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Timelike spherical curves according to equiform Bishop frame
in 3-dimensional Minkowski space

Elsharkawy N.!, Cesarano C.2, Dmytryshyn R.>>, Elsharkawy A.!

In this paper, we study the equiform Bishop formulae for the equiform timelike curves in
3-dimensional Minkowski space where the equiform timelike spherical curves are defined accord-
ing to the equiform Bishop frame. We establish a necessary and sufficient condition for an equiform
timelike curve to be an equiform timelike spherical curve. Furthermore, we give certain character-
izations of equiform spherical curves in 3-dimensional Minkowski space, which are timelike with
an equiform spacelike principal normal vector.
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Introduction

Curves in Minkowski space have been the focus of much research and development by
several mathematicians over the last two decades such as [2,9,20,22]. For each point along
a differentiable curve, there are three unit vectors that are orthogonal to each other. These
vectors are known as tangent vector, normal vector and binormal vector, respectively. How-
ever along the differentiable curve, there are some points, where the curvature may vanish,
and because of this, the normal vectors are not determined at these points. In this case, a dif-
ferent frame is required to solve this problem in three-dimensional Minkowski space. In 1966,
L.R. Bishop defined a parallel transport frame as an alternative frame for a differentiable curve,
in which it is well-defined even if its curvature vanishes at some points in three-dimensional
Minkowski space [4].

Also, in 1995, A.J. Hanson and H. Ma published a study that discussed the advantages of
the Bishop frame and compared it to the Frenet frame in 3-dimensional Euclidean space [10].
M.K. Karacan and Y. Tunger studied Backlund transformation according to Bishop frame in
three-dimensional Minkowski space [14]. H. Kocayigit, A. Ozdemir, M. Cetin and B. Arda
according to Bishop’s frame gave some characterization of timelike curves in 3-dimensional
Minkowski space [16]. Bishop frame is also studied in E} by many mathematicians such as
[5,6,13,23].
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Equiform geometry is considered as extension of other geometries. Furthermore, an equi-
form frame is a generalization of the Frenet frame. The equiform geometry is of modest impor-
tance in comparison to the usual one, but the curves that emerge here may be considered as
generalizations of well-known curves from other geometries and so could have been of scien-
tific interest. The equiform geometry is defined in several spaces such as Galilean space [3,15],
pseudo-Galilean space [1,8], Euclidean space [18] and Minkowski space [7,21].

In [11], timelike and null spherical curves in 3-dimensional Minkowski space are intro-
duced. In [12], K. Iralslan studied spacelike normal curves in 3-dimensional Minkowski
space E3. Also, in [7], HK. Elsayied et al. introduced the equiform spacelike and the time-
like spherical curves according to the equiform frame in 3-dimensional Minkowski ES.

This paper aims to study the spherical curves with regard to the equiform Bishop frame.
The article is structured as follows. In Section 1, we provide context for the topic by introducing
the Frenet frame and Frenet equations along a timelike unit-speed curve in 3-dimensional
Minkowski space. In Section 2, for timelike curves in Minkowski space, we provide the equi-
form Bishop frame and its formulae. In Section 3, we define the equiform timelike spherical
curve according to the Bishop frame in 3-dimensional Minkowski space and provide some
characterization theorems for equiform timelike spherical curves.

1 Preliminaries

The three-dimensional Lorentz-Minkowski space EJ is known as the 3-dimensional real
space R3 with the metric ¢ given by ¢ = —du? + du3 + du3, where (u1,up,u3) is a system of
coordinates in E3. Let P be any vector in ES. If g(P,P) > 0, or P = 0, then the vector P is
said to be a spacelike vector. If g(P, P) < 0, then the vector P is said to be a timelike vector. If
g(P,P) =0,and P # 0, then the vector P is a lightlike (null) vector. In particular, the norm of a
non-lightlike vector P is given by || P ||= 1/|g(P, P)|, and P is called a unit vector if | P ||= 1.
Two vectors P and Q are said to be orthogonal if ¢(P, Q) = 0. For any P, Q € EJ, Lorentzian
vector product of P and Q is defined in [9,11,12,19,20] by

PAQ = (p3q2 — p293, P391 — P193, P192 — P291),

where P = (p1, p2, p3), Q = (41,42, q3) are any two vectors in E3.

