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Comparative growth of an entire function and the integrated
counting function of its zeros

Andrusyak I.V., Filevych P.V.

Let (ζn) be a sequence of complex numbers such that ζn → ∞ as n → ∞, N(r) be the integrated

counting function of this sequence, and let α be a positive continuous and increasing to +∞ function

on R for which α(r) = o(log(N(r)/ log r)) as r → +∞. It is proved that for any set E ⊂ (1,+∞)

satisfying
∫

E rα(r)dr = +∞, there exists an entire function f whose zeros are precisely the ζn, with

multiplicities taken into account, such that the relation

lim inf
r∈E, r→+∞

log log M(r)

log r log(N(r)/ log r)
= 0

holds, where M(r) is the maximum modulus of the function f . It is also shown that this relation is

best possible in a certain sense.
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1 Introduction and results

Let Z be the class of all complex sequences ζ = (ζn) such that 0 < |ζ1| ≤ |ζ2| ≤ . . . and

ζn → ∞ as n → ∞. For any sequence ζ belonging to the class Z , by E(ζ) we denote the class

of all entire functions whose zeros are precisely the ζn, where a complex number that occurs

m times in the sequence ζ corresponds to a zero of multiplicity m. For every r ≥ 0, let nζ(r)

and Nζ(r) be the counting function and the integrated counting function of this sequence,

respectively, that is

nζ(r) = ∑
|ζn|≤r

1, Nζ(r) =
∫ r

0

nζ(t)

t
dt.

For an entire function f and every r ≥ 0, we denote by M f (r) and Tf (r) the maximum

modulus and the Nevanlinna characteristic of the function f , respectively, i.e.

M f (r) = max
{∣
∣ f (z)

∣
∣ : |z| = r

}

, Tf (r) =
1

2π

∫ 2π

0
log+

∣
∣ f
(
reiθ
)∣
∣dθ.

By L we denote the class of all positive continuous and increasing to +∞ functions on R.

Let ζ ∈ Z . It is well known that the growth of functions f ∈ E(ζ), which is usually

identified with the growth of log M f (r) or Tf (r), can be arbitrarily rapid compared to the
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growth of the functions nζ(r) and Nζ(r). Many authors (see, for example, [1–5, 7, 8, 13, 15, 16])

investigated the opposite, in a certain sense, and more interesting question: how slow can the

growth of a function f ∈ E(ζ) be with respect to nζ(r) or Nζ(r)? In particular, the following

two theorems that generalize two results of W. Bergweiler [8] were proved in [4].

Theorem A ([4]). Let l ∈ L. Then for any sequence ζ ∈ Z such that nζ(r) ≥ l(r) for all large r

and for every unbounded set E ⊂ (1,+∞) there exists a function f ∈ Eζ such that

lim inf
r∈E, r→+∞

log log M f (r)

log nζ(r) log l−1
(
nζ(r)

) = 0. (1)

Theorem B ([4]). Let l ∈ L, and let ψ be a positive function on R satisfying

lim inf
x→+∞

ψ
(

log[x]
)

log x
= 0. (2)

Then there exist a sequence ζ ∈ Z such that nζ(r) ≥ l(r) for all large r and nζ(r − 0) = l(r)

on an unbounded from above set of values of r and a set F ⊂ (1,+∞) of upper logarithmic

density 1 such that for an arbitrary function f ∈ Eζ we have

ψ
(

log nζ(r)
)

log l−1
(
nζ(r)

)
= o

(
log log M f (r)

)

as r → +∞ through the set F.

It is clear that if (2) is not satisfied for some positive function ψ on R, then log nζ(r) in (1)

can be replaced by ψ
(

log nζ(r)
)
. According to Theorem B, the same replacement is impossible

when (2) is satisfied. Therefore, Theorem B shows that relation (1) is best possible.

Note also that the proof of Theorem B given in [4] shows that the set F in this theorem can

be expressed in the form F =
⋃∞

k=1(sk, rk), where

1 < s1 < r1 < s2 < r2 < . . . , lim
n→∞

log rk

log sk
= +∞. (3)

In this article, we establish results of the type of Theorems A and B for the function Nζ(r)

instead of nζ(r).

