References
- Aripov M., Matyakubov A., Bobokandov M. Cauchy problem for the heat dissipation equation in non-homogeneous medium. AIP Conference Proceedings 2023, 2781 (1), 020027. doi:10.1063/5.0144807
- Andreucci D., Tedeev A.F. A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary. J. Math. Anal. Appl. 1999, 231 (2), 543–567. doi:10.1006/jmaa.1998.6253
- Andreucci D., Tedeev A.F. Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity. Adv. Differential Equations 2000, 5 (7–9), 833–860. doi:10.57262/ade/1356651289
- Aripov M., Bobokandov M. Analysis of a double nonlinear parabolic equation with a source in an inhomogeneous medium. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2024, 50 (2), 285–306. doi:10.30546/2409-4994.2024.50.2.285
- Aripov M., Bobokandov M. The Cauchy problem for a doubly nonlinear parabolic equation with variable density and nonlinear time-dependent absorption. J. Math. Sci. 2023, 277 (3), 355–365. doi:10.1007/s10958-023-06840-0
- Aripov M., Sadullaeva S. Computer simulation of nonlinear diffusion processes. University Press, Tashkent, 2020. (in Russian)
- Aripov M., Bobokandov M., Mamatkulova M. Analysis of a double nonlinear diffusion equation in inhomogeneous medium. J. Math. Sci. 2024, 1–13. doi:10.1007/s10958-024-07384-7
- Aripov M., Mukimov A., Mirzayev B. To asymptotic of the solution of the heat conduction problem with double nonlinearity with absorption at a critical parameter. Math. Stat. 2019, 7 (5), 205–217. doi:10.13189/ms.2019.070507
- Jin C., Yin J. Asymptotic behavior of solutions for a doubly degenerate parabolic non-divergence form equation. Rocky Mountain J. Math. 2017, 47 (2), 479–510. doi:10.1216/RMJ-2017-47-2-479
- Fujita H. On the blowing up of solutions of the Cauchy problem for \(u_{t} =\Delta u+u^{1+\alpha}\). J. Fac. Sci. Univ. Tokyo, Sect. 1 A, Mathematics. 1996, 13 (2), 109–124. doi:10.15083/00039873
- Galaktionov V.A., Levine H.A. A general approach to critical Fujita exponents in nonlinear parabolic problems. Nonlinear Anal. 1998, 34 (7), 1005–1027. doi:10.1016/S0362-546X(97)00716-5
- Huang Q., Mochizuki K., Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math. J. 1998, 27 (2), 393–407.
- Shao J., Guo Z., Shan X., Zhang C., Wu B. A new non-divergence diffusion equation with variable exponent for multiplicative noise removal. Nonlinear Anal. 2020, 56, 103166. doi:10.1016/j.nonrwa.2020.103166
- Kamin S., Vazquez J.L. Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 1988, 4 (2), 339–354.
- Martynenko A.V., Tedeev A.F. The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density. Comput. Math. Math. Phys. 2007, 47 (2), 238–248.
- Martynenko A.V., Tedeev A.F., Shramenko V.N. Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in class slowly tending to zero initial functions. Izv. RAN. Ser. Mat. 2012, 76 (3), 139–156.
- Winkler M., Stinner C. Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana Univ. Math. J. 2007, 56 (5), 2233–2264.
- Winkler M. Infinite-time gradient blow-up in a degenerate parabolic equation. Int. J. Dyn. Syst. Differ. Equ. 2012, 4 (1-2), 126–153. doi:10.1504/IJDSDE.2012.046001
- Mochizuki K., Mukai K. Existence and nonexistence of global solutions to fast diffusions with source. Methods Appl. Anal. 1995, 2 (1), 92–102. doi:10.4310/MAA.1995.v2.n1.a6
- Zheng P., Mu C., Liu D., Yao X., Zhou S. Blow-up analysis for a quasilinear degenerate parabolic equation with strongly nonlinear source. Abstr. Appl. Anal. 2012, 2012, 109546. doi:10.1155/2012/109546
- Gianni R., Tedeev A., Vespri V. Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients. Nonlinear Anal. 2016, 138, 111–126. doi:10.1016/j.na.2015.09.006
- Sacks P.E. Global behavior for a class of nonlinear evolution equations. SIAM J. Math. Anal. 1985, 16, 233–250.
- Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Blow-up in quasilinear parabolic equations. Walter de Grueter, Berlin, 1995. doi:10.1515/9783110889864
- Zhou S., Tang X., Yang C. A doubly degenerate diffusion equation not in divergence form with gradient term. Bound. Value Probl. 2016, 2016, 126. doi:10.1186/s13661-016-0633-4
- Wang C.P., Yin J.X. Shrinking self-similar solutions of a nonlinear diffusion equation with nondivergence form. J. Math. Anal. Appl. 2004, 289 (2), 387–404. doi:10.1016/j.jmaa.2003.08.021
- Weissler F.B. Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 1981, 38 (1-2), 29–40.
- Wiegner M. A degenerate diffusion equation with a nonlinear source term. Nonlinear Anal. 1997, 28 (12), 1977–1995. doi:10.1016/S0362-546X(96)00027-2
- Xiang Zh., Mu Ch., Hu X. Support properties of solutions to a degenerate equation with absorption and variable density. Nonlinear Anal. 2008, 68, 1940–1953. doi:10.1016/j.na.2007.01.021