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A new modification of the finite difference method for solving
transmission problems for two-interval differential equations

Çavuşoğlu S.1, Muxtarov F.S.2, Mukhtarov O.Sh.3

In this paper, we consider a new type of boundary value problems, the main feature of which is

the nature of the differential equation being solved and the imposed boundary conditions. Namely,

the differential equation under consideration is given on two non-intersecting segments with a com-

mon and, on which additional interaction conditions are imposed, the so-called transmission con-

ditions.

As is known, classical analytical and numerical methods are designed to solve one-interval dif-

ferential equations without transmission conditions. The main purpose of this work is to develop a

new modification of the classical finite difference method for solving two-interval boundary value

transmission problems.

Key words and phrases: finite difference method, singular point, transmission condition, two-

interval boundary value problem.

1 Erbaa Fatih Anatolian High School, Erbaa, Tokat, Türkiye
2 Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
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1 Introduction

Boundary value problems for differential equations arise as mathematical models of many

problems in physics, engineering and other branches of natural sciences. Evidently, not all

problems can be solved analytically. In some cases the given differential equation can be solved

analytically, but the implicit form of the exact solution may take such a complex form that it is

useless to use as an important tool to find approximate solutions of many types of linear and

nonlinear differential equations with unknown exact solutions. The finite difference method

(FDM, for short) is one of the simple but effective methods for solving various type ordinary

and partial differential equations [7,18]. This method was used by L. Euler in solving ordinary

differential equations and was extended to partial differential equations by C. Runge. Since

the early 1950s years the FDM has been used to numerically solve some problems in physics.

The main idea of this method is that it replace ordinary and partial derivaties included in the

differential equations by algebraic relations, the so-called finite differences that approximate

them.

Further development of this method was stimulated by the emergence of computers, which

offered a convenient basis for solving complex problems of mathematical physics [8, 19]. Later

many important theoretical results were obtained regarding the convergence, accuracy and

УДК 517.927, 519.62
2020 Mathematics Subject Classification: 34A36, 34B09, 65L10, 65L12.
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efficiency of FDM [1,2,10,13,14,20]. M.M. Chawla and C.P. Katti [4] investigate the convergence

of FDM for a class of singular boundary value problems (BVP’s, for short). E. Uǧurlu and

K. Tas [21] developed a new modification of the finite difference scheme and demonstrated its

applications to double singular BVP’s. M. Kumar [12] examined the applicability of three-point

FDM and 2nd order spline FDM to singular two-point BVP’s.

Two-interval BVP’s with singular points and additional transmission conditions arise in

solving of many mathematical physics problems, including those related to vibration of loaded

strings, diffraction, electric circuits, heat and mass transfer problems, thermal conduction

for a thin laminated plate, hydraulic fracturing problems etc. (see [9, 11] and references cited

therein).

O.S. Mukhtarov et. al. studied some theoretical aspects of BVP’s involving additional trans-

mission conditions at some interval singular points [15–17]. S. Çavuşoğlu et. al. suggested a

new generalization of FDM to solve a new type BVP’s consisting of two-interval differential

equations and boundary-transmission conditions [3, 5, 6].

Note that classical FDM cannot be directly applied to two-interval BVP’s with additional

transmission conditions. The main goal of this study is to develop a new modification of classi-

cal FDM, which can also be applied to two-interval BVP’s with singular points and additional

transmission conditions.

2 Finite difference method for second-order ordinary differential equa-

tions

The idea of the numerical method, called FDM, is based on replacing derivatives in the

considered differential equation with finite differences. As a result, the considered differential

equation is reduced to a computer-solvable linear algebraic equation system as follows.

Consider a two-order linear differential equation

y′′ + p(x)y′ + q(x)y = f (x), x ∈ [a, b] , (1)

subject to the separated boundary conditions

y(a) = α, y(b) = β, (2)

where the functions p(x), q(x) and f (x) are continuous on the interval [a, b], α, β are real

numbers. To discretize the boundary value problem (1), (2) the definition range [a, b] is divided

into finite number intervals [xj−1, xj], j = 1, . . . , N, where

xj = a + jh, j = 0, 1, . . . , N, h =
b − a

N
.

