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Comparative growth of an entire function and the integrated
counting function of its zeros

Andrusyak 1.V., Filevych P.V.

Let ({») be a sequence of complex numbers such that {,, — oo as n — oo, N(7) be the integrated
counting function of this sequence, and let « be a positive continuous and increasing to +oo function
on R for which a(r) = o(log(N(r)/logr)) as r — +o0. It is proved that for any set E C (1, +c0)
satisfying [ r*("\dr = 4-co, there exists an entire function f whose zeros are precisely the ¢, with
multiplicities taken into account, such that the relation

. loglog M(r) _
relgrrllnfoo logrlog(N(r)/logr)

holds, where M(r) is the maximum modulus of the function f. It is also shown that this relation is
best possible in a certain sense.
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counting function, integrated counting function.
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1 Introduction and results

Let Z be the class of all complex sequences { = ({,) such that 0 < |{1| < |{2] < ... and
{n — o0 as n — oo. For any sequence { belonging to the class Z, by £({) we denote the class
of all entire functions whose zeros are precisely the {,, where a complex number that occurs
m times in the sequence { corresponds to a zero of multiplicity m. For every r > 0, let n(r)
and N¢(r) be the counting function and the integrated counting function of this sequence,
respectively, that is
(t)

Yy 1, Nn= [y
ne(r) Z , z(r) N )
[Cnl<r

For an entire function f and every r > 0, we denote by M((r) and T¢(r) the maximum
modulus and the Nevanlinna characteristic of the function f, respectively, i.e.

M¢(r) = max {}f(z)} sz| = r}, T¢(r) = %/OznlogﬂL ‘f(reie)}d(?.

By L we denote the class of all positive continuous and increasing to +oco functions on IR.
Let { € Z. It is well known that the growth of functions f € £({), which is usually
identified with the growth of log Mf(r) or T¢(r), can be arbitrarily rapid compared to the
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growth of the functions n,(r) and N;(r). Many authors (see, for example, [1-5,7,8,13, 15, 16])
investigated the opposite, in a certain sense, and more interesting question: how slow can the
growth of a function f € £({) be with respect to n;(r) or Ny (r)? In particular, the following
two theorems that generalize two results of W. Bergweiler [8] were proved in [4].

Theorem A ([4]). Let | € L. Then for any sequence { € Z such that n;(r) > I(r) for all large r
and for every unbounded set E C (1, +o0) there exists a function f € &; such that

. loglog M (r)
lim inf

rek, r—+oo logng (r) log 11 (n(r))

= 0. (1)

Theorem B ([4]). Let | € L, and let i be a positive function on R satisfying

1
tim ing Y U080 _ 2)
x—+oo  logx
Then there exist a sequence { € Z such that n;(r) > I(r) for all large r and n;(r —0) = I(r)
on an unbounded from above set of values of r and a set F C (1,+o0) of upper logarithmic

density 1 such that for an arbitrary function f € & we have

P (logng(r)) logl! (ng(r)) = o(loglog M¢(r))
asr — +oo through the set F.

It is clear that if (2) is not satisfied for some positive function ¢ on R, then logn;(r) in (1)
can be replaced by ¢ (logn;(r)). According to Theorem B, the same replacement is impossible
when (2) is satisfied. Therefore, Theorem B shows that relation (1) is best possible.

Note also that the proof of Theorem B given in [4] shows that the set F in this theorem can
be expressed in the form F = ;2 ; (sk, k), where

. logr
l<s1<nn<s<rn<..., lim 8Tk _
n%oologsk

3)

In this article, we establish results of the type of Theorems A and B for the function N¢(r)
instead of n;(r).

First of all, we note that, by Theorem B, the growth of each function f from the class £; can
be arbitrarily rapid compared to the growth of the counting function n,(r) along a large set of
values r. In other words, for an arbitrary function & € L there exist a sequence { € Z and a set
F C (1, +400) of upper logarithmic density 1 such that for every function f € £; we have

h(ng(r)) = o(loglog M(r))

as r — +oo through the set F.
A similar situation is impossible for the integrated counting function N (7). This follows
from the following theorem of A.A. Gol’dberg.

