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Derivations of Mackey algebras

Bezushchak O.

We describe derivations of finitary Mackey algebras over fields of characteristics not equal to 2.
We prove that an arbitrary derivation of an associative finitary Mackey algebra or one of the Lie
algebras sl (V|W), 000(f) is an adjoint operator of an element in the corresponding Mackey alge-
bra. It provides a description of the derivations of all algebras in the Baranov-Strade classification
of finitary simple Lie algebras. The proof is based on N. Jacobson’s result on derivations of asso-
ciative algebras of linear transformations of an infinite-dimensional vector space and the results on
Herstein’s conjectures.
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Introduction

Let V be an infinite-dimensional vector space over a field [F, and let V* denote the vector
space of all linear functionals on V. For an element v € V and a linear functional w € V*, we
denote w(v) = (v|w). A subspace W C V* is called total if for v € V the equality (v|W) = 0
implies v = 0.

Define Endp(V) as the associative algebra of all linear transformations V. — V, and let

Endyi, (V) = {¢ € Endg(V) : dimg ¢(V) < oo},

The space V* has a natural structure of a right Endp(V)-module. Given a linear functional
X : V — F and a linear transformation ¢ : V — V, we define (x¢)(v) = x(¢(v)), v € V.

The subalgebra

A(VIW) = {9 € Endp(V) : Wp C W}
and the subalgebra
Afin (VIW) = A(VIW) NEnd;,, (V)

are called the Mackey algebra and the finitary Mackey algebra, respectively.

Clearly, Af;, (VW) is an ideal of the algebra A (V|W). For more information about Mackey
algebras, see [11,12,14,15].

The algebra Af;, (V|W) can be identified with the tensor product V ®@r W by

(11 @ w1) (v @ wy) = (va|wy) V1 ® Wy
An element ) ; v; ® w; we treat as the linear transformation

v— ) (vjw;)v;, veV.
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The algebra Ag;, (V|W) of a total subspace W C V* is a nonunital locally matrix algebra
(see [6-9,13)).
The algebras A (V|W), Ag;, (VIW) also give rise to Lie algebras

gl(VIW) = (A(V|W), [a,b] =ab— ba)
and
gleo (VIW) = (Afin (VIW), [a,b] = ab — ba).
Let
slee (VIW) = gl (VIW) , gl (VIW) ].

The structure of these Lie algebras was studied in [5].

A bijective linear transformation (respectively additive map) ¢ of an associative algebra (re-
spectively ring) A is called an anti-automorphism if ¢(ab) = ¢(b)¢p(a) for all elements
a,b € A. An anti-automorphism x is called an involution if (a*)* = a for all elements a € A.

N. Jacobson [12] showed that a finitary Mackey algebra Af;, (V|W) has an involution if
and only if the vector space V is equipped with a weakly Hermitian (see [12]) non-degenerate
bilinear form f(x,y) such that W is the space of linear functionals X : v — f(v,x), v € A,
where x runs over V. In this case, we call the pair (V, W) dual, and the anti-automorphism is
the transpose

¢ — ¢, f(e(01),v2) = f(v1,9'(02)).
Moreover, a linear transformation ¢ € Endg(V) has a transpose if and only if it lies in A (V|W).
The anti-automorphism t is an involution if and only if the form f is symmetric or skew-

symmetric.
Let the characteristic of the field IF be different from 2, and let

o(f) ={ae A(VIW) :a" = —a}
be the Lie algebra of skew-symmetric linear transformations. Let

0co(f) = o(f) NEndy;y (V).

A. Baranov and H. Strade [1] obtained the classification of infinite-dimensional simple fini-
tary Lie algebras over an algebraically closed field of characteristic not equal to 2 nor 3. An
algebra belongs to this class if and only if it is isomorphic to one of the Mackey algebras
sleo (VIW), 00 (f), where f is a non-degenerate symmetric or skew-symmetric form. The proof
used the classification of simple modular Lie algebras (see [16]), which explains the restriction
on characteristics.

Recall that a linear map d : A — A is called a derivation if

d(xy) = d(x)y + xd(y)

for arbitrary elements x and y from A.
For an element a € A, the adjoint operator

ad(a): A — A, x — [a,x],

is an inner derivation of the algebra A.

The following theorem describes derivations of finitary Mackey algebras. In particular, for
characteristics not equal to 2 nor 3, it describes derivations of all infinite-dimensional simple
finitary Lie algebras.
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Theorem 1. (a) An arbitrary derivation of the associative algebra Ag;,,(V|W) is an adjoint
operator ad(a), wherea € A (V|W).

