Карпатські матем. публ. 2025, Т.17, №1, С.246-254

doi:10.15330/cmp.17.1.246-254

r-Subhypermodules over Krasner hypermodules

Bolat M.¹, Kaya E.², Onar S.³, Ersoy B.A.¹, Hila K.⁴

In this study, we introduce the notion of r-subhypermodule of an \mathcal{R} -hypermodule, where \mathcal{R} is a commutative Krasner hyperring. A proper subhypermodule N of M is said to be an r-subhypermodule if $a \cdot m \in N$ with $ann_M(a) = 0_M$ implies that $m \in N$ for each $a \in \mathcal{R}$, $m \in M$. We investigate the relations between the concept of prime subhypermodules and r-subhypermodules. We also give some results about r-subhypermodules.

Key words and phrases: r-hyperideal, *r*-subhypermodule, prime subhypermodule.

E-mail: melisbolatl@gmail.com(Bolat M.), elif.kaya@izu.edu.tr(Kaya E.), serkanlOar@gmail.com(Onar S.), ersoya@yildiz.edu.tr(Ersoy B.A.), kostaq_hila@yahoo.com(Hila K.)

Dedicated to Professor Thomas Vougiouklis on the occasion of his 75th birthday

1 Introduction

Hyperstructures were presented at the 8th Congress of Scandinavian Mathematicians in 1934 by the French mathematician F. Marty [9]. Hundreds of articles and books have been produced on the subject since then (see [1, 3–5, 15]). The composition of two elements is an element in a classical algebraic structure, whereas the composition of two elements is a set in an algebraic hyperstructure. An overview of the foundations of this theory has been recently published in [10].

In the sense of F. Marty, for $G \neq \emptyset$, a mapping $\circ : G \times G \longrightarrow P^*(G)$ is a hyperoperation and (G, \circ) is a hypergroupoid. For a hypergroupoid (G, \circ) , if $x \circ (y \circ z) = (x \circ y) \circ z$ for all $x, y, z \in G$, which means $\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v$, then G is a semihypergroup. When (G, \circ) is a semihypergroup with $x \circ G = G \circ x = G$ for all $x \in G$, then (G, \circ) is called a hypergroup.

A nonempty set G along with the hyperoperation "+" is called [11] a canonical hypergroup if the following axioms hold:

- i) x + (y + z) = (x + y) + z for $x, y, z \in G$;
- ii) x + y = y + x for $x, y \in G$;
- *iii*) there exists $0 \in G$ such that $x + 0 = \{x\}$ for any $x \in G$;
- *iv*) for any $x \in G$, there exists a unique element $x' \in G$ such that $0 \in x + x'$ (x' is called the opposite of x and it is denoted by -x);
 - v) $z \in x + y$ implies that $y \in -x + z$ and $x \in z y$, that is (G, +) is inversible.

УДК 512.55

2020 Mathematics Subject Classification: 13A15, 13C05, 13C13.

¹ Department of Mathematics, Yildiz Technical University, Istanbul, Türkiye

² Department of Mathematics and Science Education, Istanbul Sabahattin Zaim University, Istanbul, Türkiye

 $^{^{\}rm 3}$ Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Türkiye

⁴ Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania

In 1956, M. Krasner [7] introduced the notion of hyperfield. Later on, he introduced the notions of hyperring and hypermodule over a hyperring, known nowadays as Krasner hyperrings and Krasner hypermodules [8]. If (G, +) is a canonical hypergroup, (G, \circ) is a semigroup having 0 as a bilaterally absorbing element for all elements, and \circ is distributive with respect to "+", then $(G, +, \circ)$ is known as Krasner hyperring. Besides them, there are also other kinds of hyperrings, as multiplicative hyperrings defined by R. Rota [14], or generalized hyperrings defined by T. Vougiouklis [16]. In this study, we deal with Krasner hyperrings.

A non-empty set M is called [2] a left hypermodule over a hyperring \mathcal{R} (\mathcal{R} -hypermodule) if (M, +) is a canonical hypergroup and there exists the map $\cdot : \mathcal{R} \times M \to M$ defined by $(r, m) \to r \cdot m$ such that for all $r_1, r_2 \in \mathcal{R}$ and $m_1, m_2 \in M$ we have

- i) $r_1 \cdot (m_1 + m_2) = r_1 \cdot m_1 + r_1 \cdot m_2$;
- *ii*) $(r_1 + r_2) \cdot m_1 = r_1 \cdot m_1 + r_2 \cdot m_1$;
- *iii*) $(r_1 \cdot r_2) \cdot m_1 = r_1(r_2 \cdot m_1)$.

Furthermore, in this definition, if \mathcal{R} is a Krasner hyperring and $r \cdot 0_R = 0_M$, then M is said to be a left Krasner hypermodule over \mathcal{R} . Similarly, a right Krasner hypermodule is defined. If M is both right and left Krasner hypermodule, M is called Krasner \mathcal{R} -hypermodule.

