(\log T_{f}(r)\right) \tag{12}
\end{equation*}
$$

as $r \rightarrow+\infty$ through the set $F=\bigcup_{k=1}^{\infty}\left(s_{k} ; r_{k}\right)$.
Theorems 1 and 2 are easy to obtain from the following two theorems.
Theorem 3. Let $\zeta \in \mathcal{Z}$, and let $\alpha \in L$. If

$$
\begin{equation*}
\alpha(r)=o\left(\log \left(N_{\zeta}(r) / \log r\right)\right), \quad r \rightarrow+\infty, \tag{13}
\end{equation*}
$$

then for every set $E \subset(1,+\infty)$ satisfying (8) there exists a function $f \in \mathcal{E}_{\zeta}$ such that

$$
\begin{equation*}
\liminf _{r \in E, r \rightarrow+\infty} \frac{\log \log M_{f}(r)}{\log r \log \left(N_{\zeta}(r) / \log r\right)}=0 \tag{14}
\end{equation*}
$$

Theorem 4. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). Then there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and sequences $\left(s_{k}\right)$ and $\left(r_{k}\right)$ satisfying (3) such that $N_{\zeta}\left(r_{k}\right)=\Phi\left(\log r_{k}\right)$ for all integers $k \geq 1$ and for any function $f \in \mathcal{E}_{\zeta}$ we have

$$
\begin{equation*}
\log r_{k} \psi\left(\log \left(N_{\zeta}\left(r_{k}\right) / \log r_{k}\right)\right)=o\left(\log T_{f}\left(s_{k}\right)\right), \quad k \rightarrow \infty . \tag{15}
\end{equation*}
$$

Note that we can rewrite (15) in the form

$$
\Phi^{-1}\left(N_{\zeta}\left(r_{k}\right)\right) \psi\left(\log \varphi\left(\Phi^{-1}\left(N_{\zeta}\left(r_{k}\right)\right)\right)\right)=o\left(\log T_{f}\left(s_{k}\right)\right), \quad k \rightarrow \infty
$$

It follows that (12) holds as $r \rightarrow+\infty$ through the set $F=\bigcup_{k=1}^{\infty}\left(s_{k} ; r_{k}\right)$. Therefore, Theorem 2 is an immediate consequence of Theorem 4.

To prove Theorems 1, 3 and 4 we will need some auxiliary results, which are given in the next section.

2 Auxiliary results

Let $z \in \mathbb{C}$, and let $p \geq 0$ be an integer. By $E(z, p)$ we denote the usual Weierstrass primary factor, i.e.

$$
E(z, p)= \begin{cases}1-z, & \text { if } p=0 \\ (1-z) \exp \left(\sum_{n=1}^{p} \frac{z^{n}}{n}\right), & \text { if } p \geq 1\end{cases}
$$

Lemma 1 ([2]). Let $\zeta=\left(\zeta_{n}\right)$ be a sequence from the class \mathcal{Z}. Then there exists a non-negative sequence $\left(\lambda_{n}\right)$ with the following properties:
(i) $\lambda_{n} \sim \log n / \log \left|\zeta_{n}\right|$ as $n \rightarrow \infty$;
(ii) for every sequence $\left(p_{n}\right)$ of non-negative integers such that $p_{n} \geq\left[\lambda_{n}\right]$ for all sufficiently large n, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} \tag{16}
\end{equation*}
$$

converges for every $r \geq 0$, and the product

$$
\begin{equation*}
\prod_{n=1}^{\infty} E\left(\frac{z}{\zeta_{n}}, p_{n}\right) \tag{17}
\end{equation*}
$$

converges uniformly and absolutely to an entire function $f \in \mathcal{E}_{\zeta}$ on any compact subset of \mathbb{C}, and for all $r \geq 0$ we have $\log M_{f}(r) \leq G(r)$, where $G(r)$ is the sum of series (16).