First of all, we note that, by Theorem B, the growth of each function f from the class Eζ can

be arbitrarily rapid compared to the growth of the counting function nζ(r) along a large set of

values r. In other words, for an arbitrary function h ∈ L there exist a sequence ζ ∈ Z and a set

F ⊂ (1,+∞) of upper logarithmic density 1 such that for every function f ∈ Eζ we have

h
(
nζ(r)

)
= o

(
log log M f (r)

)

as r → +∞ through the set F.

A similar situation is impossible for the integrated counting function Nζ(r). This follows

from the following theorem of A.A. Gol’dberg.

Theorem C ([13]). Let ζ ∈ Z be an arbitrary sequence. Then there exists a function f ∈ Eζ

such that

log log M f (r) = o
(

Nζ(r)
)

(4)

as r → +∞ outside an exceptional set E ⊂ (1,+∞) of finite logarithmic measure.
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This result is best possible in the following sense.

Theorem D ([13]). Let ψ ∈ L be an arbitrary function satisfying ψ(x) = o(x) as x → +∞. Then

there exist a sequence ζ ∈ Z and a set F ⊂ (0, r) of upper linear density 1 such that for every

function f ∈ Eζ we have

ψ
(

Nζ(r)
)
= o

(
log log M f (r)

)
(5)

as r → +∞ through the set F.

The estimates for the sizes of the sets E and F in Theorems C and D can be sharpened.

Theorem E ([1]). Let ζ ∈ Z be an arbitrary sequence. Then there exist a function f ∈ Eζ

and a function α ∈ L such that (4) holds as r → +∞ outside an exceptional set E ⊂ (1,+∞)

satisfying
∫

E
rα(r)dr < +∞. (6)

Theorem F ([1]). Let ψ ∈ L be an arbitrary function such that

lim inf
x→+∞

ψ(x)

x
= 0. (7)

Then there exist a sequence ζ ∈ Z and sequences (sk) and (rk) satisfying (3) such that for any

function f ∈ Eζ we have (5) as r → +∞ through the set F =
⋃∞

k=1 (sk; rk).

In connection with the above results, the following question arises: is it possible to find a

function h ∈ L such that for an arbitrary sequence ζ ∈ Z and every unbounded set E ⊂ (1,+∞) there

exists a function f ∈ Eζ such that

lim inf
r∈E, r→+∞

log log M f (r)

h
(

Nζ(r)
) = 0?

The answer to this question remains open, but it will be positive under additional (in some

sense even minimal) assumptions about the size of the set E. This fact is confirmed by the

following theorem, which directly follows from Theorem E.

Theorem G. Let ζ ∈ Z be an arbitrary sequence. Then it is possible to find a function α ∈ L

such that for an arbitrary set E ⊂ (1,+∞) satisfying
∫

E
rα(r)dr = +∞ (8)

there exists a function f ∈ Eζ for which

lim inf
r∈E, r→+∞

log log M f (r)

Nζ(r)
= 0. (9)

Let ψ ∈ L. If, for the function ψ, (7) is not satisfied, then Theorem G will remain correct

when Nζ(r) in (9) is replaced by ψ
(

Nζ(r)
)
. It follows from Theorem F that such a replacement

is impossible if (7) is satisfied. Therefore, (9) is best possible in the whole class Z . We will

show below that in wide subclasses of the class Z this relation can be refined.

Denote by Ω the class of all non-negative, convex functions Φ on R such that σ = o
(
Φ(σ)

)

as σ → +∞. We remark that Nζ (e
σ) is a function from the class Ω for each sequence ζ ∈ Z .

Let Φ ∈ Ω. Then, as it is easy to see, the function ϕ(σ) = Φ(σ)/σ is continuous, increasing

to +∞ on (σ0,+∞) for some σ0 > 0.
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Theorem 1. Let Φ ∈ Ω, and α ∈ L. If

α(r) = o
(

log ϕ(log r)
)
, r → +∞, (10)

then, for any sequence ζ ∈ Z such that Nζ(r) ≥ Φ(log r) for all sufficiently large r and for an

arbitrary set E ⊂ (1,+∞) satisfying (8), there exists a function f ∈ Eζ such that

lim inf
r∈E, r→+∞

log log M f (r)

Φ−1
(

Nζ(r)
)

log ϕ
(

Φ−1
(

Nζ(r)
)) = 0. (11)

If x → +∞, then, taking σ = Φ−1(x), we get

Φ−1(x) log ϕ
(

Φ−1(x)
)

= σ log ϕ(σ) =
log ϕ(σ)

ϕ(σ)
Φ(σ) =

log ϕ(σ)

ϕ(σ)
x = o(x).