In 2015, R. Mohamadian [12] introduced the concept of r-ideals and pr-ideals, while r-submodules have been studied in [6]. S. Omidi et. al. [13] defined r-hyperideals in commutative hyperrings. Recently, in [17], r-hyperideals and pr-hyperideals in commutative Krasner hyperrings have been studied. Recall from [13] that a proper hyperideal N in a commutative Krasner hyperring G is called an r-hyperideal (respectively, pr-hyperideal), if $a \cdot b \in N$ with ann(a) = 0 implies that $b \in N$ (respectively, $b^n \in N$ for some $n \in \mathbb{N}$) for each $a, b \in G$.

In this paper, we generalize this concept to hypermodules. We concentrate on the similarities and differences between r-subhypermodules and prime subhypermodules. We investigate basic notions of r-subhypermodules.

2 r-Subhypermodules

Throughout this section, all hyperrings are commutative Krasner hyperrings with $1 \neq 0$ and all related hypermodules are unitary and nonzero Krasner hypermodules, unless otherwise stated.

Definition 1. Let M be an \mathcal{R} -hypermodule and N be a subhypermodule of M such that $N \neq M$. Then N is called an r-subhypermodule if $r \cdot m \in N$ with $ann_M(r) = 0_M$ implies that $m \in N$ for each $r \in \mathcal{R}$, $m \in M$.

Example 1. Consider \mathbb{Z} -hypermodule $M = \{(x,y) : x,y \in \mathbb{Z}\}$ with trivial hyperoperations. $N_1 = \{(x,x) : x \in \mathbb{Z}\}$ is subhypermodule of M.

Let $a \cdot (x, y) \in N_1$ with $ann(a) = 0_M$ for $a \in \mathbb{Z}$, $(x, y) \in M$. Then $(a \cdot x, a \cdot y) \in N$, hence $a \cdot x = a \cdot y$ and therefore x = y. Thus, N_1 is an r-subhypermodule of M.

Similarly, $N_2 = \{(x,0) : x \in \mathbb{Z}\}$ and $N_3 = \{(0,x) : x \in \mathbb{Z}\}$ are also r-subhypermodules of M.

Corollary 1.

- *i*) The zero subhypermodule is an *r*-subhypermodule.
- *ii)* The intersection of an arbitrary nonempty set of *r*-subhypermodules is an *r*-subhypermodule.
- *iii*) The sum of two r-subhypermodules may not be an r-subhypermodule (see Example 2).
- *iv*) We know that if N is a prime subhypermodule of M, then $(N :_{\mathcal{R}} M)$ is a prime hyperideal. But this is not always true for r-subhypermodules (see Example 3).

Example 2. Consider \mathbb{Z} -hypermodule \mathbb{Z}_{12} . We know that $I = <\overline{3} >$ and $J = <\overline{4} >$ are two proper subhypermodules of \mathbb{Z}_{12} . We easily see that I and J are also r-subhypermodules of \mathbb{Z}_{12} . But $I + J = \mathbb{Z}_{12}$. Since it is not proper, it is not an r-subhypermodule.

Example 3. $K = <\overline{2}>$ is an r-subhypermodule of \mathbb{Z} -hypermodule \mathbb{Z}_{12} . Then $(K :_{\mathbb{Z}} \mathbb{Z}_{12}) = 2\mathbb{Z}$. We see $2 \cdot 3 \in 2\mathbb{Z}$ and $ann_{\mathbb{Z}}(2) = 0$, but $3 \notin 2\mathbb{Z}$. So, $2\mathbb{Z}$ is not an r-hyperideal of \mathbb{Z} .

We will denote the set $\{a \in \mathcal{R} : ann_M(a) \neq 0_M\}$ by Z(M). Then N is an r-subhypermodule of M if and only if $Z(M/N) \subseteq Z(M)$. Moreover, the r-subhypermodules of \mathcal{R} -hypermodule are definitely the r-hyperideals of \mathcal{R} .

Lemma 1. Let N be an r-subhypermodule of M. Then $(N :_{\mathcal{R}} M) \subseteq Z(M)$.

Proof. We know that $(N :_{\mathcal{R}} M) = Ann(M/N) \subseteq Z(M/N)$. Since N is an r-subhypermodule of M, then $Z(M/N) \subseteq Z(M)$. Thus, $(N :_{\mathcal{R}} M) \subseteq Z(M)$, as requested. \square

A subhypermodule P of a hypermodule H is called a prime subhypermodule if for any two subhypermodules A and B of H such that their product AB is contained in P at least one of A or B is contained in P.

In the context of abstract algebra, particularly in the study of hypermodules, prime subhypermodules and r-subhypermodules are distinct concepts. Here is an example that illustrates the difference between these concepts.