Based on Taylor’s expansion, we obtain

y(xj + h) = y(xj) + y′(xj)h + o
(

h2
)

, j = 0, 1, . . . , N − 1. (3)

From the last asymptotic equation it follows immediately that if h is sufficiently small, then

y′(xj) ≈
y(xj+1)− y(xj)

h
and y′(xj) ≈

y(xj)− y(xj−1)

h
.



A new modification of the finite difference method for solving transmission problems . . . 577

Based on Taylor’s expansion, we obtain

y(xj − h) = y(xj)− y′(xj)h + o
(

h2
)

, j = 1, . . . , N. (4)

From (3) and (4) it follows that if h is sufficiently small, then

y′(xj) ≈
y(xj+1)− y(xj−1)

2h
, j = 1, . . . , N − 1.

Definition 1. The finite differences

D+y(x) :=
y(x + h)− y(x)

h
, D−y(x) :=

y(x)− y(x − h)

h
and

D0y(x) :=
y(x + h)− y(x − h)

2h
are called forward finite difference, backward finite difference and centered finite difference of the

function y(x), respectively.

By using the similar technique, the first and second derivatives can be expressed by the

relations

y′(xj) ≈
1

2

(

D+y(xj) + D−y(xj)
)

=
1

2h

(

y(xj + h)− y(xj − h)
)

(5)

and

y′′(xj) ≈
1

h

(

D+y(xj)− D−y(xj)
)

=
1

h2

(

y(xj + 1)− 2y(xj) + y(xj − 1)
)

. (6)

Substituting these finite differences in the boundary value problem (1)–(2), we get the fol-

lowing finite difference approximation

yj+1 − 2yj + yj−1

h2
+ pj

yj+1 − yj−1

2h
+ qjyj = fj, j = 0, 1, . . . , N,

where the notations yj, pj, qj, fj are used for y(xj), p(xj), q(xj) and f (xj), respectively.

Thus we have the following linear system of algebraic equations
(

− pjh + 2
)

yj−1 +
(

2qjh
2 − 4

)

yj +
(

pjh + 2
)

yj+1 = 2h2 fj, j = 0, 1, 2, . . . , N,

with respect to the variables y0, y1, . . . , yN . Boundary conditions (2) give y0 = α and yN = β.

Now we can write (1)–(2) in the matrix-equation form

AY ≈ B, (7)

where Y and B are the component vectors, given by

Y =
(

y1, y2, . . . , yN−2, yN−1

)T
, B =

(

b1, b2, . . . , bN−2, bN−1

)T

and A = (aij), i, j = 0, 1, . . . , N − 1, is the (N − 1)× (N − 1) tridiagonal matrix. Here

aij =























2qih
2 − 4, for i = j,

pih + 2, for i = j − 1,

−pih + 2, for i = j + 1,

0, for |i − j| ≥ 2,

Y = (y1, y2, . . . , yN−2, yN−1)
T ,

bj =















2h2 f (xj) + (pih − 2)α, for i = 1,

2h2 f (xj), for 1 < i ≤ N − 2,

2h2 f (xj) + (pih − 2)β, for i = N − 1.

Since the linear system (7) of algebraic equations is tridiagonal, it can be solved efficiently

by the Crout or Cholesky algoritm [2].
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3 Solution of boundary-value transmission problems by using modified

finite difference method

Now, consider a boundary value transmission problem, consisting of the two-interval

differential equation

y′′ + p(x)y′ + q(x)y = f (x), x ∈ [a, c) ∪ (c, b] , (8)

separable boundary conditions

y(a) = α, y(b) = β (9)

and additional interaction conditions at the common end x = c, the so-called transmission

conditions

y(c − 0) = θy(c + 0) (10)

and

y′(c − 0) = γy′(c + 0), (11)

where p, q and f are continuous on each of intervals [a, c) and (c, b] with the finite one-hand

limit values p(c ∓ 0), q(c ∓ 0) and f (c ∓ 0), respectively, α, β, θ and γ are real constants.