Let f be an entire function, $r>0$, and let $c_{p}(r)$ be the p th Fourier coefficient of the function $\log \left|f\left(r e^{i \theta}\right)\right|$, that is

$$
c_{p}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i p \theta} \log \left|f\left(r e^{i \theta}\right)\right| d \theta, \quad p \in \mathbb{Z}
$$

If $f(0) \neq 0$, then in a neighborhood \mathbb{D} of the point $z=0$ the function f has no zeros, and therefore there exists an analytic function

$$
\begin{equation*}
g(z)=\sum_{p=0}^{\infty} a_{p} z^{p} \tag{18}
\end{equation*}
$$

in \mathbb{D} such that $f(z)=e^{g(z)}$ for all $z \in \mathbb{D}$. Then, for every integer $p \geq 1$ and all $r>0$, by the Poisson-Jensen formula (see, for example, [14, p. 16-17]) we have

$$
\begin{equation*}
c_{p}(r)=\frac{1}{2} a_{p} r^{p}+\frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<r}\left(\left(\frac{r}{\zeta_{n}}\right)^{p}-\left(\overline{\frac{\zeta_{n}}{r}}\right)^{p}\right), \tag{19}
\end{equation*}
$$

where ζ_{n} are the zeros of the function f. In addition, the following statement is well known (see, for example, [14, p. 62]).

Lemma 2. Let f be an entire function. Then for every integer p and all $r>0$ the inequality $\left|c_{p}(r)\right| \leq 2 T_{f}(r)$ holds.

3 Proof of Theorems

Proof of Theorem 3. Let $\zeta=\left(\zeta_{n}\right)$ be a sequence from the class \mathcal{Z}, and let $\alpha \in L$ be a function that satisfies (13). We suppose that $E \subset(1,+\infty)$ is a set satisfying (8) and prove that there exists a function $f \in \mathcal{E}_{\zeta}$ such that (14) holds.

We set $\gamma(r)=N_{\zeta}(r) / \log r$ for all $r>1$ and note that

$$
\begin{equation*}
\log N_{\zeta}(r)=\log \gamma(r)+\log \log r=o(\log r \log \gamma(r))=o\left(\log r \log \left(N_{\zeta}(r) / \log r\right)\right) \tag{20}
\end{equation*}
$$

as $r \rightarrow+\infty$.
Let $r_{0}>\left|\zeta_{1}\right|$ be a fixed number. Consider the set $E_{1}=\left\{r>r_{0}: n_{\zeta}(r)>r^{\alpha(r)+1} N_{\zeta}^{2}(r)\right\}$. Since $n_{\zeta}(r)=r\left(N_{\zeta}(r)\right)_{+}^{\prime}$ for all $r \geq 0$, setting $y_{0}=N_{\zeta}\left(r_{0}\right)$, we have

$$
\int_{E_{1}} r^{\alpha(r)} d r \leq \int_{E_{1}} \frac{n_{\zeta}(r)}{r N_{\zeta}^{2}(r)} d r \leq \int_{r_{0}}^{+\infty} \frac{n_{\zeta}(r)}{r N_{\zeta}^{2}(r)} d r=\int_{r_{0}}^{+\infty} \frac{d N_{\zeta}(r)}{N_{\zeta}^{2}(r)}=\int_{y_{0}}^{+\infty} \frac{d y}{y^{2}}<+\infty .
$$

Thus, (8) implies that the set $E_{2}=E \backslash E_{1}$ is unbounded. In addition, if $r>r_{0}$ and $r \in E_{2}$, then $\log n_{\zeta}(r) \leq(\alpha(r)+1) \log r+2 \log N_{\zeta}(r)$, and therefore, using (13) and (20), we obtain

$$
\begin{equation*}
\log n_{\zeta}(r)=o\left(\log r \log \left(N_{\zeta}(r) / \log r\right)\right) \tag{21}
\end{equation*}
$$

as $r \rightarrow+\infty$ through the set E_{2}.
For the sequence ζ, let $\lambda=\left(\lambda_{n}\right)$ be a sequence whose existence is asserted by Lemma 1 . For every integer $n \geq 1$, we put $q_{n}=\left[\frac{2 \log n}{\log \left|\zeta_{n}\right|}\right]$. Note that $q_{n} \geq\left[\lambda_{n}\right]$ for all sufficiently large n.