Example 4. Consider the hypermodule $H = R^2$, where R is a ring. Let $M = \{(a,0) : a \in R\}$ be a subhypermodule of H. M is an r-subhypermodule, because for any (a,0) in M and r in R, the product (a,0)r = (ar,0) is also in M, satisfying the definition of an r-subhypermodule. However, M may not necessarily be a prime subhypermodule, as it does not have to satisfy the prime subhypermodule condition. The key difference between prime subhypermodules and r-subhypermodules is their definitions and the properties they must satisfy. Prime subhypermodules are defined based on containment in products, while r-subhypermodules are defined based on closure under right multiplication by ring elements. The example provided illustrates the distinction between these two concepts.

However, if N is prime and $(N :_{\mathcal{R}} M) \subseteq Z(M)$, then N is an r-subhypermodule of M, since $Z(M/N) = (N :_{\mathcal{R}} M)$.

A nonempty set S of \mathcal{R} is multiplicatively closed when $a \cdot b \in S$ for all $a, b \in S$. Suppose that S is a multiplicatively closed set of \mathcal{R} and M is an \mathcal{R} -hypermodule. Then the fraction hypermodule at S is denoted by $S^{-1}M$. Therefore, the mapping $\varphi: M \to S^{-1}M$, given by a = a/1 for all $a \in M$, is natural \mathcal{R} -homomorphism.

Theorem 1. Suppose that *N* is a proper subhypermodule of *M*. Then the following are equivalent:

- *i*) *N* is an *r*-subhypermodule of *M*;
- *ii*) $(r \cdot M) \cap N = r \cdot N$ for any $r \in \mathcal{R} \setminus Z(M)$;
- *iii*) $N = (N :_M r)$ for any $r \in \mathcal{R} \setminus Z(M)$;
- iv) $N = \varphi^{-1}(L)$, where $S = \mathcal{R} \setminus Z(M)$ and L is an $S^{-1}\mathcal{R}$ -subhypermodule of $S^{-1}M$.
- *Proof.* i) ⇒ ii) Let N be an r-subhypermodule of M. Obviously, $r \cdot N \subseteq (r \cdot M) \cap N$ for every $r \in \mathcal{R}$. We need to show that $(r \cdot M) \cap N \subseteq r \cdot N$. Let $x \in (r \cdot M) \cap N$. Then $x \in (r \cdot M)$ and $x \in N$. We get $x = r \cdot m \in N$ for some $m \in M$. We conclude that $m \in N$, since N is an r-subhypermodule and $r \notin Z(M)$.
- $ii) \Rightarrow iii)$ We know that $N \subseteq (N :_M r)$ for every $r \in \mathcal{R}$. Let $m \in (N :_M r)$. Hence $m \cdot r \in N$. From ii), we get $m \cdot r \in (r \cdot M) \cap N = r \cdot N$. This implies that $m \cdot r = n \cdot r$ for $n \in N$. Since $ann_M(r) = 0_M$, we get $m = n \in N$. Hence, $m \in N$. Thus, $(N :_M r) \subseteq N$.
- $iii) \Rightarrow iv$) It is known, that $N \subseteq \varphi^{-1}(S^{-1}N)$. Let $m \in \varphi^{-1}(S^{-1}N)$. So we have $\varphi(m) = m/1 \in S^{-1}N$ and $r \cdot m \in N$ for some $r \in S$. By iii), we get $m \in (N :_M r) = N$.
- $iv) \Rightarrow i)$ Assume that $N = \varphi^{-1}(L)$, where $S = \mathcal{R} \setminus Z(M)$ and L is an $S^{-1}\mathcal{R}$ -subhypermodule of $S^{-1}M$. Let $r \cdot m \in N$ and $ann_M(r) = 0_M$. Then $\varphi(r \cdot m) = (r \cdot m)/1 = r/1 \cdot m/1 \in L$. Since $r \in S$ and L is an $S^{-1}\mathcal{R}$ -subhypermodule, we get $1/r \cdot (r \cdot m)/1 = m/1 = \varphi(m) \in L$. Thus, $m \in \varphi^{-1}(L) = N$.

Recall that subhypermodule N is said to be pure subhypermodule of M if $a \cdot N = N \cap a \cdot M$ for every $a \in \mathcal{R}$.

Corollary 2. If *N* is *r*-subhypermodule of *M*, then *N* is pure subhypermodule.

Proof. It is trivial to the previous theorem.

The reverse of Corollary 2 is not necessarily true. In other words, just because a subhypermodule N is pure in M does not mean it is an r-subhypermodule of M. Here is a counterexample to illustrate this.

