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Cauchy problem for the double nonlinear
parabolic equation not in divergent form with a

time-dependent source or absorption

Aripov M.1, Bobokandov M.1,2

This paper studies the properties of solutions for a double nonlinear time-dependent parabolic

equation with variable density, not in divergence form, with a source or absorption. The problem is

formulated as a partial differential equation with a nonlinear term that depends on the solution and

the time. The main results are the existence of weak solutions in suitable function spaces; regularity

and positivity of solutions; asymptotic behavior of solutions as time goes to infinity; comparison

principles; and maximum principles for solutions. The proofs are based on comparison methods

and asymptotic techniques. Some examples and applications are also given to illustrate the features

of the problem.
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1 Introduction

In the domain Q =
{

(t, x) : t > t0 > 0, x ∈ R
N
}

, we consider the following Cauchy

problem to the double nonlinear parabolic equation with variable density, not in divergence

form, with a time-dependent source or absorption,

|x|−n ∂tu = uqdiv
(

|x|n1 um−1
∣

∣∇uk
∣

∣

p−2
∇u
)

+ ε|x|−ntluβ, (t, x) ∈ Q, (1)

u (0, x) = u0 (x) ≥ 0, x ∈ R
N , (2)

where k, m ≥ 1, p ≥ 2, 0 < q < 1, ε = ±1 and nonnegative n, l, β are given numerical para-

meters.

Problem (1)–(2) arises in different applications [14, 15, 20]. Equation (1) is of degenerate

type. Therefore, in the domain Q, where u = 0,∇u = 0, it is of degenerate type. Therefore,

in this case, we need to consider a weak solution that has physical meaning. The qualitative

properties of problem (1)–(2) depending on ε = 1 and ε = −1 are different (see [5, 10, 11]).

Equation (1) for the particular value of numerical parameters when ε = 1 and ε = −1

intensively studied by many authors (see [3, 4, 6, 8] and references therein).

Weak solutions play an essential role in modelling real-world phenomena, since many dif-

ferential equations are unable to admit sufficiently smooth solutions, and the weak formula-

tion is the only method available for solving them. It often proves advantageous to prove the
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existence of weak solutions first and then show that those solutions are sufficiently smooth,

even when an equation has differentiable solutions [19]. The elegant and beautiful work [15]

revealed a new phenomenon of nonlinear PDEs and stimulated the study of similar phenom-

ena for various parabolic, hyperbolic, and nonlinear Schrödinger-type equations [24]. Many

significant discoveries have emerged since then, but it is not possible to provide a thorough

summary in such a short paper. The interested reader is referred to the paper by Sh. Kamin

and J.L. Vázquez [18] and references therein for a good account of related works. A brief re-

view of some related results on parabolic equations is provided below.

Investigating qualitative properties of the problem, such as Fujita type global solvability,

asymptotic solution, localisation of solution, finite speed propagation of distribution, blow-up

solution, and so on, by many authors based on self-similar solutions (for example, see [9, 10]

and references therein).

A.V. Martynenko and A.F. Tedeev [21] studied the Cauchy problem in the case q = n = 0,

k = 1, l = 0, ε = 1. They showed that under some restrictions on the parameters, any nontrivial

solution to the Cauchy problem blows up in a finite time and established a sharp universal

estimate of the solution near the blow-up point. D. Andreucci and A.F. Tedeev [2] studied the

Neumann problem in the case n = l = 0, k = m = 1, γ = 1. They established a sharp universal

estimate of the solution near the blow-up point and showed the condition for the solutions to

exist and to which class they belonged.

Also, D. Andreucci and A.F. Tedeev [1] proved prior supremum bounds for solutions in the

case n = l = 0, γ = 1 as t approaches the time, when u becomes unbounded. Such bounds are

universal in the sense that they do not depend on u.

Furthermore, we recall some well-known results. In particular, when γ = 1, l = 0, the

authors of the work [6] studied the heat conduction equation with a nonlinear source term.

They showed that for the Cauchy problem, the critical Fujita exponent is

βc = m + k(p − 2) + q +
p(1 − q)

N − n
.

In the case l = n = 0, k = 1 and without a source term, the authors of [8] proved that,

depending on the values of the numerical parameters and the initial value, there are global

solutions to the Cauchy problem.