Overall, an arbitrary curve 7 in EJ is said to be a spacelike curve, timelike curve or null
(lightlike) curve, if all of its velocity vectors ' are spacelike, timelike, or null (lightlike), re-
spectively. There are three and only three types of spacelike curves (spacelike with spacelike,
timelike, or null principal normal). There is one and only one type of timelike curves and light-
like curves (timelike with spacelike principal normal and lightlike with spacelike principal
normal). This classification follows from the close relationship between the casual characters
of a vector subspace U C E:l)’ and its orthonormal complement UL, i.e U is timelike, spacelike,
or lightlike if and only if U~ is spacelike, timelike, or lightlike [17].

A non-null curve 7 is parameterized by arclength function s (i.e. unit speed curve) if
2(7',v) = £1. We say that {Tr, Nf, Br} are the moving Frenet frame along the curve 7y (s).
Then, Tr, N, and Br are the tangent, the principal normal, and the binormal vector fields for
the curve y(s), respectively. Frenet formulae depend on the causal character of the curve y(s).
For an arbitrary curve 7(s) in the space E3, the following Frenet formulae are given in [9,12].
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If v(s) is a timelike curve in which the principal normal N is a spacelike vector, then the
Frenet equations are

S [ Te 0 h 0 Tr
% NF = h 0 = NF ’
BF 0 -t 0 BF

where g(TF, TF) = —1, g(NF, NF) = 1, g(BF, BF) = —1, g(Tp, NF) = g(TF, BF) = g(NF, BF) = 0.
If the curve 7 is unit speed, then h = ||7"(s)]|, T = ||b'(s)]| -

The pseudo-Riemannian sphere is defined by S3(p,r) = {v € E3 : g(v — p,v — p) = r?},
where p is a fixed point in E3 and r > 0 is constant. The pseudo-Riemannian hyperbolic
space is defined by H}(p,r) = {v € E? : g(v—p,v—p) = —r*}, where p is a fixed
point in E? and r > 0 is constant. The pseudo-Riemannian lightlike cone is defined by
C(p) = {v € E3:g(v—p,v—p) =0}, where p is a fixed point in E3 [11,12].

The parallel transport frame or the Bishop frame is a way to define a moving frame that is
also defined when the curve has a vanishing second derivative (h = 0). Simply an orthonormal
frame on a curve can be parallel transported by parallel transporting each component of the
frame. For any curve, the Bishop frame is defined as we can find the tangent vector field for
each point on the curve t(s) and also we may choose any adequate arbitrary basis (u(s), v(s))
for the rest of the frame, so long as it lies in the normal plane orthogonal to ¢(s) at each point.
Moreover, suppose that the curve vy is parameterized by the arc length parameter, and u and v
are C! unit vector fields that v = t A u, along the curve <y so that g(t,u) = ¢(t,v) = ¢(u,v) =0,
i.e. t, u, v will be an orthonormal frame as we move along the curve. If the curve has the
property that i # 0 for any point of the curve, the Frenet frame is not defined at that point
on the curve. Now, we want to put the extra condition g(u’,v) = 0. This means that the only
change of u is in the direction of f. In this case, a Bishop frame will be defined even when
a Frenet frame cannot (when there are points with vanishing its curvature). We call u and v
the first and the second normal vectors, respectively. Therefore, we have the alternative frame
equations [10, 14].

If vy is a timelike curve with a spacelike normal vector u, then the Bishop formulae are

J t 0 h h t
I ul|l=1|hmh 0 O u |,
v hy 0 O v

where g(t,t) = —1, g(u,u) = 1, g(v,v) = 1 and h(s) = (/h3 +Hh3, 6(s) = arctan(ha/hy),
T(s) = d6/ds [14].

2 Equiform Bishop formulae for equiform timelike curves in E3

In this section, the equiform geometry in three-dimensional Minkowski space E% is intro-
duced. Equiform Bishop formulae for equiform timelike curves are investigated.

Definition 1. Lety : I — E3 be curve in three-dimensional Minkowski space E} parameterized
by the the arc length s. Let 1(s) be the equiform parameter of y(s) defined as

ds
n:/a:/hlds,

where w = 1/hy is the radius of curvature of the curve y(s).
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Therefore,

ds
Define the equiform formulae of the curve v parameterized by the invariant equiform parame-
ter 17 in E. The equiform tangent, defined as T = dvy/dy, is called the equiform tangent vector
field of the curve . From (1) we get

p_dy_dyds _dy

dy dsdy ds wh- @

Define the equiform principal normal vector field N, and the equiform binormal vector field
B, according to Bishop frame by

N, = wu, B;= wo. 3)

Then, we can easily show that {T, N,, B;} is an equiform invariant orthogonal frame, however,
it is not an orthonormal frame of the curve .