Therefore, (11) is stronger than (9). Moreover, as the following theorem shows, (11) is exact in

the sense that in it log ϕ
(
Φ−1(Nζ(r))

)
cannot be replaced by ψ

(

log ϕ
(
Φ−1(Nζ(r))

))

, where

ψ ∈ L is an arbitrary function satisfying (2). It is clear that such a replacement is possible for

every ψ ∈ L that does not satisfy (2).

Theorem 2. Let Φ ∈ Ω, and let ψ ∈ L be an arbitrary function satisfying (7). Then there exist

a sequence ζ ∈ Z such that Nζ(r) ≥ Φ(log r) for all sufficiently large r and Nζ(r) = Φ(log r)

on an unbounded from above set of values of r and sequences (sk) and (rk) satisfying (3) such

that for any function f ∈ Eζ we have

Φ−1
(

Nζ(r)
)
ψ
(

log ϕ
(
Φ−1(Nζ(r))

))

= o
(

log Tf (r)
)

(12)

as r → +∞ through the set F =
⋃∞

k=1 (sk; rk).

Theorems 1 and 2 are easy to obtain from the following two theorems.

Theorem 3. Let ζ ∈ Z , and let α ∈ L. If

α(r) = o
(

log(Nζ(r)/ log r)
)
, r → +∞, (13)

then for every set E ⊂ (1,+∞) satisfying (8) there exists a function f ∈ Eζ such that

lim inf
r∈E, r→+∞

log log M f (r)

log r log
(

Nζ(r)/ log r
) = 0. (14)

Theorem 4. Let Φ ∈ Ω, and let ψ ∈ L be an arbitrary function satisfying (7). Then there exist

a sequence ζ ∈ Z such that Nζ(r) ≥ Φ(log r) for all sufficiently large r and sequences (sk)

and (rk) satisfying (3) such that Nζ(rk) = Φ(log rk) for all integers k ≥ 1 and for any function

f ∈ Eζ we have

log rk ψ
(

log(Nζ(rk)/ log rk)
)
= o

(
log Tf (sk)

)
, k → ∞. (15)

Note that we can rewrite (15) in the form

Φ−1
(

Nζ(rk)
)
ψ
(

log ϕ
(
Φ−1

(
Nζ(rk)

)))

= o
(

log Tf (sk)
)
, k → ∞.

It follows that (12) holds as r → +∞ through the set F =
⋃∞

k=1 (sk; rk). Therefore, Theorem 2 is

an immediate consequence of Theorem 4.

To prove Theorems 1, 3 and 4 we will need some auxiliary results, which are given in the

next section.
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2 Auxiliary results

Let z ∈ C, and let p ≥ 0 be an integer. By E(z, p) we denote the usual Weierstrass primary

factor, i.e.

E(z, p) =







1 − z, if p = 0,

(1 − z) exp

(
p

∑
n=1

zn

n

)

, if p ≥ 1.

Lemma 1 ([2]). Let ζ = (ζn) be a sequence from the class Z . Then there exists a non-negative

sequence (λn) with the following properties:

(i) λn ∼ log n/ log |ζn| as n → ∞;

(ii) for every sequence (pn) of non-negative integers such that pn ≥ [λn] for all sufficiently

large n, the series
∞

∑
n=1

(
r

|ζn|

)pn+1

(16)

converges for every r ≥ 0, and the product

∞

∏
n=1

E

(
z

ζn
, pn

)

(17)

converges uniformly and absolutely to an entire function f ∈ Eζ on any compact subset

of C, and for all r ≥ 0 we have log M f (r) ≤ G(r), where G(r) is the sum of series (16).

Let f be an entire function, r > 0, and let cp(r) be the pth Fourier coefficient of the function

log
∣
∣ f
(
reiθ
)∣
∣, that is

cp(r) =
1

2π

∫ 2π

0
e−ipθ log

∣
∣ f
(
reiθ
)∣
∣dθ, p ∈ Z.

