References

  1. Aripov M., Matyakubov A., Bobokandov M. Cauchy problem for the heat dissipation equation in non-homogeneous medium. AIP Conference Proceedings 2023, 2781 (1), 020027. doi:10.1063/5.0144807
  2. Andreucci D., Tedeev A.F. A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary. J. Math. Anal. Appl. 1999, 231 (2), 543–567. doi:10.1006/jmaa.1998.6253
  3. Andreucci D., Tedeev A.F. Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity. Adv. Differential Equations 2000, 5 (7–9), 833–860. doi:10.57262/ade/1356651289
  4. Aripov M., Bobokandov M. Analysis of a double nonlinear parabolic equation with a source in an inhomogeneous medium. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2024, 50 (2), 285–306. doi:10.30546/2409-4994.2024.50.2.285
  5. Aripov M., Bobokandov M. The Cauchy problem for a doubly nonlinear parabolic equation with variable density and nonlinear time-dependent absorption. J. Math. Sci. 2023, 277 (3), 355–365. doi:10.1007/s10958-023-06840-0
  6. Aripov M., Sadullaeva S. Computer simulation of nonlinear diffusion processes. University Press, Tashkent, 2020. (in Russian)
  7. Aripov M., Bobokandov M., Mamatkulova M. Analysis of a double nonlinear diffusion equation in inhomogeneous medium. J. Math. Sci. 2024, 1–13. doi:10.1007/s10958-024-07384-7
  8. Aripov M., Mukimov A., Mirzayev B. To asymptotic of the solution of the heat conduction problem with double nonlinearity with absorption at a critical parameter. Math. Stat. 2019, 7 (5), 205–217. doi:10.13189/ms.2019.070507
  9. Jin C., Yin J. Asymptotic behavior of solutions for a doubly degenerate parabolic non-divergence form equation. Rocky Mountain J. Math. 2017, 47 (2), 479–510. doi:10.1216/RMJ-2017-47-2-479
  10. Fujita H. On the blowing up of solutions of the Cauchy problem for \(u_{t} =\Delta u+u^{1+\alpha}\). J. Fac. Sci. Univ. Tokyo, Sect. 1 A, Mathematics. 1996, 13 (2), 109–124. doi:10.15083/00039873
  11. Galaktionov V.A., Levine H.A. A general approach to critical Fujita exponents in nonlinear parabolic problems. Nonlinear Anal. 1998, 34 (7), 1005–1027. doi:10.1016/S0362-546X(97)00716-5
  12. Huang Q., Mochizuki K., Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math. J. 1998, 27 (2), 393–407.
  13. Shao J., Guo Z., Shan X., Zhang C., Wu B. A new non-divergence diffusion equation with variable exponent for multiplicative noise removal. Nonlinear Anal. 2020, 56, 103166. doi:10.1016/j.nonrwa.2020.103166
  14. Kamin S., Vazquez J.L. Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 1988, 4 (2), 339–354.
  15. Martynenko A.V., Tedeev A.F. The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density. Comput. Math. Math. Phys. 2007, 47 (2), 238–248.
  16. Martynenko A.V., Tedeev A.F., Shramenko V.N. Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in class slowly tending to zero initial functions. Izv. RAN. Ser. Mat. 2012, 76 (3), 139–156.
  17. Winkler M., Stinner C. Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana Univ. Math. J. 2007, 56 (5), 2233–2264.
  18. Winkler M. Infinite-time gradient blow-up in a degenerate parabolic equation. Int. J. Dyn. Syst. Differ. Equ. 2012, 4 (1-2), 126–153. doi:10.1504/IJDSDE.2012.046001
  19. Mochizuki K., Mukai K. Existence and nonexistence of global solutions to fast diffusions with source. Methods Appl. Anal. 1995, 2 (1), 92–102. doi:10.4310/MAA.1995.v2.n1.a6
  20. Zheng P., Mu C., Liu D., Yao X., Zhou S. Blow-up analysis for a quasilinear degenerate parabolic equation with strongly nonlinear source. Abstr. Appl. Anal. 2012, 2012, 109546. doi:10.1155/2012/109546
  21. Gianni R., Tedeev A., Vespri V. Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients. Nonlinear Anal. 2016, 138, 111–126. doi:10.1016/j.na.2015.09.006
  22. Sacks P.E. Global behavior for a class of nonlinear evolution equations. SIAM J. Math. Anal. 1985, 16, 233–250.
  23. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Blow-up in quasilinear parabolic equations. Walter de Grueter, Berlin, 1995. doi:10.1515/9783110889864
  24. Zhou S., Tang X., Yang C. A doubly degenerate diffusion equation not in divergence form with gradient term. Bound. Value Probl. 2016, 2016, 126. doi:10.1186/s13661-016-0633-4
  25. Wang C.P., Yin J.X. Shrinking self-similar solutions of a nonlinear diffusion equation with nondivergence form. J. Math. Anal. Appl. 2004, 289 (2), 387–404. doi:10.1016/j.jmaa.2003.08.021
  26. Weissler F.B. Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 1981, 38 (1-2), 29–40.
  27. Wiegner M. A degenerate diffusion equation with a nonlinear source term. Nonlinear Anal. 1997, 28 (12), 1977–1995. doi:10.1016/S0362-546X(96)00027-2
  28. Xiang Zh., Mu Ch., Hu X. Support properties of solutions to a degenerate equation with absorption and variable density. Nonlinear Anal. 2008, 68, 1940–1953. doi:10.1016/j.na.2007.01.021