(b) Let charF # 2. Then an arbitrary derivation of the Lie algebra sl (V|W) is an adjoint
operator ad(a), wherea € A (V|W).

(c) Letchar[F # 2. Then an arbitrary derivation of the Lie algebra o« (f) is an adjoint opera-
torad(a), wherea € A (V|W) and a' = —a.

Remark. In the special case when both spaces V and W are countable-dimensional, the al-
gebras A (VW) and Ay, (V|W) are isomorphic to the algebra M, ¢(IF) of countable matrices
having finitely many nonzero entries in each row and each column, and to the algebra M« (F)
of countable matrices with finitely many nonzero entries, respectively. Derivations of these
algebras were described in [8].

Proof. N. Jacobson showed [11] that if A is a subalgebra of the algebra Endg (V) such that A
acts irreducibly on V, and A contains a nonzero linear transformation of finite range, then
for an arbitrary derivation d of the algebra A there exists an element ¢ € Endp(V) such that
d(a) = [, a] for every a € A.

Let us show that the algebra A¢;, (V|W) acts on V irreducibly. Choose elements v1,v; € V,
v1 # 0. Since the subspace W C V* is total, there exists a linear functional w € W such that
(v1|w) # 0. The linear transformation v, ® w € Ay, (V|W) maps the element v; to (v;|w) va.

All elements from Ag;, (V|W) have finite ranges. Hence, by N. Jacobson’s theorem, there
exists a linear transformation ¢ € Endg(V) such that [p,a] = d(a) for every element
a € Agiy (VIW). Let us show that ¢ € A(V|W). For arbitrary elements v € V, w € W,
wehave [p®@w, 9] =vR@w ¢ — ¢(v) ®w € V® W, which implies thatwp € W, ¢ € A (V|W).
This completes the proof of the assertion (a).

The assertion (b) immediately follows from the proof of Herstein's conjectures by
K.I. Beidar et al. (see [2—4]).

Now, let d be a derivation of a Lie algebra 0. (f). Again, by the result of K.I. Beidar et al.
[2-4], the derivation d extends to a derivation of Ag;, (V|W) . Hence, by (a), there exists an
element ¢ € A (V|W) such that d(k) = [¢, k] for an arbitrary element k from oe(f). We have
(¢, k] € 00o(f). Hence, [, k]' = [K', ¢'] = [¢', k], and, on the other hand, [¢, k]' = —[¢, k]. This
implies [¢' + ¢, k| = 0.

The subspace 0o (f) generates Ay, (V|W) as an associative algebra (see [10]). Hence,

[+ @, Agin (VIW)] = (0).
By Schur’s lemma (see [11]), it implies that ¢’ + ¢ is a scalar multiplication, namely
(Pt+(P:Dé'Idv, a €F,

where Idy is the identity transformation of V.

Now, ’ . . .
_ - ot - By — = — ot .
¢=5(9=¢)+5(0+¢) =5 (p—9¢)+5a Tdv.
The element
1 t
a=5(9—¢)

liesin A (V|W), a! = —a, and the derivation d is the restriction of ad () to 0c(f).
This completes the proof of the theorem. O
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Mu ommcyemo audpepeHtitoBaHHs piHiTapHNX aATebp Maki Haa MOASIMIU XapaKTePUCTHUKMY, STKa
He AOpiBHIOE 2. AOBOAMMO, IO AOBiABHe AMdpepeHIIiOBaHHS acoLiaTMBHOI (piHiTapHOI arreb6pm
Maxi abo oaHiei 3 aarebp Ai sleo(V|W), 000(f) € mpreaHaHNM OIEPATOPOM 3a AOIIOMOTO AESIKO-
T'O eAeMeHTa 3 BiATTOBiAHOI aATe6py Maki. Tum camuM, OTpuMyeMO ommc AMdpepeHITiIoBaHb yCiX an-
rebp 3 kaacudikanii dpiniTapENX mpocTix arrebp Ai 3a baparosum-IlITpase. AoBereHHs 6a3yeThCst
Ha pe3yAbTaTax AkeKobcoHa Ipo AdpepeHIiI0BaHHs acoliaTUBHMX aATebp AiHIHIX IepeTBOpeHb
HeCKiHUeHHO BMMipHOTrO BeKTOPHOTO IIPOCTOPY i pe3yAbTaTiB IIIOAQ rinore3 XepcreliHa.

Kntouosi cnosa i ppasu: amdpepeHtirobanHs, aare6pa Maxi.