Consider the series

$$
\sum_{n=0}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{q_{n}+1}
$$

that converges for all $r \geq 0$. For every $r \geq 0$, we put

$$
\begin{equation*}
m_{\zeta}(r)=\min \left\{m \geq n_{\zeta}(r)+2: \sum_{n=m}^{\infty}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{q_{n}+1} \leq 1\right\} \tag{22}
\end{equation*}
$$

and let $p_{\zeta}(r)$ be the smallest integer such that $p_{\zeta}(r) \geq q_{n}$ for all integers $n \in\left(n_{\zeta}(r), m_{\zeta}(r)\right)$ and, in addition,

$$
\begin{equation*}
\sum_{n_{\zeta}(r)<n<m_{\zeta}(r)}\left(\frac{r}{\left|\zeta_{n}\right|}\right)^{p_{\zeta}(r)+1} \leq 1 \tag{23}
\end{equation*}
$$

We note further that for any polynomial $Q(r)=\sum_{n=1}^{m} b_{n} r^{x_{n}}$, where b_{1}, \ldots, b_{n} and x_{1}, \ldots, x_{n} are positive real numbers, the relation $\log Q(r)=O(\log r)$ holds as $r \rightarrow+\infty$. Thus, since the set E_{2} is unbounded, in this set we can choose a sequence $\left(r_{k}\right)$ increasing to $+\infty$ such that for all integers $k \geq 2$ we have simultaneously

$$
\begin{gather*}
\log \sum_{n \leq m_{\zeta}\left(r_{k-1}\right)}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{q_{n}+1} \leq \frac{\log r_{k}}{k} \log \frac{N_{\zeta}\left(r_{k}\right)}{\log r_{k}}, \tag{24}\\
\log \sum_{j=1}^{k-1} \sum_{n_{\zeta}\left(r_{j}\right)<n<m_{\zeta}\left(r_{j}\right)}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{\zeta}\left(r_{j}\right)+1} \leq \frac{\log r_{k}}{k} \log \frac{N_{\zeta}\left(r_{k}\right)}{\log r_{k}}, \tag{25}\\
n_{\zeta}\left(\sqrt{r_{k}}\right) \geq m_{\zeta}\left(r_{k-1}\right)+2 .
\end{gather*}
$$

Let $k \geq 1$ be an integer. Put $l_{k}=n_{\zeta}\left(\sqrt{r_{k}}\right), n_{k}=n_{\zeta}\left(r_{k}\right)$ and $m_{k}=m_{\zeta}\left(r_{k}\right)$. Note that $l_{k} \leq n_{k}<m_{k} \leq l_{k+1}-2$.

For any integer $n \geq 1$, we set $p_{n}=p_{\zeta}\left(r_{k}\right)$ in the case when $n \in\left(n_{k}, m_{k}\right)$ for some integer $k \geq 1$, and let $p_{n}=q_{n}$ in the opposite case. Note that $p_{n} \geq q_{n}$ for every integer $n \geq 1$, and therefore series (16) converges for all $r \geq 0$. Then, by Lemma 1, product (17) converges uniformly and absolutely to an entire function $f \in \mathcal{E}_{\zeta}$ on any compact subset of \mathbb{C}, and for all $r \geq 0$ we have $\log M_{f}(r) \leq G(r)$, where $G(r)$ is the sum of series (16). Let us prove that for this function (14) holds.

Assume that $k \geq 2$ is an integer, and put

$$
A_{k}=\sum_{n \leq m_{k-1}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}, \quad B_{k}=\sum_{m_{k-1}<n<l_{k}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}, \quad C_{k}=\sum_{l_{k} \leq n \leq n_{k}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}, \quad D_{k}=\sum_{n>n_{k}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1} .
$$

We next estimate each of these sums.
From (24) and (25) it follows that

$$
\begin{equation*}
\log A_{k} \leq \frac{\log r_{k}}{k} \log \frac{N_{\zeta}\left(r_{k}\right)}{\log r_{k}}+\log 2 \tag{26}
\end{equation*}
$$

and by (23) and (22) we have

$$
\begin{equation*}
D_{k} \leq \sum_{n_{k}<n<m_{k}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{\zeta}\left(r_{k}\right)+1}+\sum_{n \geq m_{k}}\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{q_{n}+1} \leq 2 . \tag{27}
\end{equation*}
$$