Let us divide the domain of definition [a, b] into N + 1 equal subintervals by the grid points

xj = a + jh, j = 0, 1, . . . , N + 1, where h = b−a
N+1

is the mesh width, the distance between

successive grid points. Denote by pj, qj and fj the values of the data functions p, q and f at the

grid point xj, respectively, and by yj the approximation to the solution y(x) at the grid point xj.

Now we will calculate the grid solution of the boundary-value-transmission problem

(8)–(11) consisting of values y0, y1, . . . , yN , yN+1. From the boundary conditions (9) we obtain

that y0 = α, yN+1 = β. Therefore, we have N unknown values y1, y2, . . . , yN to compute.

If we apply the centered finite difference (CFD, for short) approximations to equation (8),

we get a set of algebraic equations

1

h2

(

yj−1 − 2yj + yj+1

)

+
1

2h
pj

(

yj+1 − yj−1

)

+ qjyj = fj, j = 1, . . . , N. (12)

Consider the case when xj 6= c for all j = 1, . . . , N. Then there is an unique k ∈ {0, 1, . . . , N}

such that xk < c < xk+1. At first we apply the CFD approximation to the equation (8) on the

left interval [x0, xk] = [a, xk], then we obtain a set of algebraic equations (12) for j = 1, . . . , k− 1.

Similarly, applying CFD to the same equation on the right interval [xk+1, xN+1] = [xk+1, b], we

get a set of algebraic equations (12) for j = k + 2, k + 3, . . . , N − 1. Thus we get N − 2 linear

algebraic equations for N unknown y1, y2, . . . , yN . Taking in view the fact that

y(c − 0) ≈ y(xk), y(c + 0) ≈ y(xk+1),

y′(c − 0) ≈ y′(xk), y′(c + 0) ≈ y′(xk+1)

for sufficiently large N and using finite difference approximation at the points xk and xk+1, the

transmission conditions (9) take the form

yk = θyk+1,
1

h
(yk − yk−1) =

θ

h
(yk+2 − yk+1) .
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Consequently, for the unknowns y1, y2, . . . , yN we have the following N linear algebraic

equations



























(

1 −
pjh

2

)

yj−1 +
(

−2 + qjh
2
)

yj +
(

1 +
pjh

2

)

yj+1 = h2 fj , for j = 1, 2, . . . , k − 1,

yj − θyj+1 = 0, for j = k,

−yj−1 + yj − γyj+1 − γyj+2 = 0, for j = k + 1,
(

1 −
pjh

2

)

yj−1 +
(

−2 + qjh
2
)

yj +
(

1 +
pjh

2

)

yj+1 = h2 fj , for j = k + 2, . . . , N.

The solution of this linear system of algebraic equations can be found by using MATLAB,

Octave or Mathematica. The case c = xj for some j = 1, . . . , N can be investigated similarly.

4 Convergence of the method and error estimates of the approximate

solution

When the approximate method is applied to solve a differential equation, it is very essential

to know how accurate the discrete values of the numerical solution relative to the true solution.

Definition 2. Let Ỹ = (y1, y2, . . . , yn) denote the finite difference solution. Let the values of

the exact solution at the grid points x1, x2, . . . , xn be denoted by ỹ = (y(x1), y(x2), . . . , y(xn)).

Then the vector

Ẽ =
(

y1 − y(x1), y2 − y(x2), . . . , yn − y(xn)
)

= Ỹ − ỹ

is said to be the global error vector.

Our goal is to find an admissible upper bound for this error with respect to the infinite

norm (so-called maximum norm), defined by ‖Ẽ‖∞ = max
1≤i≤n

∣

∣yi − y(xi)
∣

∣.

Denote h := max
1≤i≤n

(xi+1 − xi). If ‖Ẽ‖∞ converges to zero as h → ∞, then a finite difference

method is called convergent.

Moreover, if there is c ≥ 0 such that ‖Ẽ‖∞ ≤ Chq, q > 0, we say that the finite difference

method is qth order accurate.

Definition 3. If lim
h→0

‖Ẽ‖∞ = 0, then we say that the FDM is convergent with respect to the

norm ‖Ẽ‖∞.