If f (0) 6= 0, then in a neighborhood D of the point z = 0 the function f has no zeros, and

therefore there exists an analytic function

g(z) =
∞

∑
p=0

apzp (18)

in D such that f (z) = eg(z) for all z ∈ D. Then, for every integer p ≥ 1 and all r > 0, by the

Poisson-Jensen formula (see, for example, [14, p. 16–17]) we have

cp(r) =
1

2
aprp +

1

2p ∑
|ζn|<r

((
r

ζn

)p

−
(

ζn

r

)p )

, (19)

where ζn are the zeros of the function f . In addition, the following statement is well known

(see, for example, [14, p. 62]).

Lemma 2. Let f be an entire function. Then for every integer p and all r > 0 the inequality

|cp(r)| ≤ 2Tf (r) holds.
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3 Proof of Theorems

Proof of Theorem 3. Let ζ = (ζn) be a sequence from the class Z , and let α ∈ L be a function that

satisfies (13). We suppose that E ⊂ (1,+∞) is a set satisfying (8) and prove that there exists a

function f ∈ Eζ such that (14) holds.

We set γ(r) = Nζ(r)/ log r for all r > 1 and note that

log Nζ(r) = log γ(r) + log log r = o
(

log r log γ(r)
)
= o

(
log r log

(
Nζ(r)/ log r

))
(20)

as r → +∞.

Let r0 > |ζ1| be a fixed number. Consider the set E1 =
{

r > r0 : nζ(r) > rα(r)+1N2
ζ (r)

}
.

Since nζ(r) = r
(

Nζ(r)
)′
+

for all r ≥ 0, setting y0 = Nζ(r0), we have

∫

E1

rα(r)dr ≤
∫

E1

nζ(r)

rN2
ζ (r)

dr ≤
∫ +∞

r0

nζ(r)

rN2
ζ (r)

dr =
∫ +∞

r0

dNζ(r)

N2
ζ (r)

=
∫ +∞

y0

dy

y2
< +∞.

Thus, (8) implies that the set E2 = E\E1 is unbounded. In addition, if r > r0 and r ∈ E2, then

log nζ(r) ≤
(
α(r) + 1

)
log r + 2 log Nζ(r), and therefore, using (13) and (20), we obtain

log nζ(r) = o
(

log r log
(

Nζ(r)/ log r
))

(21)

as r → +∞ through the set E2.

For the sequence ζ, let λ = (λn) be a sequence whose existence is asserted by Lemma 1.

For every integer n ≥ 1, we put qn =
[

2 log n
log |ζn|

]

. Note that qn ≥ [λn] for all sufficiently large n.

Consider the series
∞

∑
n=0

(
r

|ζn|

)qn+1

,

that converges for all r ≥ 0. For every r ≥ 0, we put

mζ(r) = min

{

m ≥ nζ(r) + 2 :
∞

∑
n=m

(
r

|ζn|

)qn+1

≤ 1

}

, (22)

and let pζ(r) be the smallest integer such that pζ(r) ≥ qn for all integers n ∈
(
nζ(r), mζ(r)

)

and, in addition,

∑
nζ(r)<n<mζ(r)

(
r

|ζn|

)pζ(r)+1

≤ 1. (23)

We note further that for any polynomial Q(r) = ∑
m
n=1 bnrxn , where b1, . . . , bn and x1, . . . , xn

are positive real numbers, the relation log Q(r) = O(log r) holds as r → +∞. Thus, since the

set E2 is unbounded, in this set we can choose a sequence (rk) increasing to +∞ such that for

all integers k ≥ 2 we have simultaneously

log ∑
n≤mζ(rk−1)

(
rk

|ζn|

)qn+1

≤ log rk

k
log

Nζ(rk)

log rk
, (24)

log
k−1

∑
j=1

∑
nζ(rj)<n<mζ(rj)

(
rk

|ζn|

)pζ(rj)+1

≤ log rk

k
log

Nζ(rk)

log rk
, (25)

nζ (
√

rk) ≥ mζ(rk−1) + 2.
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Let k ≥ 1 be an integer. Put lk = nζ

(√
rk

)
, nk = nζ(rk) and mk = mζ(rk). Note that

lk ≤ nk < mk ≤ lk+1 − 2.