Now we put

$$
\mu_{k}=\max \left\{r_{k}^{p_{n}+1}: m_{k-1}<n<l_{k}\right\} .
$$

Recalling that for every integer $n \in\left(m_{k-1}, l_{k}\right)$ the equality $p_{n}=q_{n}$ holds, we obtain

$$
\log \mu_{k} \leq\left(\frac{2 \log n_{\zeta}\left(\sqrt{r_{k}}\right)}{\log \left|\zeta_{m_{k-1}}\right|}+1\right) \log r_{k}
$$

Since $B_{k} \leq \mu_{k} G(1)$, and

$$
N_{\zeta}(r) \geq N_{\zeta}(r)-N_{\zeta}(\sqrt{r})=\int_{\sqrt{r}}^{r} \frac{n_{\zeta}(t)}{t} d t \geq n_{\zeta}(\sqrt{r}) \log \sqrt{r}
$$

for each $r>0$, we have

$$
\begin{equation*}
\log B_{k} \leq \log \mu_{k}+\log G(1) \leq \frac{2 \log r_{k}}{\log \left|\zeta_{m_{k-1}}\right|} \log \frac{2 N_{\zeta}\left(r_{k}\right)}{\log r_{k}}+\log r_{k}+\log G(1) \tag{28}
\end{equation*}
$$

Next, we put

$$
v_{k}=\max \left\{\left(\frac{r_{k}}{\left|\zeta_{n}\right|}\right)^{p_{n}+1}: l_{k} \leq n \leq n_{k}\right\}
$$

Since, for every integer $n \in\left[l_{k}, n_{k}\right]$, the equality $p_{n}=q_{n}$ and the inequality $\left|\zeta_{n}\right| \geq \sqrt{r_{k}}$ hold, we obtain

$$
\log v_{k} \leq\left(\frac{2 \log n_{\zeta}\left(r_{k}\right)}{\log \left|\zeta_{l_{k}}\right|}+1\right) \log \sqrt{r_{k}} \leq 2 \log n_{\zeta}\left(r_{k}\right)+\frac{1}{2} \log r_{k} .
$$

Noting that $C_{k} \leq v_{k} n_{k}=v_{k} n_{\zeta}\left(r_{k}\right)$, we have

$$
\begin{equation*}
\log C_{k} \leq \log v_{k}+\log n_{\zeta}\left(r_{k}\right) \leq 3 \log n_{\zeta}\left(r_{k}\right)+\log r_{k} \tag{29}
\end{equation*}
$$

Since $\log M_{f}\left(r_{k}\right) \leq G\left(r_{k}\right)=A_{k}+B_{k}+C_{k}+D_{k}$, from (26), (27), (28), (29), and (21) we see that

$$
\log \log M\left(r_{k}\right)=o\left(\log r_{k} \log \left(N_{\zeta}\left(r_{k}\right) / \log r_{k}\right)\right)
$$

as $k \rightarrow \infty$. This implies (14), because $\left(r_{k}\right)$ is a sequence of points in the set E. Theorem 3 is proved.

Proof of Theorem 1. First of all, we note that if a, b, and c are positive numbers such that $a<b \leq c / e$, then the inequality $a \log (c / a)<b \log (c / b)$ holds. In fact, considering the function $y=x \log (c / x)$ for a fixed $c>0$, we see that this function is increasing on $(0, c / e]$. This implies the required inequality.

Now let $\Phi \in \Omega, \alpha \in L$ be a function satisfying (10), $\zeta \in \mathcal{Z}$ be a sequence such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all $r \geq r_{0}$, and let $E \subset(1,+\infty)$ be a set for which (8) holds. Clearly we can assume that $r_{0}>1$ and $\varphi\left(\log r_{0}\right) \geq e$.

Since $N_{\zeta}(r) / \log r \geq \varphi(\log r)$ for all $r \geq r_{0}$, (10) implies (13). According to Theorem 3, there exists a function $f \in \mathcal{E}_{\zeta}$ such that (14) holds.