Definition 4. The vector τ = Aỹ − F is said to be the local truncation error (LTE, for short), that

is τ = A(ỹ − Ỹ), where ỹ and Ỹ are the values of the exact solution and FDM solution at the

grid points.

Remark 1. Actually, the LTE is defined by replacing finite difference solutions yj by the exact

solution y(xi) in the finite difference approximation of the original differential equation.

We will show that the finite difference solution converges to the exact solution of the

BVP (1)–(2) as h converges to zero. Using formulas (5) and (6), one can show that the exact

solution ỹ =
(

y(x1), y(x2), . . . , y(xn)
)

satisfies the following linear system of equations

y(xj+1)− 2y(xj) + y(xj−1)

h2
−

h2

12
y(4)(ξ j) + pj

y(xj+1)− y(xj−1)

2h
−

h2

6
y(3)(ηj) + qjy(xj) = f (xj),

1 ≤ j ≤ n.
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On the other hand the FDM solution Ỹ = (y1, y2, . . . , yn) satisfies the following linear

system of equations

yj+1 − 2yj + yj−1

h2
+ pj

yj+1 − yj−1

2h
+ qjyj = fj, 1 ≤ j ≤ n.

Subtracting these equations one from the other, we get

ej+1 − 2ej + ej−1

h2
+ pj

ej+1 − ej−1

2h
+ qjej = h2 fj, 1 ≤ j ≤ n, (13)

where ej := y(xj)− yj is the global error, h2 fj is the local truncation error at the grid point xj

and

fj =
1

12
y(4)(ξ j)−

1

6
y(3)(ηj).

After multiplying both sides of (13) by h2 and then collecting the corresponding terms, we

obtain
(

1 −
h

2
pj

)

ej−1 +
(

−2 + h2qj

)

ej +
(

1 +
h

2
pj

)

ej+1 = h4 fj. (14)

To estimate the magnitude of the error vector ẽ = (e0, e1, . . . , eN+1), it is necessary to use an

infinite norm ‖ẽ‖∞, because it is used to measure grid functions.

The equation (14) can be written as

(

2 + h2qj

)

ei =
(

1 −
h

2
pj

)

eij+1 −
(

1 +
h

2
pj

)

eij + h4 fj.

Consequently

∣

∣

∣
2 + h2qj

∣

∣

∣

∣

∣ej

∣

∣ ≤
∣

∣

∣
1 −

h

2
pj

∣

∣

∣

∣

∣ej+1

∣

∣+
∣

∣

∣
1 +

h

2
pj

∣

∣

∣

∣

∣ej

∣

∣+ h4
∣

∣ fj

∣

∣

≤
∣

∣

∣
1 −

h

2
pj

∣

∣

∣
‖ẽ‖∞ +

∣

∣

∣
1 +

h

2
pj

∣

∣

∣
‖ẽ‖∞ + h4‖ f̃ ‖∞,

where ‖ f̃ ‖∞ = max
1≤j≤n

∣

∣ fj

∣

∣.

From the latter inequality it follows immediately that

∣

∣

∣
2 + h2qj

∣

∣

∣
‖ẽ‖∞ ≤

(∣

∣

∣
1 −

h

2
pj

∣

∣

∣
+

∣

∣

∣
1 +

h

2
pj

∣

∣

∣

)

‖ẽ‖∞ + h4‖ f̃ ‖∞. (15)

Since q(x) < 0, one can choose h > 0 small enough to satisfy

∣

∣

∣1 −
h

2
pj

∣

∣

∣+
∣

∣

∣1 +
h

2
pj

∣

∣

∣ = 2 and
∣

∣

∣2 + h2qj

∣

∣

∣ = 2 + h2
∣

∣qj

∣

∣

for all j = 1, 2, . . . , N. Consequently, for sufficiently small h > 0 we have from (15) that

∣

∣qj

∣

∣ ‖ẽ‖∞ ≤ h2‖ f̃ ‖∞.

Denoting C = ‖ f̃ ‖∞

min
1≤j≤n

|qj|
, we obtain

‖ẽ‖∞ ≤ Ch2.