The purpose of this paper is to investigate the influence of a variable density and a time-

dependent term on the evaluation of nonlinear processes. It is proved that the Fujita-type

global solvability and asymptotic properties of the self-similar solution are based on an algo-

rithm of nonlinear splitting. The problem has been solved with an initial approximation for

the numerical solution of the problem (1)–(2), and it is suggested that the numerical scheme

method and algorithm for solution keep the nonlinear properties solution of fast diffusion,

slow diffusion, critical and singular cases.

Definition 1. A weak solution to the problem (1) – (2) in (t0, T) with 0 < T ≤ +∞ is the

function u(t, x) with the property

0 ≤ u, |x|n1 um−1
∣

∣∇uk
∣

∣

p−2
∇u ∈ C (Q)

and satisfying the equation (1) in a distributional sense.

The existence of a weak solution is proved as in [10], where doubly nonlinear parabolic

equations are considered.
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2 Global solvability

Let us introduce the notation v = u1−q and put this into problem (1)–(2), we get

L(v) ≡ −|x|−nvt + div
(

|x|n1 vm2−1
∣

∣∇vk2
∣

∣

p−2
∇v
)

+ ε(1 − q)|x|−ntlvβ2 , (3)

v |t=t0 = v0 (x) = [u0(x)]1/(1−q) , (4)

where m2 =
m

1 − q
, k2 =

k

1 − q
, β2 =

β − q

1 − q
.

We are looking for the solution v(t, r) that has the following form

v(t, r) = v(t)w
(

τ(t), ϕ
(

|x|
))

,

where

v(t) =



























l1t
1+l

1−β2 , if l 6= −1, β2 6= 1,

l2 (ln t)
1

1−β2 , if l = −1, β2 6= 1,

e−l3tl+1
, if l 6= −1, β2 = 1,

t−l4, if β2 = −l = 1,

with l4 = ε(1 − q), l3 =
l4

1 + l
, l2 = [l4 (β2 − 1)]

1
1−β2 , l1 = [l3 (β2 − 1)]

1
1−β2 ,

τ(t) =















l6 (1 − β2) t
l5

1−β2
+1

l5 + 1 − β2
, if l5 6= β2 − 1,

l6 ln t, if l5 = β2 − 1,

with l5 = (1 + l) (m2 + k2 (p − 2)− 1), l6 = l
m2+k2(p−2)−1
1 , and

ϕ(r) =















pr
p−n−n1

p

p − n − n1
, if p 6= n + n1,

ln r, if p = n + n1.

It is easy to verify that, for p − n − n1 > 0, the unknown function w satisfies the following

“radially symmetric” equation

∂w

∂τ
= ϕ1−s ∂

∂ϕ



ϕs−1wm2−1

∣

∣

∣

∣

∣

∂wk2

∂ϕ

∣

∣

∣

∣

∣

p−2
∂w

∂ϕ



+
wβ2 + w

l7τ
, (5)

where s =
p (N − n)

p − n − n1
, l7 = −

l5 + 1 − β2

1 + l
, n < N, p > n + n1.

Let us put in (5) the function

w (τ, ϕ) = f (ξ) , ξ = ϕτ−1/p. (6)

Then, for defining function f (ξ), we have degenerate type self-similarly differential equation

A f ≡ ξ1−s d

dξ

(

ξs−1 f m2−1

∣

∣

∣

∣

d f k2

dξ

∣

∣

∣

∣

p−2 d f

dξ

)

+
ξ

p

d f

dξ
+

f + f β2

l7
= 0. (7)
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Notice that in the singular case p = n + n1 the equation (1) after transformation (5) have

the following form

∂w

∂τ
=

∂

∂ϕ

(

wm2−1

∣

∣

∣

∣

∂wk2

∂ϕ

∣

∣

∣

∣

p−2 ∂w

∂ϕ

)

+ τ(N − n)

(

wm2−1

∣

∣

∣

∣

∂wk2

∂ϕ

∣

∣

∣

∣

p−2 ∂w

∂ϕ

)

+
wβ2 + w

l7τ
. (8)

We construct self-similar solutions in two ways, forward and backward, and then prove

that all solutions satisfying equation (7) have the following asymptotic

f (ξ) =

{

(a − bξγ1)γ2
+ , if m2 + k2 (p − 2) 6= 1,

e−bξγ1 , if m2 + k2 (p − 2) = 1,
(9)

where b =
[

γ1γ2pk
p−2
2

]− 1
p−1

, γ1 =
p

p − 1
, γ2 =

p − 1

m2 + k2 (p − 2)− 1
, a = const ≥ 0 and

(d)+ = max {d, 0}.