Suppose that $r \geq r_{0}$ is a fixed number, and set $s=\exp \left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)$. Then

$$
\log r \leq \Phi^{-1}\left(N_{\zeta}(r)\right)=\log s \leq \log s \frac{\varphi(\log s)}{e} \leq \frac{N_{\zeta}(r)}{e}
$$

Recalling the remark formulated at the beginning of the proof, we get

$$
\log r \log \frac{N_{\zeta}(r)}{\log r} \leq \log s \log \frac{N_{\zeta}(r)}{\log s}=\log s \log \varphi(\log s)=\Phi^{-1}\left(N_{\zeta}(r)\right) \log \varphi\left(\Phi^{-1}\left(N_{\zeta}(r)\right)\right)
$$

Therefore, (11) follows from (14). Theorem 1 is proved.
Proof of Theorem 4. Let $\Phi \in \Omega$, and let $\psi \in L$ be an arbitrary function satisfying (7). We prove that there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\log r)$ for all sufficiently large r and sequences $\left(s_{k}\right)$ and $\left(r_{k}\right)$ satisfying (3) such that $N_{\zeta}\left(r_{k}\right)=\Phi\left(\log r_{k}\right)$ for all integers $k \geq 1$ and for any function $f \in \mathcal{E}_{\zeta}$ we have (12).

We may suppose without loss of generality that there exists a number $\sigma_{0}>1$ such that $\Phi(\sigma)=0$ for all $\sigma \leq \sigma_{0}$. Note also that for a fixed number $a \in \mathbb{R}$ the function

$$
h(\sigma)=\frac{\Phi(\sigma)-\Phi(a)}{\sigma-a}
$$

is continuous, increasing to $+\infty$ on the interval $(a,+\infty)$. Furthermore, according to (7), there exists a function $\gamma \in L$ such that the set S of all positive integers n satisfying the inequality

$$
\begin{equation*}
\gamma(\log n) \psi(\log n) \leq \log n \tag{30}
\end{equation*}
$$

is infinite. From what has been said it follows that there exists a positive, increasing to $+\infty$ sequence $\left(r_{k}\right)$ with $r_{1}=\exp \left(\sigma_{0}\right)$ such that it together with the sequence

$$
n_{k}=\frac{\Phi\left(\log r_{k+1}\right)-\Phi\left(\log r_{k}\right)}{\log r_{k+1}-\log r_{k}}, \quad k=1,2, \ldots,
$$

have the following properties:
(i) $n_{k} \in S$ for all integers $k \geq 1$, and $n_{k}=o\left(n_{k+1}\right)$ as $k \rightarrow+\infty$;
(ii) $\log ^{3} r_{k}<\log r_{k+1}$ for all integers $k \geq 1$;
(iii) $\log ^{2} r_{k}=o\left(\gamma\left(\log n_{k}\right)\right)$ as $k \rightarrow \infty$.

Put $s_{1}=e$ and let $s_{k+1}=\exp \left(\log r_{k+1} / \log r_{k}\right)$ for an arbitrary integer $k \geq 1$. It is clear that the sequences $\left(s_{k}\right)$ and (r_{k}) satisfy (3) according to (ii).

Let $m_{1}=n_{1}$, and let $m_{k}=n_{k}-n_{k-1}$ for each integer $k \geq 2$. Note that $\sum_{j=1}^{k} m_{j}=n_{k}$ for any integer $k \geq 1$.

We form the required sequence $\zeta=\left(\zeta_{n}\right)$ as follows

$$
\underbrace{r_{1}, \ldots, r_{1}}_{m_{1} \text { times }}, \underbrace{r_{2}, \ldots, r_{2}}_{m_{2} \text { times }}, \ldots, \underbrace{r_{k}, \ldots, r_{k}}_{m_{k} \text { times }}, \ldots
$$

that is, we set $\zeta_{n}=r_{k}$ for all integers $n \in\left(n_{k}-m_{k}, n_{k}\right]$ and $k \geq 1$. Then $n_{\zeta}(r)=0$ if $r \in\left[0, r_{1}\right)$, and $n_{\zeta}(r)=n_{k}$ if $r \in\left[r_{k}, r_{k+1}\right)$ for some integer $k \geq 1$.