Theorem C ([13]). Let { € Z be an arbitrary sequence. Then there exists a function f € &;
such that

loglog Mf(r) = o(Ng(r)) (4)

asr — oo outside an exceptional set E C (1, +c0) of finite logarithmic measure.
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This result is best possible in the following sense.

Theorem D ([13]). Let ¢ € L be an arbitrary function satisfying (x) = o(x) as x — +oo. Then
there exist a sequence { € Z and a set F C (0,r) of upper linear density 1 such that for every
function f € & we have

¢ (Ng(r)) = o(loglog My (1)) (5)
asr — oo through the set F.

The estimates for the sizes of the sets E and F in Theorems C and D can be sharpened.

Theorem E ([1]). Let { € Z be an arbitrary sequence. Then there exist a function f € &;
and a function « € L such that (4) holds as r — oo outside an exceptional set E C (1,+0o0)
satisfying
/ P dr < +oo. ©6)
E

Theorem F ([1]). Let ¢ € L be an arbitrary function such that

lim inf M =0.

X—+00 X

(7)

Then there exist a sequence { € Z and sequences (si) and (ry) satisfying (3) such that for any
function f € & we have (5) asr — +oo through the set F = [ (sk; k).

In connection with the above results, the following question arises: is it possible to find a
function h € L such that for an arbitrary sequence { € Z and every unbounded set E C (1,4o0) there
exists a function f € & such that

loglog M
lim inf 0808 f(r) =

— = L =07
re€E, r—+oo h(Ng(r))

The answer to this question remains open, but it will be positive under additional (in some
sense even minimal) assumptions about the size of the set E. This fact is confirmed by the
following theorem, which directly follows from Theorem E.

Theorem G. Let { € Z be an arbitrary sequence. Then it is possible to find a function« € L
such that for an arbitrary set E C (1, 4o0) satisfying

/ P dr — oo ®)
E
there exists a function f € &; for which

loglog M
liming 08108 M¢(r)

reE, r——+oo Ng(i’) =0 ©)

Let ¢ € L. If, for the function ¢, (7) is not satisfied, then Theorem G will remain correct
when Ng(r) in (9) is replaced by ¢(N;(r)). It follows from Theorem F that such a replacement
is impossible if (7) is satistied. Therefore, (9) is best possible in the whole class Z. We will
show below that in wide subclasses of the class Z this relation can be refined.

Denote by Q) the class of all non-negative, convex functions ® on RR such that o = o(®(0))
as 0 — +o00. We remark that N; (¢”) is a function from the class ) for each sequence { € Z.

Let @ € Q). Then, as it is easy to see, the function ¢ () = ®(¢) /0 is continuous, increasing
to 400 on (0, +00) for some oy > 0.
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Theorem 1. Let® € O, and« € L. If
a(r) = o(log ¢(logr)), r— 400, (10)

then, for any sequence { € Z such that N;(r) > ®(logr) for all sufficiently large r and for an
arbitrary set E C (1, +oo) satisfying (8), there exists a function f € &; such that

_— loglog M (r)
1m in
reE, r—+o0 -1 (Ng(r)) log q)<c1)—1 (Ng(r))>

If x — o0, then, taking ¢ = ®~!(x), we get

= 0. (11)

& 1(x)log ¢ (CD’l(x)) =ologe(o) = 102((130()(7)@((7) = log(p(cr)x = o(x).

Therefore, (11) is stronger than (9). Moreover, as the following theorem shows, (11) is exact in
the sense that in it log ¢ (® ! (N;(r))) cannot be replaced by ( log ¢(@~! (Ng(r)))), where

¢ € L is an arbitrary function satisfying (2). It is clear that such a replacement is possible for
every § € L that does not satisfy (2).