Let us introduce new notation

z (t, x) = v (t) f (ξ) , (10)

where v(t) = l1t
1+l

1−β2 , l > −1, β2 6= 1.

Theorem 1. Let m2 + k2(p − 2) − 1 ≥ 0, p > n + n1, u(0, x) ≤ z(0, x), x ∈ R
N. Then for

solution of problem (1) – (2) the estimate u (t, x) ≤ z (t, x) holds in Q.

Proof. We use the comparison of the solutions approach described in [10]. For the comparison

of solution is taken the function z (t, x). Substituting (10) into (3), we get

L
(

z(t, x)
)

= [v(t)]m2+k2(p−2)
(

ξ1−s d

dξ

(

ξs−1 f
m2−1

∣

∣

∣

∣

d f
k2

dξ

∣

∣

∣

∣

p−2 d f

dξ

)

+
ξ

p

d f

dξ
+

f + f
β2

l7

)

. (11)

Now, to prove Theorem 1, we should show that L
(

z(t, x)
)

≤ 0 in

D =

{

(t, x) : t ≥ t0 > 0, |x| ≤

((

a

b

)p−1( p − n − n1

p

)p

τ

)
1

p−n−n1

}

.

For this goal, we need to show that

ξ1−s d

dξ

(

ξs−1 f
m2−1

∣

∣

∣

∣

d f
k2

dξ

∣

∣

∣

∣

p−2 d f

dξ

)

+
ξ

p

d f

dξ
+

f + f
β2

l7
≤ 0. (12)

It is obvious that for the function f (ξ), the inequality (12) can be rewritten as follows

(a − bξγ1)γ2
+

[

1

l7
−

s

p
+

(a − bξγ1)
γ2β2−1
+

l7

]

≤ 0,

or
1

l7
−

s

p
+

(a − bξγ1)
γ2β2−1
+

l7
≤ 0 in ξp/(p−1) ≤

a

b
.
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To execute the last inequality, it is necessary that
1

l7
−

s

p
< 0, i.e.

1

l7
−

s

p
= −

1 + l

(1 + l) (m2 + k2 (p − 2)− 1) + 1 − β2
−

N − n

p − n − n1
< 0,

or

β2 ≥ β2c = 1 + (1 + l)

[

m2 + k2 (p − 2)− 1 +
p − n − n1

N − n

]

for sufficiently small a.

Then, according to the hypothesis of Theorem 1 and comparison principle, we obtain

v (t, x) =
[

u(t, x)
]1/(1−q)

≤ z (t, x) in Q, if v0(x) ≤ z (0, x), x ∈ R
N.

The proof of Theorem 1 is completed. The value of β2c is called the Fujita type critical

exponent.

2.1 Global solvability of Fujita type in singular case (p = n + n1)

Let us introduce the following new functions

w(τ, ϕ) = f1(η), η =
ln r

τ1/p
,

z1(t, x) = v(t) f1(η),
(13)

where f1(η) is a Barenblatt profile type function and satisfies the equation (8) (see [12]).

Theorem 2. Assume that m2 + k2(p − 2) − 1 ≥ 0,
1

p
≥

aγ2β2−1 + 1

l7
, v0(x) ≤ z1 (0, x),

x ∈ R
N \ {0}. Then, for sufficiently small v0 (x), the following inequality

v (t, x) ≤ z1 (t, x) (14)

holds in Q \ {0}, where the function z1 (t, x) is defined above.