For any integer n ≥ 1, we set pn = pζ(rk) in the case when n ∈ (nk, mk) for some integer

k ≥ 1, and let pn = qn in the opposite case. Note that pn ≥ qn for every integer n ≥ 1,

and therefore series (16) converges for all r ≥ 0. Then, by Lemma 1, product (17) converges

uniformly and absolutely to an entire function f ∈ Eζ on any compact subset of C, and for all

r ≥ 0 we have log M f (r) ≤ G(r), where G(r) is the sum of series (16). Let us prove that for this

function (14) holds.

Assume that k ≥ 2 is an integer, and put

Ak= ∑
n≤mk−1

(
rk

|ζn|

)pn+1

, Bk= ∑
mk−1<n<lk

(
rk

|ζn|

)pn+1

, Ck= ∑
lk≤n≤nk

(
rk

|ζn|

)pn+1

, Dk= ∑
n>nk

(
rk

|ζn|

)pn+1

.

We next estimate each of these sums.

From (24) and (25) it follows that

log Ak ≤
log rk

k
log

Nζ(rk)

log rk
+ log 2, (26)

and by (23) and (22) we have

Dk ≤ ∑
nk<n<mk

(
rk

|ζn|

)pζ(rk)+1

+ ∑
n≥mk

(
rk

|ζn|

)qn+1

≤ 2. (27)

Now we put

µk = max
{

r
pn+1
k : mk−1 < n < lk

}

.

Recalling that for every integer n ∈ (mk−1, lk) the equality pn = qn holds, we obtain

log µk ≤
(

2 log nζ(
√

rk)

log
∣
∣ζmk−1

∣
∣

+ 1

)

log rk.

Since Bk ≤ µkG(1), and

Nζ(r) ≥ Nζ(r)− Nζ

(√
r
)
=
∫ r

√
r

nζ(t)

t
dt ≥ nζ

(√
r
)

log
√

r

for each r > 0, we have

log Bk ≤ log µk + log G(1) ≤ 2 log rk

log |ζmk−1
| log

2Nζ(rk)

log rk
+ log rk + log G(1). (28)

Next, we put

νk = max

{(
rk

|ζn|

)pn+1

: lk ≤ n ≤ nk

}

.

Since, for every integer n ∈ [lk, nk], the equality pn = qn and the inequality |ζn| ≥
√

rk hold,

we obtain

log νk ≤
(

2 log nζ(rk)

log |ζlk
| + 1

)

log
√

rk ≤ 2 log nζ(rk) +
1

2
log rk.
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Noting that Ck ≤ νknk = νknζ(rk), we have

log Ck ≤ log νk + log nζ(rk) ≤ 3 log nζ(rk) + log rk. (29)

Since log M f (rk) ≤ G(rk) = Ak + Bk + Ck + Dk, from (26), (27), (28), (29), and (21) we see

that

log log M(rk) = o
(

log rk log
(

Nζ(rk)/ log rk

))

as k → ∞. This implies (14), because (rk) is a sequence of points in the set E. Theorem 3 is

proved. ✷

Proof of Theorem 1. First of all, we note that if a, b, and c are positive numbers such that

a < b ≤ c/e, then the inequality a log(c/a) < b log(c/b) holds. In fact, considering the

function y = x log(c/x) for a fixed c > 0, we see that this function is increasing on (0, c/e].

This implies the required inequality.

Now let Φ ∈ Ω, α ∈ L be a function satisfying (10), ζ ∈ Z be a sequence such that

Nζ(r) ≥ Φ(log r) for all r ≥ r0, and let E ⊂ (1,+∞) be a set for which (8) holds. Clearly

we can assume that r0 > 1 and ϕ(log r0) ≥ e.

Since Nζ(r)/ log r ≥ ϕ(log r) for all r ≥ r0, (10) implies (13). According to Theorem 3, there

exists a function f ∈ Eζ such that (14) holds.

Suppose that r ≥ r0 is a fixed number, and set s = exp
(
Φ−1

(
Nζ(r)

))
. Then

log r ≤ Φ−1
(

Nζ(r)
)
= log s ≤ log s

ϕ(log s)

e
≤ Nζ(r)

e
.

Recalling the remark formulated at the beginning of the proof, we get

log r log
Nζ(r)

log r
≤ log s log

Nζ(r)

log s
= log s log ϕ(log s) = Φ−1

(
Nζ(r)

)
log ϕ

(

Φ−1
(

Nζ(r)
))

.