Theorem 2. Let ® € (), and let ¢ € L be an arbitrary function satisfying (7). Then there exist
a sequence { € Z such that N;(r) > ®(logr) for all sufficiently large r and N;(r) = ®(logr)
on an unbounded from above set of values of r and sequences (si) and (ry) satisfying (3) such
that for any function f € £ we have

! (N (r)) ¢ (log o (®7' (N (1)) ) = o(log Ty(r)) (12)
asr — oo through the set F = J? 1 (sk; k).
Theorems 1 and 2 are easy to obtain from the following two theorems.
Theorem 3. Let{ € Z,and leta € L. If
a(r) = o(log(Nz(r)/logr)),  r— oo, (13)
then for every set E C (1, +00) satisfying (8) there exists a function f € &£; such that
loglog M¢(r)

lim inf =
reE, r—+eo logrlog (N (r)/ logr)

(14)

Theorem 4. Let ® € (), and let € L be an arbitrary function satisfying (7). Then there exist
a sequence { € Z such that N;(r) > ®(logr) for all sufficiently large r and sequences (si)
and (ry) satisfying (3) such that N; (i) = ®(logry) for all integers k > 1 and for any function
f € & we have

log 7 ¢ (1log(Nz (r¢)/ logry)) = o(log Tf(sk)), k — oo. (15)

Note that we can rewrite (15) in the form

® ! (N () (log @ (@ (N (r0))) ) = 0(log Ty(sK)), Kk — co.

It follows that (12) holds as r — oo through the set F = [J;?_; (sk; 7¢). Therefore, Theorem 2 is
an immediate consequence of Theorem 4.

To prove Theorems 1, 3 and 4 we will need some auxiliary results, which are given in the
next section.



Comparative growth of an entire function and the integrated counting function of its zeros 9

2 Auxiliary results

Letz € C, and let p > 0 be an integer. By E(z, p) we denote the usual Weierstrass primary
factor, i.e.
1—2z if p= 0,

n

Pz
(1—z)exp<2 7), ifp>1.

n=1

E@zp) =
Lemma 1 ([2]). Let { = ({,) be a sequence from the class Z. Then there exists a non-negative
sequence (A,) with the following properties:
(i) An ~logn/log|lu| asn — oo;

(ii) for every sequence (p,) of non-negative integers such that p, > [A,] for all sufficiently

large n, the series
() 1o
n

n=1

converges for every r > 0, and the product
= z
[T (Zm) )
n=1 g"

converges uniformly and absolutely to an entire function f € &; on any compact subset
of C, and for all r > 0 we have log M¢(r) < G(r), where G(r) is the sum of series (16).

Let f be an entire function, » > 0, and let ¢, (r) be the pth Fourier coefficient of the function
log |f(re®)|, that is

2w )
cp(r) = %/0 e P log|f(re)|do, p e z.

If £(0) # 0, then in a neighborhood ID of the point z = 0 the function f has no zeros, and
therefore there exists an analytic function

g(z) =) apz¥ (18)
p=0

in ID such that f(z) = e8(*) for all z € ID. Then, for every integer p > 1 and all r > 0, by the
Poisson-Jensen formula (see, for example, [14, p. 16-17]) we have

1 1 p _n 4
cp(r) = Ea;ﬂ’p + g |§nZ:<r ((é) - <€7> >, (19)

where (; are the zeros of the function f. In addition, the following statement is well known
(see, for example, [14, p. 62]).

Lemma 2. Let f be an entire function. Then for every integer p and all r > 0 the inequality
lep(r)| < 2T¢(r) holds.
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3 Proof of Theorems

Proof of Theorem 3. Let{ = ({,) be a sequence from the class Z, and leta € L be a function that
satisfies (13). We suppose that E C (1, 4+o0) is a set satisfying (8) and prove that there exists a
function f € &; such that (14) holds.

We set y(r) = N¢(r)/ logr for all ¥ > 1 and note that

log Nz (r) = logy(r) + loglogr = o(logrlog~y(r)) = o(logrlog (Nz(r)/logr)) (20)
asr — +oo.
Let rg > |Z1] be a fixed number. Consider the set Ey = {r > ry : ng(r) > r“(r)HNg(r)}.
Since n;(r) = r(Ng(r))/+ for all > 0, setting o = Nz (o), we have
/ () gy </ ng(r) b < /+oo ng(r) o /+oo dNg(r) _ /+ood_y e
E ~JE rNg(r) ~Jn rNg(r) o Ng(r) v P
Thus, (8) implies that the set E; = E\E; is unbounded. In addition, if ¥ > rp and r € E;, then
lognz(r) < (a(r) + 1) logr + 2log N¢ (r), and therefore, using (13) and (20), we obtain
logng(r) = o(logrlog (Nz(r)/logr)) (21)

as r — +oo through the set E;.