Proof. Theorem 2 is proved by the comparison solution method [10]. For comparing a solution,

the function z1 (t, x) is considered. Substituting (13) into (3), we obtain

L
(

z1(t, x)
)

=
[

v(t)
]m2+k2(p−2)

(

d

dη

(

f m2−1
1

∣

∣

∣

∣

d f k2
1

dη

∣

∣

∣

∣

p−2 d f1

dη

)

+ τ(N − n)

(

zm2−1
1

∣

∣

∣

∣

∂zk2
1

∂ϕ

∣

∣

∣

∣

p−2 ∂z1

∂ϕ

)

+
η

p

d f1

dη
+

f1 + f
β2
1

l7

)

.

(15)

Since the function f1(η) has compact support (see [23]), it is enough to show that

L
(

z1(t, x)
)

≤ 0 in

D1 =

{

(t, x) : t ≥ t0 > 0, |x| ≤ exp

(

(a/b)
1

γ1
[

τ(t)
]1/p

)}

.

Since τ(N − n)

(

zm2−1
1

∣

∣

∣

∣

∂zk2
1

∂ϕ

∣

∣

∣

∣

p−2 ∂z1

∂ϕ

)

≤ 0 in D1, we get the following

d

dη

(

f m2−1
1

∣

∣

∣

∣

d f k2
1

dη

∣

∣

∣

∣

p−2 d f1

dη

)

+
ξ

p

d f1

dη
+

f1 + f
β2

1

l7
≤ 0. (16)
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For the function f1(η), the inequality (16) can be rewritten as follows

(a − bηγ1)γ2
+

[

1

l7
−

1

p
+

(a − bηγ1)
γ2β2−1
+

l7

]

≤ 0,

or
1

l7
−

1

p
+

(a − bηγ1)
γ2β2−1
+

l7
≤ 0 in D1.

Since (a − bηγ1)
γ2(β2−1)
+ ≤ aγ2(β2−1), we have

aγ2β2−1 + 1

l7
≤

1

p
.

Then, according to the hypothesis of Theorem 2 and the comparison principle, we obtain

v (t, x) ≤ z1 (t, x) in Q \ {0}, if v0(x) ≤ z1 (0, x), x ∈ R
N \ {0}. The proof of Theorem 2 is

completed.

3 Asymptotic of compactly supported weak solution

We will investigate nontrivial, non-negative solutions of the equation (7) that satisfy the

following conditions:

f (0) = c > 0, f (a1) = 0, a1 < ∞. (17)

For this purpose, we consider the function

f (ξ) = (a − bξγ1)γ2
+ , (18)

where b, γ1, γ2 are defined above.

It is easy to show that the function (18) is a sub-solution of the equation

ξ1−s d

dξ

(

ξs−1 f m2−1

∣

∣

∣

∣

d f k2

dξ

∣

∣

∣

∣

p−2 d f

dξ

)

+
ξ

p

d f

dξ
+

f + f β2

l7
= 0.

We will demonstrate that the function (18) is an asymptotic of solutions of the problem (1)–(2).

Now we study the asymptotic behavior of the problem (7), (17) as ξ → (a/b)
1

γ1
− . We seek a

solution of the equation (7) in the following form

f (ξ) = f (ξ) w (η) , η = − ln (a − bξγ1) , (19)

where w (η) is an unknown function.

It is easy to see that, η → +∞ as ξ → (a/b)
1

γ1
− . After the transformation (19), equation (7)

takes the following form

(

wµ |Lw|p−2 Lw
)′

+ a1wµ |Lw|p−2 Lw + a2Lw + a3w + a4wβ2 = 0, (20)

where Lw = w′ − γ2w, µ = 1 − (p − 1)
(

1 − 1
γ2

)

, a1 = s
γ1

a0 − γ2, a0 = e−η

a−e−η , a2 = γ1γ3
p ,

γ3 = b
−

p
γ1 γ

−p
1 k

p−2
2 , a3 = γ3

l7
a0, a4 = a3eγ2(1−β2)η.

First, we demonstrate that the solution of equation (7) has a finite limit w0 as η → +∞.

Let us consider the function

z (η) = wµ |Lw|p−2 Lw.
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The expression (20) is transformed to the following form






w′ = γ2w + w
−

µ
p−1 |z|γ1−2 z,

z′ = −a1z − a2w
−

µ
p−1 |z|γ1−2 z − a3w − a4wβ2 .