Therefore, (11) follows from (14). Theorem 1 is proved.

Proof of Theorem 4. Let Φ ∈ Ω, and let ψ ∈ L be an arbitrary function satisfying (7). We prove

that there exist a sequence ζ ∈ Z such that Nζ(r) ≥ Φ(log r) for all sufficiently large r and

sequences (sk) and (rk) satisfying (3) such that Nζ(rk) = Φ(log rk) for all integers k ≥ 1 and

for any function f ∈ Eζ we have (12).

We may suppose without loss of generality that there exists a number σ0 > 1 such that

Φ(σ) = 0 for all σ ≤ σ0. Note also that for a fixed number a ∈ R the function

h(σ) =
Φ(σ)− Φ(a)

σ − a

is continuous, increasing to +∞ on the interval (a,+∞). Furthermore, according to (7), there

exists a function γ ∈ L such that the set S of all positive integers n satisfying the inequality

γ(log n)ψ(log n) ≤ log n (30)

is infinite. From what has been said it follows that there exists a positive, increasing to +∞

sequence (rk) with r1 = exp(σ0) such that it together with the sequence

nk =
Φ(log rk+1)− Φ(log rk)

log rk+1 − log rk
, k = 1, 2, . . . ,
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have the following properties:

(i) nk ∈ S for all integers k ≥ 1, and nk = o(nk+1) as k → +∞;

(ii) log3 rk < log rk+1 for all integers k ≥ 1;

(iii) log2 rk = o
(
γ(log nk)

)
as k → ∞.

Put s1 = e and let sk+1 = exp(log rk+1/ log rk) for an arbitrary integer k ≥ 1. It is clear that

the sequences (sk) and (rk) satisfy (3) according to (ii).

Let m1 = n1, and let mk = nk − nk−1 for each integer k ≥ 2. Note that ∑
k
j=1 mj = nk for any

integer k ≥ 1.

We form the required sequence ζ = (ζn) as follows

r1, . . . , r1
︸ ︷︷ ︸

m1 times

, r2, . . . , r2
︸ ︷︷ ︸

m2 times

, . . . , rk, . . . , rk
︸ ︷︷ ︸

mk times

, . . . ,

that is, we set ζn = rk for all integers n ∈ (nk − mk, nk] and k ≥ 1. Then nζ(r) = 0 if r ∈ [0, r1),

and nζ(r) = nk if r ∈ [rk, rk+1) for some integer k ≥ 1.

Since Nζ(r) = Φ(log r) = 0 for all r ∈ (0, r1], and, for every integer k ≥ 1,

Nζ (rk+1)− Nζ(rk) =
∫ rk+1

rk

nk

t
dt = nk (log rk+1 − log rk) = Φ (log rk+1)− Φ (log rk) ,

we see that Nζ(rk) = Φ (log rk) for all integers k ≥ 1. In addition, since Nζ(r) is a linear

function of log r and Φ(log r) is a convex function of log r on each of the segments [rk, rk+1], we

have Nζ(r) ≥ Φ(log r) for all r > 0.

Suppose that f ∈ E(ζ) is an arbitrary function. We prove that the function f satisfies (15).

For every r > 0, let cp(r) be the pth Fourier coefficient of the function log
∣
∣ f (reiθ)

∣
∣. The

function f has no zeros in the circle D = {z ∈ C : |z| < r1}, and therefore for every integer

p ≥ 1 and all r > 0 we have (19), where the numbers ap are Maclaurin coefficients of an

analytic function in D of the form (18). Since r1 > e, there exists a constant C > 0 such that
∣
∣ap

∣
∣ ≤ 2C for every integer p ≥ 1. Therefore, according to (19),

∣
∣cp(r)

∣
∣ ≥ 1

2p ∑
|ζn|<r

((
r

ζn

)p

−
(

ζn

r

)p )

− Crp. (31)

Let k ≥ 1 be an integer. We put pk =
[

log nk
2 log rk

]

. Note that by (iii) and by (30) with n = nk we

have pk → +∞ as k → ∞. Since by (i) we have mk ∼ nk as k → +∞, we get

log

(
mk

pk

(
sk+1

rk

)pk
)