Since $N_{\zeta}(r)=\Phi(\log r)=0$ for all $r \in\left(0, r_{1}\right]$, and, for every integer $k \geq 1$,

$$
N_{\zeta}\left(r_{k+1}\right)-N_{\zeta}\left(r_{k}\right)=\int_{r_{k}}^{r_{k+1}} \frac{n_{k}}{t} d t=n_{k}\left(\log r_{k+1}-\log r_{k}\right)=\Phi\left(\log r_{k+1}\right)-\Phi\left(\log r_{k}\right)
$$

we see that $N_{\zeta}\left(r_{k}\right)=\Phi\left(\log r_{k}\right)$ for all integers $k \geq 1$. In addition, since $N_{\zeta}(r)$ is a linear function of $\log r$ and $\Phi(\log r)$ is a convex function of $\log r$ on each of the segments $\left[r_{k}, r_{k+1}\right.$], we have $N_{\zeta}(r) \geq \Phi(\log r)$ for all $r>0$.

Suppose that $f \in \mathcal{E}(\zeta)$ is an arbitrary function. We prove that the function f satisfies (15).
For every $r>0$, let $c_{p}(r)$ be the p th Fourier coefficient of the function $\log \left|f\left(r e^{i \theta}\right)\right|$. The function f has no zeros in the circle $\mathbb{D}=\left\{z \in \mathbb{C}:|z|<r_{1}\right\}$, and therefore for every integer $p \geq 1$ and all $r>0$ we have (19), where the numbers a_{p} are Maclaurin coefficients of an analytic function in \mathbb{D} of the form (18). Since $r_{1}>e$, there exists a constant $C>0$ such that $\left|a_{p}\right| \leq 2 C$ for every integer $p \geq 1$. Therefore, according to (19),

$$
\begin{equation*}
\left|c_{p}(r)\right| \geq \frac{1}{2 p} \sum_{\left|\zeta_{n}\right|<r}\left(\left(\frac{r}{\zeta_{n}}\right)^{p}-\left(\frac{\zeta_{n}}{r}\right)^{p}\right)-C r^{p} \tag{31}
\end{equation*}
$$

Let $k \geq 1$ be an integer. We put $p_{k}=\left[\frac{\log n_{k}}{2 \log r_{k}}\right]$. Note that by (iii) and by (30) with $n=n_{k}$ we have $p_{k} \rightarrow+\infty$ as $k \rightarrow \infty$. Since by (i) we have $m_{k} \sim n_{k}$ as $k \rightarrow+\infty$, we get

$$
\begin{equation*}
\log \left(\frac{m_{k}}{p_{k}}\left(\frac{s_{k+1}}{r_{k}}\right)^{p_{k}}\right)=p_{k} \log s_{k+1}+\log m_{k}-p_{k} \log r_{k}-\log p_{k} \geq p_{k} \log s_{k+1}+\frac{1}{3} \log n_{k} \tag{32}
\end{equation*}
$$

if $k \geq k_{1}$. Therefore, using (31) with $r=s_{k+1}$ and $p=p_{k}$, and taking into account that by (ii) we have $\log r_{k}=o\left(\log s_{k+1}\right)$ as $k \rightarrow \infty$, we obtain

$$
\left|c_{p_{k}}\left(s_{k+1}\right)\right| \geq \frac{m_{k}}{2 p_{k}}\left(\left(\frac{s_{k+1}}{r_{k}}\right)^{p}-\left(\frac{r_{k}}{s_{k+1}}\right)^{p}\right)-C s_{k+1}^{p_{k}} \geq \frac{m_{k}}{3 p_{k}}\left(\frac{s_{k+1}}{r_{k}}\right)^{p_{k}}-C s_{k+1}^{p_{k}} \geq \frac{m_{k}}{4 p_{k}}\left(\frac{s_{k+1}}{r_{k}}\right)^{p_{k}}
$$

if $k \geq k_{2}$. Therefore, according to Lemma 2 and (32),

$$
\log T_{f}\left(s_{k+1}\right) \geq \log \left|c_{p_{k}}\left(s_{k+1}\right)\right|-\log 2 \geq p_{k} \log s_{k+1}, \quad k \geq k_{3} .
$$