Example 5. Consider the hypermodule $M = \mathbb{Z}_6$ with addition modulo 6, and let $N = \{0,3\}$. Then N is a pure subhypermodule of M. However, N is not an r-subhypermodule of M. Consider the element 2 in M. If N were an r-subhypermodule, there should exist an element r in M such that $2 \cdot r = 3$, since $3 \in N$. However, there is no such r in M because the equation $2r \equiv 3 \pmod{6}$ has no solution in integers. Therefore, the reverse of the given corollary is not true, and the fact that a pure subhypermodule does not imply that it is necessarily an r-subhypermodule.

Proposition 1. Every proper subhypermodule of \mathcal{R} -hypermodule M is an r-subhypermodule if and only if for every subhypermodule N of M we have $r \cdot N = N$ for every $r \in \mathcal{R} \setminus Z(M)$.

Proof. Let every proper subhypermodule of M be an r-subhypermodule, N be a subhypermodule and $r \in \mathcal{R} \setminus Z(M)$. If N = M and $r \cdot M \neq M$, then $r \cdot M$ is an r-subhypermodule. Since $r \cdot m \in r \cdot M$ for every $m \in M$ and $ann_M(r) = 0_M$, then we have $m \in r \cdot M$ and so $r \cdot M = M$,

which is a contradiction. Let N be a proper subhypermodule of M. Then $r \cdot N \subseteq N \neq M$ and $r \cdot N$ is an r-subhypermodule. Similarly, we get $r \cdot N = N$.

Conversely, if for proper subhypemodule N of M, $r \cdot N = N$ for every $r \in \mathcal{R} \setminus Z(M)$, then we have $r \cdot M \cap N = r \cdot N$. Thus, by Theorem 1, N is an r-subhypermodule. \square

Theorem 2. Let M_1 , M_2 be \mathcal{R} -hypermodules and $\varphi: M_1 \longrightarrow M_2$ is a good homomorphism. Then the following statements hold.

- i) If φ is a monomorphism and N_2 is an r-subhypermodule of M_2 with $\varphi^{-1}(N_2) \neq M_1$, then $\varphi^{-1}(N_2)$ is an r-subhypermodule of M_1 .
- *ii*) If φ is an epimorphism, N_1 is an r-subhypermodule of M_1 and $Ker(\varphi) \subseteq N_1$, then $\varphi(N_1)$ is an r-subhypermodule of M_2 .
- *Proof. i*) Let φ be a monomorphism and N_2 is an r-subhypermodule of M_2 such that $\varphi^{-1}(N_2) \neq M_1$. Suppose that $x \cdot y \in \varphi^{-1}(N_2)$ and $ann_{M_1}(x) = 0_{M_1}$ for $x \in \mathcal{R}$, $y \in M_1$. Then $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \in N_2$. Since $ann_{M_1}(x) = 0_{M_1}$, then $ann_{M_2}(\varphi(x)) = 0_{M_2}$. Since N_2 is an r-subhypermodule, then $\varphi(y) \in N_2$ and so $y \in \varphi^{-1}(N_2)$. Thus, $\varphi^{-1}(N_2)$ is an r-subhypermodule.
- *ii*) Let us assume that φ is an epimorphism and N_1 is an r-subhypermodule of M_1 and $Ker(\varphi) \subseteq N_1$. Let $x \cdot y \in \varphi(N_1)$ and $ann_{M_2}(x) = 0_{M_2}$ for $x \in \mathcal{R}$, $y \in M_2$. Since φ is onto, there exist $a, m \in \mathcal{R}$ such that $x = \varphi(a)$ and $y = \varphi(m)$. Then $x \cdot y = \varphi(a) \cdot \varphi(m) = \varphi(a \cdot m) \in \varphi(N_1)$. Moreover, since $Ker(\varphi) \subseteq N_1$, we get $a \cdot m \in N_1$. Since $ann_{M_2}(x) = 0_{M_2}$, we obtain $ann_{M_2}(\varphi(a)) = 0_{M_2}$ and so $ann_{M_1}(a) = 0_{M_1}$. We see that $m \in N_1$, because N_1 is an r-subhypermodule. Thus, $\varphi(m) = y \in \varphi(N_1)$, as requested.

Corollary 3. If *I* is a subhypermodule of *M*, then the following statements hold.

- *i*) If N is an r-subhypermodule of M with $I \nsubseteq N$, then $N \cap I$ is an r-subhypermodule of I.
- *ii*) If N is an r-subhypermodule of M with $I \subseteq N$, then N/I is an r-subhypermodule of M/I.
- *Proof. i*) Let us assume that $x \cdot y \in N \cap I$ with $ann_I(x) = 0_I$ for $x \in \mathcal{R}$, $y \in I$. Then we have $x \cdot y \in N$ and $x \cdot y \in I$. Therefore, $ann_M(x) = 0_M$. Since N is an r-subhypermodule, we get $y \in N$. By our assumption, $y \in N \cap I$. Thus, $N \cap I$ is an r-subhypermodule of I.
- *ii*) Let us assume that *N* is an *r*-subhypermodule and $I \subseteq N$. Let $(x \oplus I) \cdot (y \oplus I) \subseteq N / I$ and $ann_{M/I}(x \oplus I) = 0_{M/I} = 0_M + I$ for any $x \in \mathcal{R}$, $y \in M$. Then $x \cdot y \oplus I \subseteq N / I$ and $ann_M(x) = 0_M$. We have $x \cdot y \in N$. Since *N* is an *r*-subhypermodule, we get that $y \in N$ and so $y \oplus I \subseteq N / I$. □

Proposition 2. Let N and K/N be r-subhypermodules of M/N such that $N \subseteq K$. Then K is an r-subhypermodule of M.