Definition 2. For the curve v in E3 the first equiform curvature is a function Hy : I — R which
is defined by Hy = w'.

Definition 3. For the curve vy in EJ the second equiform curvature is a function H, : I — R
which is defined by Hy = hy/h;.

Theorem 1. Let y(17) be an equiform timelike curve in which the principal normal N, is the
equiform spacelike vector, then the equiform Bishop formulae provided by

[T Hy 1 H, T
o Ng|=| 1 H 0 Ny |, (4)
7| B, H, 0 H B,

where g(T,T) = —w?, §(Ny, N;) = w?, §(By, Bg) = w?, ¢(T,N;) = g(T, By) = g(Ny, B;) = 0.

Proof. Suppose that y(7) is an equiform timelike curve, then by using equations (1)—(3), we
obtain

dT  d(wt) dw,  dt dwds,  dtds

_— = — = — - _ — / 2,7
ar dr dqt+wd17 dsd;yt+wdsd17 wwt +wt
h
= w'T+ w?(mu+hyo) = W'T+ Ny + <ﬁ)Bq = HiT + N, + H,B,.

Similarly, we can deduce that
where the prime ' means d/dy. O

Corollary 1. If 7y is an equiform timelike curve according to the equiform Bishop frame, then
we obtain the first equiform curvature and second equiform curvature, respectively, by

Hy = g(T,T') = g(Ng, Ng) = g(By, By), Ha = g(By, T) = g(T', By).
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3 Main Results

In this section, we define an equiform timelike spherical curve according to Bishop frame in
3-dimensional Minkowski space E3 and provide some characterization theorems for equiform
timelike spherical curves in E3.

Definition 4. The equiform timelike curve (1) is said to be a spherical curve according to
equiform Bishop frame in 3-dimensional Minkowski space if its position vector always lies in
its normal plane spanned by {N;, B, }.

Theorem 2. Let v = (1) be an equiform timelike curve in EJ with an equiform spacelike
principal normal vector N; and with an equiform curvatures Hy(17) > 0, Hy(17) # 0 for each
n € I C R. Then the curve vy is normal if and only if the equiform curvatures Hi(n), Hz(17)
satisfy CHy = w — A or CH), = wHy, where A and C are constants.

Proof. Let (17) be an equiform timelike normal curve in E3 with an equiform spacelike princi-
pal normal vector N,;. Then we can write 7(77) as

v (1) = A(7)Nq (17) + p (1) B ().
Differentiating the above equation with respect to # and using equations (4), we find

T = ANy + A(T + H1N,) + 1'Bg + u(HoT + H1By)
= (A4 uH)T + (A 4+ AH)Ng + (3 + uHy)B,.

Then, we deduce that
AduHy =1, AMN+AH; =0, ' +uH =0. (5)

By solving equations (5) by separation of variables, we obtain

A C
)\ — ;r ]’l - al (6)
where A and C are constants. Therefore,
A C
v(n) = ;Nq + aBtr (7)

Substitution from equation (6) into the first equation in (5), we obtain
CH, = w — A. (8)
By differentiating equation (8) with respect to 17, we get
CH) = wH;. )

Conversely, suppose that equations (8) and (9) hold. Then

d A C A A C
% (7(77) - 5 q— ;Bq> =T+ EWHqu - Z(T + Hqu) + EleBq
C (. A CHy\.
_E(HZT"i_Hqu) = (1_5 —T)T—O

Consequently, vy is a spherical curve or congruent to a spherical curve, which completes the
proof. O
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Theorem 3. Lety = (1) be an equiform timelike curve in E{’ in which the principal normal
is equiform spacelike vector and the equiform curvatures Hi(n) > 0, Hp(n) # O for each
n € I C R. Then v is a normal curve if and only if the equiform principal normal N, and the
equiform binormal B; components with the equiform position vector are given respectively by
g(, Nq) = Aw, g(7, Bq) = Cw, where A and C are constants.

Proof. Let y(17) be an equiform timelike normal curve in E} with an equiform spacelike princi-
pal normal vector N,;. Then equation (7) holds and we get

A C
(7, Ny) = ag(quNq) + ag(quNq) = Aw.