Further, taking into account that for each integer $k \geq 1$ we have

$$
N_{\zeta}\left(r_{k+1}\right)=\int_{r_{1}}^{r_{k+1}} \frac{n_{\zeta}(t)}{t} d t \leq \int_{r_{1}}^{r_{k+1}} \frac{n_{k}}{t} d t \leq n_{k} \log r_{k+1}
$$

and using (30) with $n=n_{k}$, for all integers $k \geq k_{4}$ we obtain

$$
\begin{aligned}
\frac{\log T_{f}\left(s_{k+1}\right)}{\log r_{k+1} \psi\left(\log \left(N_{\zeta}\left(r_{k+1}\right) / \log r_{k+1}\right)\right)} & \geq \frac{p_{k} \log s_{k+1}}{\log r_{k+1} \psi\left(\log n_{k}\right)}=\frac{p_{k}}{\log r_{k}} \frac{1}{\psi\left(\log n_{k}\right)} \\
& \geq \frac{\log n_{k}}{3 \log ^{2} r_{k}} \frac{\gamma\left(\log n_{k}\right)}{\log n_{k}}=\frac{\gamma\left(\log n_{k}\right)}{3 \log ^{2} r_{k}} .
\end{aligned}
$$

This and (iii) imply (15). Theorem 4 is proved.

4 Some open problems

In connection with Theorems E and G, the following two problems arise.
Problem 1. Is it possible to find a function $\alpha \in L$ such that for every sequence $\zeta \in \mathcal{Z}$ there exist a function $f \in \mathcal{E}_{\zeta}$ for which (4) holds as $r \rightarrow+\infty$ outside an exceptional set $E \subset(1,+\infty)$ satisfying (6)?

Problem 2. Is it possible to find a function $\alpha \in L$ such that for every sequence $\zeta \in \mathcal{Z}$ and an arbitrary set $E \subset(1,+\infty)$ satisfying (8) there exists a function $f \in \mathcal{E}_{\zeta}$ for which (9) holds?

In other words, does α in Theorem E (in Theorem G) necessarily depend on ζ ?
It is clear that if the answer to Problem 1 is positive, then the answer to Problem 2 is also positive. A negative answer to Problem 1 will mean that the estimate given in Theorem E for the size of the exceptional set E is best possible. In this regard, we note that questions about the sizes of exceptional sets in various asymptotic relations between characteristics of entire functions were investigated, for example, in [6,9-12,17-19].

The following problem arises in connection with Theorem 1.
Problem 3. Let $\Phi \in \Omega$, and let $\alpha \in L$ be a function such that (10) is not satisfied. Is it true that there exist a sequence $\zeta \in \mathcal{Z}$ such that $N_{\zeta}(r) \geq \Phi(\ln r)$ for all sufficiently large r and a set $E \subset(1,+\infty)$ satisfying (8) such that (11) is false for every function $f \in \mathcal{E}_{\zeta}$?

