References
- Alzuraiqi S.A., Patel A.B. On \(n\)-normal operators. General Math. Notes 2010, 1 (2), 61–73.
- Berberian S.K. Introduction to Hilbert Space. Chelsea Publ. Comp., New-York, 1976.
- Chō M., Načevska B. Spectral properties of \(n\)-normal operators. Filomat 2018, 32 (14), 5063–5069. doi:10.2298/FIL1814063C
- Chō M., Lee J.E., Tanahashi K., Uchiyama A. Remarks on \(n\)-normal operators. Filomat 2018, 32 (15), 5441–5451. doi:10.2298/FIL1815441C
- Conway J.B. A Course in Functional Analysis. In: Axler S., Gehring F.W., Halmos P.R. (Eds.) Graduate Texts in Mathematics, 96. Springer Verlag, New-York, Berlin, Heidelberg, Tokyo, 1985.
- Fuglede B. A commutativity theorem for normal operators. Proc. Natl. Acad. Sci. USA 1950, 36 (1), 35–40. doi:10.1073/pnas.36.1.35
- Guesba M., Nadir M. On \(n\)-power-hyponormal operators. Global J. Pure Appl. Math. 2016, 12 (1), 473–479.
- Griffiths D.J. Introduction to quantum mechanics. Pearson Education, Cambridge Univ. Press, United States, 2017.
- Hooft G. The Cellular Automaton Interpretation of Quantum Mechanics. In: Blanchard P., Coecke B., Dieks D. (Eds.) Fundamental Theories of Physics, 185. Springer, Cham, 2016.
doi:10.1007/978-3-319-41285-6
- Jibril A.A.S. On \(n\)-power normal operators. Arab. J. Sci. Engineering 2008, 33 (2A), 247–251.
- Jibril A.A.S. On \(2\)-normal operators. Dirasat 1996, 23 (2), 190–194.
- Nadir M., Smati A. Closedness and Skew self-adjointness of Nadir’s operator. Aust. J. Math. Anal. Appl. 2018, 15 (1), 1–5.
- Nadir M. Some Results on the Bounded Nadir’s Operator. Biomed. Stat. Inform. 2017, 2 (3), 128–130.
- Nadir M. Some results on the Nadir’s operator \(N=AB^{*}-BA^{*}\). J. Sci. Engineering Res. 2017, 4 (8), 176–177.
- Sid Ahmed M.O.A. On the class of \(n\)-power quasi-normal operators on Hilbert space. Bull. Math. Anal. Appl. 2011, 3 (2), 213–228.
- Zettili N. Quantum Mechanics: Concepts and Applications, 2nd Edition. A John Wiley and Sons, Ltd., Publ., Chichester, 2009.