References

  1. Ablamowicz R., Fauser B. Clifford algebras and their applications in mathematical physics. Volume 1. Springer, New York, 2000.
  2. Ablamowicz R., Sobczyk G. (Eds.) Lectures on Clifford (Geometric) algebras and applications. Springer, New York, 2004.
  3. Bogoliubov N.N., Logunov A.A., Todorov I.T. Introduction to axiomatic quantum field theory. W.A. Benjamin Inc., Florida, 1975.
  4. Bogoliubov N.N., Shirkov D.V. Introduction to the theory of quantized fields. John Wiley and Sons Inc., New York, 1980.
  5. Das A., Okubo S. Lie groups and Lie algebras for physicists. World Scientific, London, 2014. doi:10.1142/9169
  6. Dirac P.A.M. The quantum theory of the electron. Proc. Roy. Soc. Lond. A. 1928, 117 (778), 610–624. doi:10.1098/rspa.1928.0023
  7. Dobrev V. Lie theory and its applications in physics. In: R. dos Santos (Eds.) Springer Proceedings in Mathematics & Statistics, 191. Springer, New York, 2014.
  8. Elliott J.P., Dawber P.J. Symmetry in Physics. Volume 1. Macmillian Press, London, 1979.
  9. Garbaczewski P., Stephanovich V. L\(\mathrm{\acute{e}}\)vy flights and nonlocal quantum dynamics. J. Math. Phys. 2013, 54 (7), 1–34. doi:10.1063/1.4814049
  10. Gilmore R. Lie groups, Lie algebras and some of their applications. In: Edwards Deming W., Baird Callicott J. (Eds.). Dover Books on Mathematics, 303. John Wiley and Sons, New York, 1974.
  11. Good R.H. Properties of the Dirac matrices. Rev. Modern Phys. 1955, 27 (2), 187–211. doi:10.1103/RevModPhys.27.187
  12. Hall B. Lie groups, Lie algebras, and representations. An elementary introduction, 2-nd ed. In: Hersh P., Vakil R., Wunsch J. (Eds.). Graduate Texts in Mathematics, 222. Springer, New York, 2015.
  13. Hepner W.A. The inhomogeneous Lorentz group and the conformal group, \(j_{z}\)-conserving coupled states approximation. Nuov. Cim. 1962, 26 (2), 351–368. doi:10.1007/BF02787046
  14. Herbst I.W. Spectral theory of the operator \((\textbf{p}^{2}+m^{2})^{1/2}-Z e^{2}/r\). Comm. Math. Phys. 1977, 53 (3), 285–294. doi:10.1007/BF01609852
  15. Lounesto P. Clifford Algebras and Spinors, 2-nd ed. In: Süli E. (Ed.). London Mathematical Society Lecture Note Series, 286. Cambridge University Press, Cambridge, 2001.
  16. Micali A., Boudet R., Helmstetter J. (Eds.) Clifford algebras and their applications in mathematical physics. In: Fundamental Theories of Physics, 47. Springer, Dordrecht, 1992.
  17. Petráš M. The \(\mathrm{SO}(3,3)\) group as a common basis for Dirac’s and Proca’s equations. Czechoslovak J. Phys. 1995, 45 (6), 455–464. doi:10.1007/BF01691683
  18. Prykarpatski A.K. On the electron spin and spectrum energy problems within the Fock many temporal and Feynman proper time paradigms. J. Phys.: Conf. Ser. 2023, 2482, 1–19. doi:10.1088/1742-6596/2482/1/012017
  19. Simulik V.M. Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws. Theor. Math. Phys. 1991, 87 (1), 386–393. doi:10.1007/BF01016578
  20. Simulik V.M. Link between the relativistic canonical quantum mechanics of arbitrary spin and the corresponding field theory. J. Phys: Conf. Ser. 2016, 670, 1–16. doi:10.1088/1742-6596/670/1/012047
  21. Simulik V.M. On the gamma matrix representations of \(\mathrm{SO}(8)\) and Clifford Algebras. Adv. Appl. Clifford Algebr. 2018, 28 (5), 1–15. doi:10.1007/s00006-018-0906-3
  22. Simulik V.M. Relativistic quantum mechanics and field theory of arbitrary spin. Nova Science, New York, 2020. doi:10.52305/VFKY2861
  23. Simulik V.M., Krivsky I.Yu. Bosonic symmetries of the Dirac equation. Phys. Lett. A 2011, 375 (25), 2479–2483. doi:10.1016/j.physleta.2011.03.058
  24. Simulik V.M., Krivsky I.Yu. Bosonic symmetries of the massless Dirac equation. Adv. Appl. Clifford Algebr. 1998, 8 (1), 69–82. doi:10.1007/BF03041926
  25. Simulik V.M., Krivsky I.Yu., Lamer I.L. Bosonic symmetries, solutions and conservation laws for the Dirac equation with nonzero mass. Ukrainian J. Phys. 2013, 58 (6), 523–533. doi:10.15407/ujpe58.06.0523
  26. Simulik V.M., Krivsky I.Yu., Lamer I.L. Some statistical aspects of the spinor field Fermi-Bose duality. Condens. Matter Phys. 2012, 15 (4), 1–10. doi:10.5488/CMP.15.43101
  27. Simulik V.M., Vyikon I.I. On the choice of relativistic wave equation for the particle having spin s = 3/2. J. Phys. Commun. 2022, 6 (7), 1–7. doi:10.1088/2399-6528/ac7eae
  28. Steinacker H. Lie groups and Lie algebras for physicists. University of Vienna, Vienna, 2019.
  29. Thaller B. The Dirac equation. In: Chrusciel P., Eckmann J.-P., Grosse H. (Eds.). Theoretical and Mathematical Physics. Springer, Berlin, 1992. doi:10.1007/978-3-662-02753-0
  30. Vaz J.Jr. The Clifford algebra of physical space and Dirac theory. Eur. J. Phys. 2016, 37 (5), 1–28. doi:10.1088/0143-0807/37/5/055407
  31. Vaz J., da Rocha R. An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford, 2016.
  32. Vladimirov V.S. Methods of the theory of generalized functions. Taylor and Francis, London, 2002.
  33. Weder R.A. Spectral analysis of pseudodifferential operators. J. Funct. Anal. 1975, 20 (4), 319–337. doi:10.1016/0022-1236(75)90038-5
  34. Wybourne B.J. Classical Groups for Physicists. John Wiley and Sons, New York, 1974.