References

[1] Andrusyak I.V., Filevych P.V. The growth of an entire function with a given sequence of zeros. Mat. Stud. 2008, 30 (2), 115-124.
[2] Andrusyak I.V., Filevych P.V. The minimal growth of entire function with given zeros. Nauk. Visn. Chernivets'kogo Univ. Mat. 2008, 421, 13-19. (in Ukrainian)
[3] Andrusyak I.V., Filevych P.V. The growth of entire function with zero sets having integer-valued exponent of convergence. Mat. Stud. 2009, 32 (1), 12-20. (in Ukrainian)
[4] Andrusyak I.V., Filevych P.V. The minimal growth of entire functions with given zeros along unbounded sets. Mat. Stud. 2020, 54 (2), 146-153. doi:10.30970/ms.54.2.146-153
[5] Andrusyak I.V., Filevych P.V., Oryshchyn O.H. Minimal growth of entire functions with prescribed zeros outside exceptional sets. Mat. Stud. 2022, 58 (1), 51-57. doi:10.30970/ms.58.1.51-57
[6] Bergweiler W. On meromorphic functions that share three values and on the exceptional set in Wiman-Valiron theory. Kodai Math. J. 1990, 13 (1), 1-9. doi:10.2996/kmj/1138039154
[7] Bergweiler W. Canonical products of infinite order. J. Reine Angew. Math. 1992, 430, 85-107. doi: 10.1515/crll.1992.430.85
[8] Bergweiler W. A question of Gol'dberg concerning entire functions with prescribed zeros. J. Anal. Math. 1994, 63 (1), 121-129. doi:10.1007/BF03008421
[9] Filevych P.V. On the London theorem concerning the Borel relation for entire functions. Ukrainian Math. J. 1998, 50 (11), 1801-1804. doi:10.1007/BF02524490
[10] Filevych P.V. On an estimate of the size of the exceptional set in the lemma on the logarithmic derivative. Math. Notes 2000, 67 (4), 512-515. doi:10.1007/BF02676408
[11] Filevych P.V. An exact estimate for the measure of the exceptional set in the Borel relation for entire functions. Ukrainian Math. J. 2001, 53 (2), 328-332. doi:10.1023/A:1010489609188
[12] Filevych P.V. Asymptotic relations between maximums of absolute values and maximums of real parts of entire functions. Math. Notes 2004, 75 (3-4), 410-417. doi:10.1023/B:MATN.0000023320.27440.57
[13] Gol'dberg A.A. The representation of a meromorphic function in the form of a quotient of entire functions. Izv. Vyssh. Uchebn. Zaved. Mat., 1972, (10), 13-17. (in Russian)
[14] Gol'dberg A.A., Ostrovskii I.V. Value Distribution of Meromorphic Functions. In: Translations of Mathematical Monographs, 236. Amer. Math. Soc., Providence, RI, 2008.
[15] Miles J. On the growth of entire functions with zero sets having infinite exponent of convergence. Ann. Acad. Sci. Fenn. Math. 2002, 27, 69-90.
[16] Sheremeta M.M. A remark to the construction of canonical products of minimal growth. Zh. Mat. Fiz. Anal. Geom., 2004, 11 (2), 243-248.
[17] Skaskiv O.B., Filevych P.V. On the size of an exceptional set in the Wiman theorem. Mat. Stud. 1999, 12 (1), 31-36.
[18] Skaskiv O.B., Salo T.M. Entire Dirichlet series of rapid growth and new estimates for the measure of exceptional sets in theorems of the Wiman-Valiron type. Ukrainian. Math. J., 2001, 53 (6), 978-991. doi:10.1023/A:1013308103502
[19] Skaskiv O.B., Salo T.M. Minimum modulus of lacunary power series and h-measure of exceptional sets. Ufa Math. J. 2017, 9 (4), 135-144. doi:10.13108/2017-9-4-135

Received 17.06.2023

Андрусяк І.В., Філевич П.В. Відносне зростання цілої функиії та інтегральної лічильної функиії иї нулів // Карпатські матем. публ. — 2024. — Т.16, №1. — С. 5-15.

Нехай $\left(\zeta_{n}\right)$ - комплексна послідовність така, що $0<\left|\zeta_{1}\right| \leq\left|\zeta_{2}\right| \leq \ldots$ і $\zeta_{n} \rightarrow \infty, n \rightarrow \infty$, $N(r)$ - усереднена лічильна функція цієї послідовності, а α - додатна, неперервна, зростаюча до $+\infty$ на \mathbb{R} функція, для якої $\alpha(r)=o(\ln (N(r) / \ln r)), r \rightarrow+\infty$. Доведено, що для кожної множини $E \subset(1,+\infty)$, яка задовольняє оцінку $\int_{E} r^{\alpha(r)} d r=+\infty$, існує ціла функція f з нулями в точках ζ_{n} і лише в них (з урахуванням кратності), для якої правильне співвідношення

$$
\underline{\lim }_{r \in E, r \rightarrow+\infty} \frac{\ln \ln M(r)}{\ln r \ln (N(r) / \ln r)}=0
$$

де $M(r)$ - максимум модуля функції f. Показано також, що наведене співвідношення є в певному сенсі остаточним.

Ключові слова і фрази: ціла функція, максимум модуля, характеристика Неванлінни, нуль, лічильна функція, усереднена лічильна функція.

[^0]: У $\Delta \mathrm{K} 517.53$
 2020 Mathematics Subject Classification:30D15, 30D20, 30D35.