Similarly, g(y, By) = Cw.
Conversely, assume that the equations g(v, N;) = Aw and g(7, B;) = Cw hold. Differenti-
ating the equation g(-y, N;) = Aw with respect to 77, we have

(T, Ng) +g(7,Ng) = A,
Applying equations (4), we get
g(’)/r T) + ng(’)// Nq) = AwHj,

which implies g(v, T) = 0.
Similarly, differentiating the equation g(v, B;) = Cw with respect to 77, we have

(T, By) +g(v,B,) = Cu'

and
Hzg('y, T) + ng(')’/ Bq) = C(UHl,

which implies that ¢(7y, T) = 0. Thus, v is a spherical curve and the proof is completed. O

Theorem 4. Let v = 7(n) be an equiform timelike spherical curve in Ei)’ with an equiform
spacelike or an equiform timelike principal normal vector N, in which the equiform curvatures
Hi(n) > 0, Ha(y) # 0 for every 3 € 1 C R. For the equiform spacelike curve, the position
vector is an equiform spacelike vector if and only if the spherical curve v is located on S3(p, r)
and the second equiform curvature Hy(n) satisfy £v/r> — A2H, = w — A, where A is constant.

Proof. Let 7y be an equiform timelike spherical curve and the position vector is also equiform
spacelike. Then we have g(v,y) = 2. Since equation (7) holds, then
A? c? 2., 2 _ 2
g(v.r) = Eg(quNq) + Eg(Bq/Bq) = AT+ C =77

Thus, the constant C is given by C = ++/r2 — A2. Substituting from this equation into the
equation (8), we obtain

+vVr2— A2H, = w — A. (10)
On the other hand, let us consider the vector

A C
p="0)— o Na— By (11)
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Calculating the differential of equation (11) with respect to # and using equations (4), we find
p’ = 0 and therefore p = constant. Then

A2 2 C2 2 2 2 2
s(r=pr—p) = @)+ (@) =A2+C =12

This means that <y is located on S?(p, ) with center p and radius r.

Conversely, assume that 7y located on S3(p, ) with center p, p is constant, and the second
equiform curvature Hy(1) satisfies equation (10), then we can write ¢(y — p,v — p) = r%. By
differentiating this equation with respect to # three times, we get

HiH H
2 1412 o 111
gy=pT)=0, gly—pNy) =w < H} _1)' g(y—pBy) =w Hy
Therefore, we can write the vector v — p as

HiHy Hy

7—p:0T+(1—Té)N,,+ﬁéBq.

This signifies that a curve is congruent to a spherical curve up to a translation for vector p.
Let us put p = 0 and using +v/2 — A2H, = w — A, we can easily find g(y,7) = r?, which
completes the proof. O

Conclusion

This paper provides a comprehensive study of equiform Bishop formulae for equiform
timelike curves in 3-dimensional Minkowski space, specifically exploring equiform timelike
spherical curves as defined by the equiform Bishop frame. Our findings highlight a necessary
and sufficient condition for an equiform timelike curve to be an equiform timelike spherical
curve. In addition, we have offered various characterizations of equiform spherical curves
in 3-dimensional Minkowski space and demonstrated their timelike nature with an equiform
spacelike principal normal vector.
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Y 1iit cTaTTi BUBYAIOTHCS eKBidpopMHi popMyan birttoma st eKBidpOpMHMX YacOOAI6HMX Kpu-
BUX y TPUBMMIPHOMY NpocTopi MiHKOBCBKOTO, Ae eKBidpOpMHi UacomoaibHi cdpepumuni KpuBi BU-
3HAYAIOThCSI BIATIOBIAHO A0 ekBidpopMHOro penepy bimroma. BeraHoBAeHO Heob6XiAHY i AOCTATHIO
YMOBY TOrO, 1106 exBidpopMHa YaconoaibHa KpuBa 6yra eKBichOpMHOIO YacOIOAiIOHO0 cdhepIIHO0
KpuBoo. Kpim Toro, HaBeAeHO AesIKi XapaKTepUCTUKM eKBipOpMHMX cdrepUIHIX KPUBUX Y TPUBU-
MipHOMY IpocTopi MiHKOBCBKOTO, SIKi € YaCOIOAIOHMMY A0 eKBipOpMHOTO IPOCTOPOBOIOAIOHOTO
TOAOBHOT'O BEKTOpa HOpMaAi.

Knrouosi cnosa i ppasu: mpoctip MiHkoBcbKoro, penep bimomna, cdepnuna xpusa, exBidpopMHa
KpMBUHA.