Proof. Assume that N and K/N are r-subhypermodules of M/N such that $N \subseteq K$. Let $x \cdot y \in K$ with $ann_M(x) = 0_M$ for $x \in \mathcal{R}$, $y \in M$. We have $x \cdot y \oplus N \subseteq K/N$ and so $(x \oplus N) \cdot (y \oplus N) \subseteq K/N$. Since $ann_{M/N}(x \oplus N) = 0_{M/N} = 0_M + N$ and K/N is an r-subhypermodule, we get $y \oplus N \in K/N$. Hence, $y \in K$.

Proposition 3. Let N be an r-subhypermodule of M and $\varnothing \neq K \subseteq \mathcal{R}$ such that $K \nsubseteq (N :_{\mathcal{R}} M)$. Then $(N :_M K)$ is an r-subhypermodule of M. Particularly, if $K \nsubseteq Ann_{\mathcal{R}}(M)$, then $(0_M :_M K)$ is always an r-subhypermodule.

Proof. Let $x \cdot y \in (N :_M K)$ with $ann_M(x) = 0_M$ for $x \in \mathcal{R}, y \in M$. Then $x \cdot y \cdot k \in N$ for $k \in K$. Thus, $y \cdot k \in N$ and so $y \in (N :_M K)$, since N is an r-subhypermodule.

Moreover, when $K \nsubseteq Ann_{\mathcal{R}}(M)$, if we take 0_M instead of N, then $(0_M :_M K)$ is an r-subhypermodule.

Corollary 4. If $a \notin Ann_{\mathcal{R}}(M)$, then $ann_{M}(a)$ is an r-subhypermodule of M.

Proposition 4. Let M be an \mathcal{R} -hypermodule. If the zero subhypermodule is the only r-subhypermodule, then:

- *i*) the zero subhypermodule is a prime subhypermodule of M;
- *ii)* $Ann_{\mathcal{R}}(M)$ *is a prime hyperideal of* \mathcal{R} .

Proof. i) Let $r \cdot m = 0_M$ and $r \notin Ann_{\mathcal{R}}(M)$. We know that $ann_M(r)$ is an r-subhypermodule. We get that $ann_M(r) = 0_M$, since we accept the zero subhypermodule is the only r-subhypermodule. Thus, $m = 0_M$ and so the zero subhypermodule is a prime subhypermodule.

ii) It is obvious from i).

Recall that a proper subhypermodule P of M is prime iff when I is a hyperideal of \mathcal{R} and J is a subhypermodule of M such that $I \cdot J \subseteq P$, then $I \subseteq (P :_{\mathcal{R}} M)$ or $J \subseteq P$. In the following, we give a similar result for r-subhypermodules.

Theorem 3. Let us assume that *N* is proper subhypermodule of *M*. The following statements hold.

- *i*) N is an r-subhypermodule of M if and only if K is a hyperideal of \mathcal{R} and L is a subhypermodule of M with $K \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$ and $K \cdot L \subseteq N$, then $L \subseteq N$.
- ii) Suppose that $(N :_{\mathcal{R}} M) \subseteq Z(M)$ and N is not an r-subhypermodule of M. Then there exist a hyperideal K of \mathcal{R} and a subhypermodule L of M with $K \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$, $N \subsetneq L$, $(N :_{\mathcal{R}} M) \subsetneq K$ and $K \cdot L \subseteq N$.

Proof. i) Let us suppose that N is an r-subhypermodule, K is a hyperideal of \mathcal{R} and L is a subhypermodule of M with $K \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$ and $K \cdot L \subseteq N$. We find an element $r \in K$ such that $ann_M(r) = 0_M$. Since $r \cdot l \in N$ for every $l \in L$ and N is an r-subhypermodule, we get $l \in N$ and so $L \subseteq N$.