For the sequence {, let A = (A,) be a sequence whose existence is asserted by Lemma 1.
2logn
log |Cnl

that converges for all * > 0. For every r > 0, we put

nt1
me(r) = mm{m>n€ )+2: Z (’Cn )q < 1}, (22)

and let p;(r) be the smallest integer such that p;(r) > g, for all integers n € (nz(r), mg(r))
and, in addition,

For every integer n > 1, we put g, = [ } . Note that g, > [A,] for all sufficiently large n.

Consider the series

" pe(r)+1
L (rm) <1 @)

g( )<n<m§

We note further that for any polynomial Q(r) = Y;" ; b,r™, where by, ..., b, and xq,...,xy,
are positive real numbers, the relation log Q(r) = O(logr) holds as ¥ — +co. Thus, since the
set E; is unbounded, in this set we can choose a sequence (ry) increasing to +oo such that for
all integers k > 2 we have simultaneously

log Z < Ty >q71+1 < log?’k log Ng(i’k) (24)
n<mg(rg_1) ’C’l‘ -k logrk '
k—1 pe(ri)+1 1 N
"t 0g 1 7(re)
<
g ), L <!Cn\> =Tk 8 logry ” =

J=ng(r)) <n<mg(r;

ng (V/re) = mg(re_q) + 2.
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Let k > 1 be an integer. Put [y = ng (\/7k), nx = ng(ry) and my = mg(rr). Note that
e <myp <my < ljypq—2.

For any integer n > 1, we set p, = p¢(r¢) in the case when n € (1, my) for some integer
k > 1, and let p, = g, in the opposite case. Note that p, > g, for every integer n > 1,
and therefore series (16) converges for all r > 0. Then, by Lemma 1, product (17) converges
uniformly and absolutely to an entire function f € £; on any compact subset of C, and for all
r > 0 we have log M(r) < G(r), where G(r) is the sum of series (16). Let us prove that for this
function (14) holds.

Assume that k > 2 is an integer, and put

A= L <ﬁ>p Bi= L (%)W' C= L <|g§|>pm' D":2<|g§|>w

n<my_q My_1<n<ly L <n<ny n>ng

We next estimate each of these sums.
From (24) and (25) it follows that

logri | Ne(ry)

<
log Ay < k log r

+log?2, (26)

and by (23) and (22) we have

IN

(rk) 1 n+1
y (%)pg L y (é—"o“ <2 27)

n<n<my n>my

Dy

Now we put
i = max {rf”“ M < n < lk}.

Recalling that for every integer n € (mjy_1, ;) the equality p, = g, holds, we obtain

+ 1> log .

Since By < jxG(1), and

N (r) = Ng(r) = Ng (Vr) = /r "0t > ng (v7) log vF

for each r > 0, we have

2log g o 2Nz (7¢)

log By < log uy +1ogG(1) < Tt logry +1log G(1). (28)
k

= 1og[Tm 4| © log

Tx Pn+1
vk:max{<—> :lkgngnk}.
|Zn]

Since, for every integer n € [, ng], the equality p, = g, and the inequality || > /7 hold,
we obtain

Next, we put

2logng(ry)

1
< — .
og ‘glk’ + 1) log \/rx < 2logn§(rk) + 5 log g

log v, < <
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Noting that Cx < vgny = ving(ry), we have
log Cy < logv +logng(r) < 3logng(ry) + logry. (29)

Since log M (ry) < G(rr) = Ag + Bx + Ci + Dy, from (26), (27), (28), (29), and (21) we see
that

loglog M(r¢) = o<logrk log (Nz (r¢)/ log rk)>

as k — oo. This implies (14), because (ry) is a sequence of points in the set E. Theorem 3 is
proved. O

Proof of Theorem 1. First of all, we note that if a, b, and ¢ are positive numbers such that
a < b < c/e, then the inequality alog(c/a) < blog(c/b) holds. In fact, considering the
function y = xlog(c/x) for a fixed ¢ > 0, we see that this function is increasing on (0,c/e].
This implies the required inequality.