Hence, the FDM is convergent and 2-order accurate.
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5 Numerical example

Consider the following boundary value transmission problem, consisting of the two-inter-

val differential equation

y′′ + xy′ +

(

1

4
x2 +

1

2

)

y = 0, x ∈ [−2, 0) ∪ (0, 2], (16)

subject to the boundary conditions at the endpoints x = −2 and x = 2, given by

y(−2) = 0, y(2) = 3, (17)

together with additional transmission conditions across the common endpoint x = 0, given by

y(0−) = 3y(0+), (18)

y′(0−) = 2y′(0+). (19)

At first we will consider the problem (16)–(19) without transmission conditions (18)–(19). It is

easy to verify that the function

y =
3

4
e

1−x2

4 (x + 2) (20)

satisfies the equation (16) on whole [−2, 0) ∪ (0, 2] and both boundary conditions (17). For

simplicity we will use the uniform cartesian grid xi = −2 + ih, i = 0, 1, . . . , 50, for h = 0, 08.

In particular we have x0 = −2, x50 = 2.

The CFD approximation of the derivatives y′ and y′′ are defined by

y′(x) ≈
1

2

(

D+y(x) + D−y(x)
)

and y′′(x) ≈
1

h

(

D+y(x)− D−y(x)
)

,

where D+y(x) and D−y(x) denote the forward finite difference and backward finite difference

of y(x), respectively.

By applying the CFD to the differential equation (16) at a typical grid point xi and denoting

yi = y(xi), we obtain the following finite difference equations

(4 − 2hxi) yi−1 +
(

− 8 +
(

x2
i + 2

)

h2
)

yi + (4 + 2hxi) yi+1 = 0, i = 1, 2, . . . , 49. (21)

That is we have the linear algebraic system of equations with respect to the variables

y1, y2, . . . , y49. The system of linear algebraic equations (21) can be written in a tridiagonal

matrix-vector form Ay = b, where y = (y1, y2, . . . , y48, y49)
T, b = (0, 0, . . . , 0,−3(4 + 2hx49))

T

and

A =











































−8 +
(

x2
1 + 2

)

h2 4 + 2hx1 · · · 0 0

4 + 2hx2 −8 +
(

x2
2 + 2

)

h2 · · · 0 0

0 4 + 2hx3 · · · 0 0

...
...

. . .
...

...

0 0 · · · −8 +
(

x2
48 + 2

)

h2 4 + 2hx48

0 0 · · · 4 + 2hx49 −8 +
(

x2
49 + 2

)

h2











































.
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Figure 1. Graph of the FDM solution and exact

solution for the problem (16)–(17) for N = 8

Figure 2. Graph of the FDM solution and exact

solution for the problem (16)–(17) for N = 16

Figure 3. Graph of the FDM solution and exact

solution for the problem (16)–(17) for N = 32

Figure 4. Graph of the FDM solution and exact

solution for the problem (16)–(17) for N = 64

The solution of this system can be found by using MATLAB/Octave. The obtained numer-

ical finite difference method solutions are graphically compared with the exact solution (20)

(see Figures 1, 2, 3 and 4).

N h ‖E‖∞ N h ‖E‖∞

4 3
4 1.0654 128 3

128 0.00075157

8 3
8 0.20712 256 3

256 0.00018786

16 3
16 0.048747 512 3

512 0.000046963

32 3
32 0.012079 1024 3

1024 0.000011741

64 3
64 0.0030087 2048 3

2048 0.0000029352

Table 1. Maximum absolute error

Remark 2. It can be seen from these graphical illustrations that the error between the finite

difference method solutions and the exact solution decreases as the number of grid points

increases.
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6 Solution of transmission problem by modification of FDM

Now we will investigate the boundary value transmission problem (16)–(19). It is easy to

show that the exact solution of this problem is

Y =















9

5
e1− x2

4 (2 + x) ,

3

10
e1− x2

4 (4 + 3x) .

Now let us solve the boundary value transition problem (16)–(19) with the modified finite

difference method. If we select N = 32, then we can discretize the first transmission condition

by

y16 = 3y17.

