References

  1. Alzuraiqi S.A., Patel A.B. On \(n\)-normal operators. General Math. Notes 2010, 1 (2), 61–73.
  2. Berberian S.K. Introduction to Hilbert Space. Chelsea Publ. Comp., New-York, 1976.
  3. Chō M., Načevska B. Spectral properties of \(n\)-normal operators. Filomat 2018, 32 (14), 5063–5069. doi:10.2298/FIL1814063C
  4. Chō M., Lee J.E., Tanahashi K., Uchiyama A. Remarks on \(n\)-normal operators. Filomat 2018, 32 (15), 5441–5451. doi:10.2298/FIL1815441C
  5. Conway J.B. A Course in Functional Analysis. In: Axler S., Gehring F.W., Halmos P.R. (Eds.) Graduate Texts in Mathematics, 96. Springer Verlag, New-York, Berlin, Heidelberg, Tokyo, 1985.
  6. Fuglede B. A commutativity theorem for normal operators. Proc. Natl. Acad. Sci. USA 1950, 36 (1), 35–40. doi:10.1073/pnas.36.1.35
  7. Guesba M., Nadir M. On \(n\)-power-hyponormal operators. Global J. Pure Appl. Math. 2016, 12 (1), 473–479.
  8. Griffiths D.J. Introduction to quantum mechanics. Pearson Education, Cambridge Univ. Press, United States, 2017.
  9. Hooft G. The Cellular Automaton Interpretation of Quantum Mechanics. In: Blanchard P., Coecke B., Dieks D. (Eds.) Fundamental Theories of Physics, 185. Springer, Cham, 2016. doi:10.1007/978-3-319-41285-6
  10. Jibril A.A.S. On \(n\)-power normal operators. Arab. J. Sci. Engineering 2008, 33 (2A), 247–251.
  11. Jibril A.A.S. On \(2\)-normal operators. Dirasat 1996, 23 (2), 190–194.
  12. Nadir M., Smati A. Closedness and Skew self-adjointness of Nadir’s operator. Aust. J. Math. Anal. Appl. 2018, 15 (1), 1–5.
  13. Nadir M. Some Results on the Bounded Nadir’s Operator. Biomed. Stat. Inform. 2017, 2 (3), 128–130.
  14. Nadir M. Some results on the Nadir’s operator \(N=AB^{*}-BA^{*}\). J. Sci. Engineering Res. 2017, 4 (8), 176–177.
  15. Sid Ahmed M.O.A. On the class of \(n\)-power quasi-normal operators on Hilbert space. Bull. Math. Anal. Appl. 2011, 3 (2), 213–228.
  16. Zettili N. Quantum Mechanics: Concepts and Applications, 2nd Edition. A John Wiley and Sons, Ltd., Publ., Chichester, 2009.