Now let ® € ), « € L be a function satisfying (10), { € Z be a sequence such that
Ng(r) > ®(logr) for all r > rp, and let E C (1,40c0) be a set for which (8) holds. Clearly
we can assume that vy > 1 and ¢(logry) > e.

Since N (r)/ logr > ¢(logr) for all r > rg, (10) implies (13). According to Theorem 3, there
exists a function f € & such that (14) holds.

Suppose that r > r is a fixed number, and set s = exp (1 (N;(r))). Then

) Ne(r)

logr < @ 1(N(r)) = logs < logs (p(l(;gs

Recalling the remark formulated at the beginning of the proof, we get

Ne(r) Ne(r) g1 1
logrlog@ < logslog@ = logs log ¢(logs) = @~ (N(r)) log(p<CI> (Ng(r))).
Therefore, (11) follows from (14). Theorem 1 is proved. 0

Proof of Theorem 4. Let ® € (), and let ¢ € L be an arbitrary function satisfying (7). We prove
that there exist a sequence { € Z such that N;(r) > ®(logr) for all sufficiently large r and
sequences (s) and (ry) satisfying (3) such that N;(r;) = ®(logry) for all integers k > 1 and
for any function f € £; we have (12).

We may suppose without loss of generality that there exists a number oy > 1 such that
®(0) = 0 for all ¢ < gp. Note also that for a fixed number a € R the function

oc—a
is continuous, increasing to +oo on the interval (a, +0c0). Furthermore, according to (7), there
exists a function v € L such that the set S of all positive integers n satisfying the inequality

y(logn)y(logn) < logn (30)

is infinite. From what has been said it follows that there exists a positive, increasing to +-co
sequence (1) with r; = exp(0p) such that it together with the sequence

®(logress) — Pllogre)

1,2,...,
log 71 —log 7y

ny =
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have the following properties:
(i) ng € S for all integers k > 1, and ny = o(ny,1) as k — +oo;
(ii) log® ry < logreiq for all integers k > 1;
(iii) log” 7 = o(y(logny)) as k — co.

Puts; = e and let sp 1 = exp(log .1/ logry) for an arbitrary integer k > 1. It is clear that
the sequences (si) and (ry) satisfy (3) according to (ii).

Let my = ny, and let my = ny — ny_ for each integer k > 2. Note that 2;-‘:1 mj = ny for any
integer k > 1.

We form the required sequence { = () as follows

i, 1,72, o V2, e e oy Tkse e oy iy o oy
N N N———

my times  mp times my times

that is, we set {,, = r¢ for all integers n € (ny — my, ng) and k > 1. Then ng(r) =0ifr € [0,1),
and ng(r) = ng if r € [ry, r¢41) for some integer k > 1.
Since Ng(r) = ®(logr) = 0 for all ¥ € (0,7], and, for every integer k > 1,

,
Ng (ri1) — Ne(re) = /rkkH %dt = ng (logrsq —logry) = @ (logriiq) — P (logry),
we see that Ny(r,) = ® (logry) for all integers k > 1. In addition, since N;(r) is a linear
function of log r and ®(log ) is a convex function of log r on each of the segments [ry, 1.1 1], we
have N;(r) > ®(logr) for all r > 0.

Suppose that f € £(() is an arbitrary function. We prove that the function f satisfies (15).