= pk log sk+1 + log mk − pk log rk − log pk ≥ pk log sk+1 +
1

3
log nk, (32)

if k ≥ k1. Therefore, using (31) with r = sk+1 and p = pk, and taking into account that by (ii)

we have log rk = o(log sk+1) as k → ∞, we obtain

∣
∣cpk

(sk+1)
∣
∣ ≥ mk

2pk

((
sk+1

rk

)p

−
(

rk

sk+1

)p )

− Cs
pk
k+1 ≥

mk

3pk

(
sk+1

rk

)pk

− Cs
pk
k+1 ≥

mk

4pk

(
sk+1

rk

)pk

,
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if k ≥ k2. Therefore, according to Lemma 2 and (32),

log Tf (sk+1) ≥ log
∣
∣cpk

(sk+1)
∣
∣− log 2 ≥ pk log sk+1, k ≥ k3.

Further, taking into account that for each integer k ≥ 1 we have

Nζ(rk+1) =
∫ rk+1

r1

nζ(t)

t
dt ≤

∫ rk+1

r1

nk

t
dt ≤ nk log rk+1,

and using (30) with n = nk, for all integers k ≥ k4 we obtain

log Tf (sk+1)

log rk+1 ψ
(

log
(

Nζ(rk+1)/ log rk+1

)) ≥ pk log sk+1

log rk+1 ψ(log nk)
=

pk

log rk

1

ψ(log nk)

≥ log nk

3 log2 rk

γ(log nk)

log nk
=

γ(log nk)

3 log2 rk

.

This and (iii) imply (15). Theorem 4 is proved.

4 Some open problems

In connection with Theorems E and G, the following two problems arise.

Problem 1. Is it possible to find a function α ∈ L such that for every sequence ζ ∈ Z there

exist a function f ∈ Eζ for which (4) holds as r → +∞ outside an exceptional set E ⊂ (1,+∞)

satisfying (6)?

Problem 2. Is it possible to find a function α ∈ L such that for every sequence ζ ∈ Z and an

arbitrary set E ⊂ (1,+∞) satisfying (8) there exists a function f ∈ Eζ for which (9) holds?

In other words, does α in Theorem E (in Theorem G) necessarily depend on ζ?

It is clear that if the answer to Problem 1 is positive, then the answer to Problem 2 is also

positive. A negative answer to Problem 1 will mean that the estimate given in Theorem E for

the size of the exceptional set E is best possible. In this regard, we note that questions about

the sizes of exceptional sets in various asymptotic relations between characteristics of entire

functions were investigated, for example, in [6, 9–12, 17–19].

The following problem arises in connection with Theorem 1.

Problem 3. Let Φ ∈ Ω, and let α ∈ L be a function such that (10) is not satisfied. Is it true

that there exist a sequence ζ ∈ Z such that Nζ(r) ≥ Φ(ln r) for all sufficiently large r and a set

E ⊂ (1,+∞) satisfying (8) such that (11) is false for every function f ∈ Eζ?
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Андрусяк I.В., Фiлевич П.В. Вiдносне зростання цiлої функцiї та iнтегральної лiчильної функцiї її

нулiв // Карпатськi матем. публ. — 2024. — Т.16, №1. — C. 5–15.

Нехай (ζn) — комплексна послiдовнiсть така, що 0 < |ζ1| ≤ |ζ2| ≤ . . . i ζn → ∞, n → ∞,

N(r) — усереднена лiчильна функцiя цiєї послiдовностi, а α — додатна, неперервна, зростаюча

до +∞ на R функцiя, для якої α(r) = o(ln(N(r)/ ln r)), r → +∞. Доведено, що для кожної

множини E ⊂ (1,+∞), яка задовольняє оцiнку
∫

E rα(r)dr = +∞, iснує цiла функцiя f з нулями

в точках ζn i лише в них (з урахуванням кратностi), для якої правильне спiввiдношення

lim
r∈E, r→+∞

ln ln M(r)

ln r ln(N(r)/ ln r)
= 0,

де M(r) — максимум модуля функцiї f . Показано також, що наведене спiввiдношення є в

певному сенсi остаточним.

Ключовi слова i фрази: цiла функцiя, максимум модуля, характеристика Неванлiнни, нуль,

лiчильна функцiя, усереднена лiчильна функцiя.