Conversely, let $r \cdot m \in N$ and $ann_M(r) = 0_M$ for $r \in \mathcal{R}, m \in M$. We take $K = r \cdot \mathcal{R}$ and $L = \mathcal{R} \cdot m$. Note that $K \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$ and $I \cdot L \subseteq N$. Then by assumption, we have $\mathcal{R} \cdot m \subseteq N$ and so $m \in N$. Hence, N is an r-subhypermodule.

ii) Since N is not an r-subhypermodule, there exist $r \in \mathcal{R}, m \in M$ such that $r \cdot m \in N$ with $ann_M(r) = 0_M$ and $m \notin N$. We take $K = (N :_{\mathcal{R}} m)$. Note that $r \in K$ and $r \notin (N :_{\mathcal{R}} M)$, because $ann_M(r) = 0_M$. Thus, we have $(N :_{\mathcal{R}} M) \subsetneq K$. Let us take $L = (N :_M K)$. Since $m \notin N$ and $m \in L$, we obtain $N \subsetneq L$. Hence, we get $N \subsetneq L$, $(N :_{\mathcal{R}} M) \subsetneq I$ and $K \cdot L = K \cdot (N :_M K) \subseteq N$.

Theorem 4. Let I, J and L be subhypermodules of M and K be a hyperideal of \mathcal{R} such that $K \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$. Then the following statements hold.

- *i*) If *I*, *J* are *r*-subhypermodules of *M* with $K \cdot I = K \cdot J$, then I = J.
- ii) If $K \cdot L$ is an r-subhypermodule of M, then $K \cdot L = L$. Especially, L is an r-subhypermodule.

Proof. i) By the previous theorem, we have $I \subseteq J$, because $K \cdot I \subseteq J$ and J is r-subhypermodule. Similarly, $J \subseteq I$. Thus, I = J.

$$ii)$$
 Similarly to $i)$, the proof is obvious.

Theorem 5. Let $P_1, P_2, P_3, ..., P_n$ be prime subhypermodules of M such that $(P_i :_{\mathcal{R}} M)s$ are not comparable. If $\bigcap_{i=1}^{n} P_i$ is an r-subhypermodule, then P_i is an r-subhypermodule for each $i \in \{1, 2, ..., n\}$.

Proof. Let $r \cdot m \in P_k$ and $ann_M(r) = 0_M$ for $r \in \mathcal{R}$, $m \in M$. We have

$$x \in \Big(\bigcap_{i=1, i\neq k}^{n} (P_i:_{\mathcal{R}} M)\Big) \setminus (P_k:_{\mathcal{R}} M)$$

for some $x \in \mathcal{R}$. Then we get $x \cdot r \cdot m \in \bigcap_{i=1}^{n} P_i$ and so $x \cdot m \in \bigcap_{i=1}^{n} P_i \subseteq P_k$ since $\bigcap_{i=1}^{n} P_i$ is an r-sub-hypermodule. Since P_k is a prime subhypermodule and $x \notin (P_k :_{\mathcal{R}} M)$, we get $m \in P_k$. \square

Proposition 5. Let N be a maximal r-subhypermodule of M. Then N is a prime subhypermodule.

Proof. Assume that $r \cdot m \in N$, $m \notin N$ and $r \notin (N :_{\mathcal{R}} M)$. By Proposition 3, $(N :_M r)$ is an r-subhypermodule. N is a maximal r-subhypermodule, so we have $(N :_M r) = N$, which is a contradiction. Therefore, $r \in (N :_{\mathcal{R}} M)$. □

Now we give a similar proposition with prime avoidance lemma for *r*-subhypermodules.

Proposition 6. Let $N, N_1, N_2, ..., N_n$ be subhypermodules of M such that $N \subseteq \bigcup_{i=1}^n N_i$ is an r-subhypermodule. Suppose that N_j is an r-subhypermodule and $(N_i :_{\mathcal{R}} M) \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$ for every $i \neq j$. If $N \nsubseteq \bigcup_{i \neq j} N_i$, then $N \subseteq N_j$.

Proof. Let j = 1. Then there exists $a \in N$ such that $a \notin \bigcup_{i=2}^{n} N_i$ so $a \in N_1$.

Let $b \in N \cap N_2 \cap N_3 \cap \cdots \cap N_n$. Then we have $a + b \subseteq N \setminus \bigcup_{i=2}^n N_i$ and so $a + b \subseteq N_1$. Thus $b \in N_1$ and $N \cap N_2 \cap N_3 \cap \cdots \cap N_n \subseteq N_1$. There exists $a_i \in (N_i :_{\mathcal{R}} M)$ such that $ann_M(a_i) = 0_M$ for $i = 2, 3, \ldots, n$, since $(N_i :_{\mathcal{R}} M) \cap (\mathcal{R} \setminus Z(M)) \neq \emptyset$. Obviously, $ann_M(a_2 \cdot a_3 \cdot \ldots \cdot a_n) = 0_M$. We have $a_2 \cdot a_3 \cdot \ldots \cdot a_n \in \bigcap_{i=2}^n (N_i :_{\mathcal{R}} M) \cap (\mathcal{R} \setminus Z(M))$. Since

$$\bigcap_{i=2}^{n}(N_{i}:_{\mathcal{R}}M)\cap N\subseteq N\cap N_{2}\cap N_{3}\cap\cdots\cap N_{n}\subseteq N_{1}\quad\text{and}\quad\bigcap_{i=2}^{n}(N_{i}:_{\mathcal{R}}M)\cap (\mathcal{R}\setminus Z(M))\neq\varnothing,$$

from Theorem 3 we obtain $N \subseteq N_1$.