Discretization of the second transmission conditions (18) gives

y16 − y14

h2
= 2

y19 − y17

h2
.

Thus we have two additional algebraic equations

y16 − 3y17 = 0, (22)

y14 − y16 − 2y17 + 2y19 = 0. (23)

Note that each equation of this system involves solution values at three nodal points xi−1,

xi and xi+1.

By adding equations (22) and (23) to the system of equations (21) writing for 1 ≤ i ≤ 14

and for 17 ≤ i ≤ 31 we have the following linear system of algebraic equations































































y0 = 0,

(

1 − 1
2 hpi

)

yi−1 + (−2 + h2qi)yi +
(

1 + 1
2 hpi

)

yi+1 = h2 f (xi), 1 ≤ i ≤ 14,

y16 − 3y17 = 0,

y14 − y16 − 2y17 + 2y19 = 0,
(

1 − 1
2 hpi

)

yi−1 + (−2 + h2qi)yi +
(

1 + 1
2 hpi

)

yi+1 = h2 f (xi), 17 ≤ i ≤ 31,

y32 = 3.

The solution of this system of equations can be found by using MATLAB/Octave. The

obtained numerical solutions are graphically compared with the exact solution (see Figures 5,

6, 7 and 8).
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Figure 5. Graph of the numerical solution and

exact solution for the problem (16)–(19)

for N = 16

Figure 6. Graph of the numerical solution and

exact solution for the problem (16)–(19)

for N = 32

Figure 7. Graph of the numerical solution and

exact solution for the problem (16)–(19)

for N = 64

Figure 8. Graph of the numerical solution and

exact solution for the problem (16)–(19)

for N = 128

N h ‖E‖∞ N h ‖E‖∞

4 3
4 2.5858 32 3

32 0.55334

8 3
8 1.7106 64 3

64 0.29347

16 3
16 1.0080 128 3

128 0.12946143

Table 2. Maximum absolute error for the transmission problem (16)–(19)

7 Conclusion

We know that the classical finite difference method is intended for solving one-interval

differential equations, and it is not clear how to apply this technique to two-interval differen-

tial equations that satisfy additional conditions of interaction between these two-intervals, the

so-called transmission conditions. In this study, we have adapted this method to two-interval
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differential equations satisfying not only boundary value conditions, but also additional trans-

mission conditions. The modified FDM was applied to one illustrative two-interval boundary-

transmission problem. To demonstrate the applicability and efficiency of the proposed modi-

fication of FDM the obtained finite-difference solution is compared graphically with the exact

solution, and the corresponding error analysis is also presented in tables. The obtained results

show the applicability, efficiency and reliability of the proposed modified FDM, developed for

the first time in this study.
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[21] Uǧurlu E., Tas K. Dependence Of Eigenvalues Of Some Boundary Value Problems. Appl. Math. E-Notes 2021, 21,

81–88.

Received 19.07.2023

Revised 16.11.2023

Чавушоглу С., Мухтаров Ф.С., Мухтаров О.Ш. Нова модифiкацiя методу скiнченних рiзниць для

розв’язання задач передачi для диференцiальних рiвнянь на двох iнтервалах // Карпатськi матем.

публ. — 2024. — Т.16, №2. — C. 575–586.

У цiй статтi ми розглядаємо новий тип крайових задач, основною особливiстю яких є ха-

рактер диференцiального рiвняння, що розв’язується, та накладенi крайовi умови. Зокрема,

диференцiальне рiвняння розглядається на двох неперетинних вiдрiзках iз спiльною точкою,

на яку накладаються додатковi умови взаємодiї, так званi умови передачi.

Як вiдомо, класичнi аналiтичнi та чисельнi методи призначенi для розв’язування дифе-

ренцiальних рiвнянь на одному вiдрiзку без умов передачi. Основною метою цiєї роботи є роз-

робка нової модифiкацiї класичного методу скiнченних рiзниць для розв’язування крайових

задач передачi на двох вiдрiзках.

Ключовi слова i фрази: метод скiнченних рiзниць, сингулярна точка, умова передачi, крайо-

ва задача на двох iнтервалах.