(21)

Lemma 1. Let us suppose that 0 < K1 ≤ K2, θ1 < θ2 ≤ 0. Let (w1, z1), (w2, z2) be the solutions

of system (21) with the initial value conditions wi (η0) = Ki, zi (η0) = θi, i = 1, 2. If w1 and w2

are positive in [η0,+∞), then w1 (η) ≤ w2 (η), z1 (η) < z2 (η) for any η ∈ [η0, +∞).

Proof. Since 0 < w1 (η0) ≤ w2 (η0), z1 (η0) < z2 (η0) ≤ 0, we get

w′
2(η0) = γ2w2(η0) + w

−
µ

p−1

2 (η0) |z2(η0)|
γ1−2 z2(η0)

> γ2w1(η0) + w
−

µ
p−1

1 (η0) |z1 (η0)|
γ1−2 z1 (η0) = w′

1 (η0) .

Hence, we get w′
2 (η0) > w′

1 (η0). Then there must exist a constant δ > 0 such that

w1 (η) ≤ w2 (η), z1 (η) ≤ z2 (η) on [η0, η0 + δ] (see [17] and references therein).

Analogously, we will see that this result is also valid for the segment [η0 + δ, η0 + 2δ] (see

[9, 13]). Consequently, we obtain that inequalities w1 (η) ≤ w2 (η), z1 (η) ≤ z2 (η) hold true

for η ∈ [η0 + δ(j − 1), η0 + δj] , j ≥ 1. Moreover, by repeating this process many times, we can

derive that inequalities w1 (η) ≤ w2 (η), z1 (η) ≤ z2 (η) are valid for all η ∈ [η0, +∞).

Lemma 2. Assume that 0 < K1 ≤ K2, 0 ≥ θ1 ≥ θ2. Let (w1, z1), (w2, z2) be the solutions of

system (21) with the initial value conditions wi (η0) = Ki, zi (η0) = θi, i = 1, 2. If w1 and w2

are positive in [η0,+∞), then w1 (η) ≤ w2 (η), z1 (η) ≥ z2 (η) for any η ∈ [η0, +∞).

Proof. Based on the hypotheses, we get

z′2 (η0) + a1z2 (η0) = −a2w
−

µ
p−1

2 |z2|
γ1−2z2 − a3w2 − a4w

β2
2

∣

∣

∣

η=η0

,

z′2 (η0) = −a2

(

w
−

µ
p−1

2 |z2|
γ1−2 z2 + γ2w2

)

− (a3 − a2)w2 − a4w
β2
2 (η0)

= −a2w′
2 (η0)− (a3 − a2) w2 − a4w

β2
2 (η0)

< −a2w
−

µ
p−1

1 |z1|
γ1−2 z1 − a3w1 − a4w

β2
1

∣

∣

∣

η=η0

= −a2w′
1 (η0)− (a3 − a2) w1 − a4w

β2
1 (η0)

= z′1 (η0) + a1z1 (η0)

= z′1 (η0) .

This means that z′2 (η0) < z′1 (η0), w′
2 (η0) > w′

1 (η0). Then, taking into account the proof of

Lemma 1, we obtain w2 (η) ≥ w1 (η), z1 (η) > z2 (η) for all η ∈ [η0,+∞).

Theorem 3. Let m2 + k2(p − 2) > 0. Then a finite solution of the problem (7), (17) has an

asymptotic f (ξ) = C f (ξ)
(

1 + o (1)
)

as ξ →

(

a

b

)
1

γ1

−

, where C is solution of an algebraic

equation

γ
p
2 Cm2k2(p−2)−1 −

b
−

p
γ1 γ

1−p
1 γ2k

p−2
2

p
+

0
a4Cβ2−1 = 0.
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Proof. We first show that the solution of system (21) has a finite limit w0 as η → +∞. It is well

known that the function wη is bounded. So, it is sufficient to show that it is monotone non-

increasing in [η0, +∞). Let us take w ≡ 1. We can see from (19) that it is a sub-solution. Then

for other solutions w1 (η) we have w′
1 (η) ≤ 0. This shows that any solution is not increasing in

[η0, η1) for any η1 > η0, where difference η1 − η0 is sufficiently small. By considering Lemma

1 and Lemma 2, we can find two solutions w1, w2 such that w1 (η1) = w2 (η0). We conclude

that w1 (η1) ≥ w1 (η0). We can see that w1 is monotone in [η0,+∞), due to the arbitrariness of

η1. Consequently, it has a limit as η → +∞. So, we get

lim
η→+∞

be−η

a − e−η → 0, w′ = 0.