Let M_1 be an \mathcal{R}_1 -hypermodule and M_2 be an \mathcal{R}_2 -hypermodule, where \mathcal{R}_1 and \mathcal{R}_2 are commutative Krasner hyperrings with identity. Let $\mathcal{R} = \mathcal{R}_1 \times \mathcal{R}_2$ and $M = M_1 \times M_2$. Then M is an \mathcal{R} -hypermodule with coordinate-wise addition and the scalar multiplication. Therefore, every subhypermodule can be written as $N = N_1 \times N_2$, where N_1 is a subhypermodule of M_1 and N_2 is a subhypermodule of M_2 . Next theorem characterizes the r-subhypermodule of Cartesian product of hypermodules.

Lemma 2. Let $\mathcal{R} = \mathcal{R}_1 \times \mathcal{R}_2$ and $M = M_1 \times M_2$, where M_1 is an \mathcal{R}_1 -hypermodule and M_2 is an \mathcal{R}_2 -hypermodule. If $N = N_1 \times N_2$ is a subhypermodule of M, then the following statements are equivalent:

- *i*) *N* is an *r*-subhypermodule of *M*;
- ii) $N_1 = M_1$ and N_2 is an r-subhypermodule of M_2 or N_1 is an r-subhypermodule of M_1 and $N_2 = M_2$ or N_1 , N_2 are r-subhypermodules of M_1 and M_2 , respectively.
- *Proof.* $i) \Rightarrow ii)$ Suppose that $N = N_1 \times N_2$ is an r-subhypermodule of $M = M_1 \times M_2$. Let $(a,b) \cdot (c,d) \in N_1 \times N_2$ with $ann_{M_1 \times M_2}((a,b)) = (0_{M_1},0_{M_2})$ for $(a,b) \in \mathcal{R}_1 \times \mathcal{R}_2$ and $(c,d) \in M_1 \times M_2$. This means $a \cdot c \in N_1$ and $b \cdot d \in N_2$. Since we assume $N_1 \times N_2$ is an r-subhypermodule, we get $(c,d) \in N_1 \times N_2$ and so $c \in N_1$ and $d \in N_2$. Since $ann_{M_1 \times M_2}((a,b)) = (0_{M_1},0_{M_2})$, we obtain $ann_{M_1}(a) = 0_{M_1}$ or $ann_{M_2}(b) = 0_{M_2}$. Thus, N_1, N_2 are r-subhypermodules of M_1 and M_2 , respectively. The rest follows easily.
- $ii) \Rightarrow i)$ Suppose that N_1 , N_2 are r-subhypermodules of M_1 and M_2 , respectively. Let $(a,b)\cdot (c,d)\in N_1\times N_2$ with $ann_{M_1\times M_2}((a,b))=(0_{M_1},0_{M_2})$ for $(a,b)\in \mathcal{R}_1\times \mathcal{R}_2$ and $(c,d)\in M_1\times M_2$. Then $(a,b)\cdot (c,d)=(a\cdot c,b\cdot d)\in N_1\times N_2$, which means $a\cdot c\in N_1$ and $b\cdot d\in N_2$. Since $ann_{M_1\times M_2}((a,b))=(0_{M_1},0_{M_2})$, we get $ann_{M_1}(a)=0_{M_1}$ or $ann_{M_2}(b)=0_{M_2}$. Moreover, since we assume that N_1 , N_2 are r-subhypermodules of M_1 and M_2 , we obtain $c\in N_1$ and $d\in N_2$. We conclude that $(c,d)\in N_1\times N_2=N$, as requested.

Theorem 6. Let $\mathcal{R} = \mathcal{R}_1 \times \mathcal{R}_2 \times \cdots \times \mathcal{R}_n$ and $M = M_1 \times M_2 \times \cdots \times M_n$, where M_i is an \mathcal{R}_i -hypermodule for $n \geq 1$ and $1 \leq i \leq n$. Let $N = N_1 \times N_2 \times \cdots \times N_n$ be a subhypermodule of M. The following statements are equivalent:

- *i*) *N* is an *r*-subhypermodule of *M*;
- *ii*) $N_i = M_i$ for $i \in \{k_1, k_2, ..., k_j : j < n\}$ and N_i is an r-subhypermodule of M_i for $i \in \{1, 2, ..., n\} \setminus \{k_1, k_2, ..., k_i\}$.