For every r > 0, let c(r) be the pth Fourier coefficient of the function log |f(re?)|. The
function f has no zeros in the circle D = {z € C: |z| < r1}, and therefore for every integer
p > 1and all r > 0 we have (19), where the numbers a, are Maclaurin coefficients of an
analytic function in D of the form (18). Since 1 > e, there exists a constant C > 0 such that
|ay| < 2C for every integer p > 1. Therefore, according to (19),

(@) e e

log

2Tog rk] . Note that by (iii) and by (30) with n = n; we
have py — 400 as k — oo. Since by (i) we have my ~ ny as k — 400, we get

Let k > 1 be an integer. We put py = [

M (S 1
log ﬁ 7 = pxlogsiy1 +logmy — prlogry — log pr > prlogsyi1 + 3 logng, (32)

if k > k. Therefore, using (31) with r = s;;1 and p = py, and taking into account that by (ii)
we have log 1y = o(log sk, 1) as k — oo, we obtain

p P Pk Pk
iy Sk T pr My Sk+1 Pr My Sk+1
> K ko — £ —C > 0 2= —C > —
}Cpk(sk+1)} - 2pk << Tk > <Sk+1> > Tkt = 3pk < Tk ) Pl = 4pk ( Tk ) ,
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if k > ky. Therefore, according to Lemma 2 and (32),

log T (sk+1) > log|cp, (sk41)| —log2 > prlogsii1, k> k.

Further, taking into account that for each integer k > 1 we have

r t r
N@(rk—i-l) = / o né—()dt S / o ﬂdt S ny 10g1’k+1,
1 t 1 t
and using (30) with n = ny, for all integers k > k4 we obtain

log Ty (sk-+1) o _ Prlogskyn P 1
log 71 9 (10g (N (rer1)/ 108 1))~ 108 7esn $llog ) — logry #(log ny)
logny y(logny)  y(logny)
~ 3log’r, logn 3log?ry

This and (iii) imply (15). Theorem 4 is proved. O

4 Some open problems
In connection with Theorems E and G, the following two problems arise.

Problem 1. Is it possible to find a function « € L such that for every sequence { € Z there
exist a function f € &; for which (4) holds as r — +oo outside an exceptional set E C (1, +c0)
satisfying (6)?

Problem 2. Is it possible to find a function « € L such that for every sequence { € Z and an
arbitrary set E C (1, +oo) satisfying (8) there exists a function f € &; for which (9) holds?

In other words, does &« in Theorem E (in Theorem G) necessarily depend on (?

It is clear that if the answer to Problem 1 is positive, then the answer to Problem 2 is also
positive. A negative answer to Problem 1 will mean that the estimate given in Theorem E for
the size of the exceptional set E is best possible. In this regard, we note that questions about
the sizes of exceptional sets in various asymptotic relations between characteristics of entire
functions were investigated, for example, in [6,9-12,17-19].

The following problem arises in connection with Theorem 1.

Problem 3. Let ® € ), and let « € L be a function such that (10) is not satisfied. Is it true
that there exist a sequence { € Z such that Ng(r) > ®(Inr) for all sufficiently large r and a set
E C (1, +o0) satisfying (8) such that (11) is false for every function f € &;?
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Hexaii ({,;) — xoMrmaekcHa DOcAiAOBHICTD Taka, o 0 < |{1| < [{o] < ... iy — o, n — oo,
N(r) — ycepeateHa AiumabHa dpyHKIIisI i€l IIOCAIAOBHOCTI, @ ® — AOAATHA, HETIEpepBHa, 3pOocTaoya
20 400 Ha R dyrxuis, arst sixoi a(r) = o(In(N(r)/Inr)), r — 4o00. AoBereHO, IO AASI KOKHOL
muOXMHN E C (1, +00), 5IKa 32A0BOABHSIE OIIHKY [ rdr = +oo, icHye 1Tira PYHKIIIS f 3 HyASIMUI
B TOUKaX {, i AMIIIe B HUX (3 ypaXyBaHHSIM KPAaTHOCTI), AASL SIKOI IIpaBUABHE CIIiBBi AHOIIIEHHSI

Inln M(r)

lim =0,
reE,lr__,Jroo In7In(N(r)/Inr)

Ae M(r) — MaxkcuMyM MOAyAst oyHkiil f. TTokasaHO TakoX, IO HaBeAeHE CIIiBBIAHOIIEHHS € B
MIeBHOMY CeHCi OCTaTOYHM.

Kntouosi cnoea i ppasu: 1ira pyHKIIIS, MAKCMMYM MOAYASI, XapakTepucTuka Heparniaay, HyAD,
AlumAbHa (pyHKIIS, ycepeAHeHa AfuMAbHA PYHKIIISL.