Consequently, we obtain lim
η→+∞

a0 = lim
η→+∞

a3 = 0, lim
η→+∞

a1 = −γ2 and

0
a4 = lim

η→+∞
a4 =



















γ3

al7
, γ2 (1 − β2) = 1,

0, γ2 (1 − β2) < 1,

+∞, γ2 (1 − β2) > 1.

From (20) we obtain the algebraic equation

γ
p
2 w

m2k2(p−2)−1
0 −

b
−

p
γ1 γ

1−p
1 γ2k

p−2
2

p
+

0
a4w

β2−1
0 = 0

as ξ → (a/b)
1

γ1
− . Theorem 3 has been proved.

Asymptotic of solution in the absorption case. In the work [8], authors established a large

time asymptotic solution of the problem (1)–(2) for the case q = l = 0, ε = −1, β = βc. They

established the following asymptotic of the solution

u(t, x) ∼ (t ln t)
− 1

βc−1 exp
(

− |x|2 /t
)

, βc = 1 = 2/N for t ∼ ∞.

Generalisation of large time asymptotic and behaviour of the front of this result for a degener-

ate nonlinear parabolic equation considered in the works [6,8]. Authors of these works showed

the following large-time asymptotic

u(t, x) ∼
(

(T + t) ln (T + t)
)− 1

βc−1 exp
(

− |x|2 /t
)

of a solution of the problem (1)–(2). It was proved in the critical exponent case

βc = 1 + (1 + l)

[

m2 + k2(p − 2)− 1 +
p − n1 − n

N − n

]

, n < N, p − n1 − n > 0,

and free-boundary behaviour for a particular value of the numerical parameters, namely for

l = 1, q = 0.
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4 Fast diffusion case

We will take into consideration nontrivial, non-negative solutions of equation (7), that

satisfy the conditions

f (∞) = f ′(0) = 0. (22)

In that case, various families of solutions oscillate near ξ = +∞ (see, e.g., [14,18–22]). These

types of solutions are called eigenfunctions in nonlinear media [16]. By using the nonlinear

splitting method [17], we obtain the following upper solution

g (ξ) = A (a + ξγ1)γ2

of the problem (1)–(2), where A =

[

(γ1γ2)
1−p k

2−p
2

p

]

γ2
p−1

, a = const > 0.

Theorem 4. Let γ2 (β2 − 1) ≤ 0. Then a finite solution of the problem (7), (22) has an asymp-

totic f (ξ) = Cg (ξ)
(

1 + o(1)
)

, where C is solution of an algebraic equation
(

s

γ1
+ γ2

)

γ
p−1
2 Cµ+p−2 + A

1−p
γ2 γ

−p
1

(

γ1γ2

p
+

1

l7

)

+
0
b4Cβ2−1 = 0.

Proof. We will seek the solution of equation (7) in the form

f (ξ) = g (ξ) w (η) , η = ln (a + ξγ1) . (23)

And it is easy to see that η → +∞ as ξ → +∞.

After the transformation (23), we get
(

wµ |Lw|p−2 Lw
)′

+ b1wµ |Lw|p−2 Lw + b2Lw + b3w + b4wβ2 = 0, (24)

where

Lw = w′ + γ2w, µ =
p − 1

γ2
+ 2 − p, b1 =

s

γ1
b0 + γ2, b0 =

1

1 − ae−η ,

b2 =
γ

1−p
1 A

1−p
γ2

p
, b3 =

p b0 b2

γ1l7
, b4 =

γ
−p
1 Aβ2−m2−k2(p−2)b0

l7
eγ2(β2−1)η.

Considering that w(η) has a finite limit (see the proof of Theorem 3), we get

lim
η→+∞

1

1 − ae−η → 1, w′ = 0.

