References
- Ablamowicz R., Fauser B. Clifford algebras and their applications in
mathematical physics. Volume 1. Springer, New York, 2000.
- Ablamowicz R., Sobczyk G. (Eds.) Lectures on Clifford (Geometric)
algebras and applications. Springer, New York, 2004.
- Bogoliubov N.N., Logunov A.A., Todorov I.T. Introduction to axiomatic
quantum field theory. W.A. Benjamin Inc., Florida, 1975.
- Bogoliubov N.N., Shirkov D.V. Introduction to the theory of quantized
fields. John Wiley and Sons Inc., New York, 1980.
- Das A., Okubo S. Lie groups and Lie algebras for physicists. World
Scientific, London, 2014. doi:10.1142/9169
- Dirac P.A.M. The quantum theory of the electron. Proc. Roy.
Soc. Lond. A. 1928, 117 (778), 610–624. doi:10.1098/rspa.1928.0023
- Dobrev V. Lie theory and its applications in physics. In: R. dos
Santos (Eds.) Springer Proceedings in Mathematics & Statistics, 191.
Springer, New York, 2014.
- Elliott J.P., Dawber P.J. Symmetry in Physics. Volume 1. Macmillian
Press, London, 1979.
- Garbaczewski P., Stephanovich V. L\(\mathrm{\acute{e}}\)vy flights and nonlocal
quantum dynamics. J. Math. Phys. 2013, 54 (7),
1–34. doi:10.1063/1.4814049
- Gilmore R. Lie groups, Lie algebras and some of their applications.
In: Edwards Deming W., Baird Callicott J. (Eds.). Dover Books on
Mathematics, 303. John Wiley and Sons, New York, 1974.
- Good R.H. Properties of the Dirac matrices. Rev. Modern
Phys. 1955, 27 (2), 187–211. doi:10.1103/RevModPhys.27.187
- Hall B. Lie groups, Lie algebras, and representations. An elementary
introduction, 2-nd ed. In: Hersh P., Vakil R., Wunsch J. (Eds.).
Graduate Texts in Mathematics, 222. Springer, New York, 2015.
- Hepner W.A. The inhomogeneous Lorentz group and the conformal
group, \(j_{z}\)-conserving coupled
states approximation. Nuov. Cim. 1962, 26 (2),
351–368. doi:10.1007/BF02787046
- Herbst I.W. Spectral theory of the operator \((\textbf{p}^{2}+m^{2})^{1/2}-Z
e^{2}/r\). Comm. Math. Phys. 1977, 53 (3),
285–294. doi:10.1007/BF01609852
- Lounesto P. Clifford Algebras and Spinors, 2-nd ed. In: Süli E.
(Ed.). London Mathematical Society Lecture Note Series, 286. Cambridge
University Press, Cambridge, 2001.
- Micali A., Boudet R., Helmstetter J. (Eds.) Clifford algebras and
their applications in mathematical physics. In: Fundamental Theories of
Physics, 47. Springer, Dordrecht, 1992.
- Petráš M. The \(\mathrm{SO}(3,3)\) group as a common basis
for Dirac’s and Proca’s equations. Czechoslovak J. Phys. 1995,
45 (6), 455–464. doi:10.1007/BF01691683
- Prykarpatski A.K. On the electron spin and spectrum energy
problems within the Fock many temporal and Feynman proper time
paradigms. J. Phys.: Conf. Ser. 2023, 2482, 1–19.
doi:10.1088/1742-6596/2482/1/012017
- Simulik V.M. Connection between the symmetry properties of the
Dirac and Maxwell equations. Conservation laws. Theor. Math. Phys.
1991, 87 (1), 386–393. doi:10.1007/BF01016578
- Simulik V.M. Link between the relativistic canonical quantum
mechanics of arbitrary spin and the corresponding field theory. J.
Phys: Conf. Ser. 2016, 670, 1–16.
doi:10.1088/1742-6596/670/1/012047
- Simulik V.M. On the gamma matrix representations of \(\mathrm{SO}(8)\) and Clifford
Algebras. Adv. Appl. Clifford Algebr. 2018, 28
(5), 1–15. doi:10.1007/s00006-018-0906-3
- Simulik V.M. Relativistic quantum mechanics and field theory of
arbitrary spin. Nova Science, New York, 2020. doi:10.52305/VFKY2861
- Simulik V.M., Krivsky I.Yu. Bosonic symmetries of the Dirac
equation. Phys. Lett. A 2011, 375 (25), 2479–2483.
doi:10.1016/j.physleta.2011.03.058
- Simulik V.M., Krivsky I.Yu. Bosonic symmetries of the massless
Dirac equation. Adv. Appl. Clifford Algebr. 1998,
8 (1), 69–82. doi:10.1007/BF03041926
- Simulik V.M., Krivsky I.Yu., Lamer I.L. Bosonic symmetries,
solutions and conservation laws for the Dirac equation with nonzero
mass. Ukrainian J. Phys. 2013, 58 (6), 523–533.
doi:10.15407/ujpe58.06.0523
- Simulik V.M., Krivsky I.Yu., Lamer I.L. Some statistical aspects
of the spinor field Fermi-Bose duality. Condens. Matter Phys. 2012,
15 (4), 1–10. doi:10.5488/CMP.15.43101
- Simulik V.M., Vyikon I.I. On the choice of relativistic wave
equation for the particle having spin s = 3/2. J. Phys. Commun.
2022, 6 (7), 1–7. doi:10.1088/2399-6528/ac7eae
- Steinacker H. Lie groups and Lie algebras for physicists. University
of Vienna, Vienna, 2019.
- Thaller B. The Dirac equation. In: Chrusciel P., Eckmann J.-P.,
Grosse H. (Eds.). Theoretical and Mathematical Physics. Springer,
Berlin, 1992. doi:10.1007/978-3-662-02753-0
- Vaz J.Jr. The Clifford algebra of physical space and Dirac
theory. Eur. J. Phys. 2016, 37 (5), 1–28.
doi:10.1088/0143-0807/37/5/055407
- Vaz J., da Rocha R. An Introduction to Clifford Algebras and Spinors.
Oxford University Press, Oxford, 2016.
- Vladimirov V.S. Methods of the theory of generalized functions.
Taylor and Francis, London, 2002.
- Weder R.A. Spectral analysis of pseudodifferential
operators. J. Funct. Anal. 1975, 20 (4),
319–337.
doi:10.1016/0022-1236(75)90038-5
- Wybourne B.J. Classical Groups for Physicists. John Wiley and Sons,
New York, 1974.