Proof. If n=1, it is obvious. If n=2, by the previous lemma, $(i)\Leftrightarrow (ii)$. Suppose that the claim is true for $n=k\geq 3$. This means that $I=N_1\times N_2\times \cdots \times N_k$ is an r-subhypermodule of M if and only if $N_k=M_k$ and N_k is an r-subhypermodule of M_k . We need to show that it is also true for n=k+1. By the previous lemma, $I\times N_{k+1}$ is an r-subhypermodule of M if and only if $N_{k+1}=M_{k+1}$ and N_{k+1} is an r-subhypermodule. \square

3 Conclusion

In this study, we introduced the definition of r-subhypermodule and some basic algebraic properties are obtained. Moreover, we observed that the prime subhypermodules and r-subhypermodules have some similar characteristics. The r-subhypermodules of the Cartesian product of hypermodules has been investigated.

References

- [1] Ameri R., Nozari T. *A new characterization of fundamental relation on hyperrings*. Int. J. Contemp. Math. Sciences 2010, **5** (13–16), 721–738.
- [2] Ameri R., Zahedi M.M. On the prime, primary and maximal subhypermodules. Ital. J. Pure Appl. Math. 1999, 5, 61–80.
- [3] Corsini P. Prolegomena of hypergroup theory. In: Suppl. to Riv. Mat. Pura Appl. Aviani Editore, Tricesimo, 1993.
- [4] Davvaz B., Leoreanu-Fotea V. Hyperring theory and applications. Int. Academic Press, Palm Harbor, 2007.
- [5] Davvaz B., Salasi A. A realization of hyperrings. Comm. Algebra 2006, 34 (12), 4389–4400. doi:10.1080/00927870600938316
- [6] Koç S., Tekir Ü. r-submodules and sr-submodules. Turkish J. Math. 2018, 42 (4), 1863–1876. doi:10.3906/mat-1702-20
- [7] Krasner M. Sur l'approximation des corps valués complets de caractéristique $p \neq 0$ par ceux de caractéristique zéro. In: Colloque d'Algèbre supérieure, 1959. Centre Belge Rech. Math., 129–206.
- [8] Krasner M. *A class of hyperrings and hyperfields*. Int. J. Math. Math. Sci. 1983, **6** (2), 307–311. doi:10.1155/S0161171283000265
- [9] Marty F. Sur une generalization de la notion de group. In: Proc. of the 8th Congres Math. Scandinaves, Stockholm, Sweden, 1934, 45–49.
- [10] Massouros Ch., Massouros G. An Overview of the Foundations of the Hypergroup Theory. Mathematics 2021, 9 (9), 1014. doi:10.3390/math9091014
- [11] Mittas J. Hypergroupes canoniques. Math. Balkanica (N.S.) 1972, 2, 165-179.
- [12] Mohamadian R. r-ideals in commutative rings. Turkish J. Math. 2015, 39 (5), 733-749. doi:10.3906/mat-1503-35
- [13] Omidi S., Davvaz B., Zhan J. Some properties of n-hyperideals in commutative hyperrings. J. Algebraic Hyperstruct. Logical Algebr. 2020, 1 (2), 23–30. doi:10.29252/hatef.jahla.1.2.3
- [14] Rota R. Sugli iperanelli moltiplicativi. Rend. Mat. (Ser. VII), 1982, 4 (2), 711–724.
- [15] Vougiouklis T. Hyperstructures and their representations. In: Hadronic Press Monographs in Mathematics. Hadronic Press, Palm Harbor, FL, 1994.
- [16] Vougiouklis T. *The Fundamental Relation in Hyperrings. The General Hyperfield.* In: Proc. of the Fourth Intern. Congress on Algebraic Hyperstructures and Applications, World Sci. Publ., Singapore, 1991, 203–211.
- [17] Xu P., Bolat M., Kaya E., Onar S., Ersoy B.A., Hila K. *r-hyperideals and generalizations of r-hyperideals in Krasner hyperrings*. Math. Probl. Engineering, 2022, **2022**, 7862425. doi:10.1155/2022/7862425

Received 22.08.2023 Revised 22.11.2023

Болат М., Кая Е., Онар С., Ерсой Б.А., Хіла К. r-Підгіпермодулі над гіпермодулями Краснера // Карпатські матем. публ. — 2025. — Т.17, №1. — С. 246–254.

У цій роботі ми вводимо поняття r-підгіпермодуля $\mathcal R$ -гіпермодуля, де $\mathcal R$ — комутативне гіперкільце Краснера. Власний підгіпермодуль N модуля M називають r-підгіпермодулем, якщо з умови $a\cdot m\in N$ та $ann_M(a)=0_M$ випливає, що $m\in N$ для кожного $a\in \mathcal R$, $m\in M$. Ми досліджуємо зв'язок між поняттями простого підгіпермодуля та r-підгіпермодуля. Також наведено деякі результати щодо r-підгіпермодулів.

Ключові слова і фрази: r-гіперідеал, r-підгіпермодуль, простий підгіпермодуль.