Consequently, we obtain the following

lim
η→+∞

b1 =
s

γ1
+ γ2, lim

η→+∞
b2 =

γ
1−p
1 A

1−p
γ2

p
, lim

η→+∞
b3 =

γ
−p
1 A

1−p
γ2

l7
,

0
b4 = lim

η→+∞
b4 =























γ
−p
1 Aβ2−m2−k2(p−2)

l7
, γ2 (β2 − 1) = 0,

0, γ2 (β2 − 1) < 0,

+∞, γ2 (β2 − 1) > 0.

We come to the following algebraic equation
(

s

γ1
+ γ2

)

γ
p−1
2 Cµ+p−2 + A

1−p
γ2 γ

−p
1

(

γ1γ2

p
+

1

l7

)

+
0
b4Cβ2−1 = 0,

as η → +∞ and f (ξ) = Cg (ξ)
(

1 + o (1)
)

, where C is the root of last algebraic equation. The

theorem has been proved.
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5 Numerical analysis of solutions

As is prominent for the numerical computation of a nonlinear problem, the choice of the

initial approximation is essential, which preserves the properties of the final celerity of prop-

agation, spatial localisation, and bounded and blow-up solutions, which guarantees conver-

gence with a given precision to the solution of the problem with a minimum number of it-

erations. We note that due non-uniqueness of solutions, many different cases arise in the

numerical study of the problems of type (1)–(2). Therefore, the question of selecting a good

initial approximation and preserving properties of nonlinearity arises [7]. Depending on the

parameters of the equation, this difficulty is overcome by an appropriate choice of initial ap-

proximations, which are accepted by the asymptotic formula established above.

We produced the numerical calculations based on the obtained qualitative properties. The

numerical results show fast convergence of the iterative process to the solution of the Cauchy

problem (1)–(2) due to the successful choice of the initial approximation. Below, we give two

results of numerical experiments for different values of the numerical parameters.

In the slow diffusion case, as an initial approximation, the function u0 (t, x) = l1t
1+l

1−β2 f (ξ)

is used.

The work for nonlinear modelling of processes, diffusion, filtration, heat dissipation etc.

shows the effect of the finite speed of perturbation, by self-similar analysis of an asymptot-

ically compactly-supported solution is established. The important problem of choosing an

initial appropriate approximation is solved. This work shows that the computational scheme

suggested by Samarskii-Sobol is effective for the numerical analysis of solutions. The given

results verified this phenomenon. The obtained results consist of cases of the porous medium

equation, p-Laplacian, and so on, which are not in divergence form. The number of iterations

did not exceed 3. Figures illustrate an evolution of the diffusion process with a finite speed of

perturbation in the one and two-dimensional cases.

(a) q = 0.8, m = k = 1, p = 3, n = 0, γ = 0 (b) q = 0.9, m = k = 1, p = 3, n = 0, γ = 0

Figure 1. One-dimensional case

6 Conclusion

Global solvability of the problem Cauchy for a degenerate double nonlinear parabolic equa-

tion in non-divergent form with variable density and source or absorption is studied.
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(a) q = 0, m = 3, k = 3.2, p = 4,

n = 0.2, γ = 1, l = 0, β = 1.3

(b) q = 0, m = 3.1, k = 3, p = 3.4,

n = 0.3, γ = 1, l = 0, β = 3

Figure 2. Two-dimensional case

The condition of global solvability of Fujita type, an estimate of the solution for the slow

diffusion case, and a free boundary are established. It is shown that the properties of the

solution depend on the value of numerical parameters characterising nonlinear media. The

properties solution of the Cauchy problem in slow diffusion, fast diffusion, and critical cases

were investigated. For every case, asymptotic self-similar solutions are established.

The problem of choosing an appropriate initial approximation for the numerical solution

is considered a problem by the iteration method. The results of the numerical analysis are

discussed.
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Арiпов М., Бобокандов М. Задача Кошi для подвiйного нелiнiйного параболiчного рiвняння з погли-

нанням у неоднорiдному середовищi // Карпатськi матем. публ. — 2025. — Т.17, №2. — C. 693–705.

У цiй статтi дослiджуються властивостi розв’язкiв подвiйного нелiнiйного параболiчного

рiвняння зi змiнною густиною, що залежить вiд часу, не у формi дивергенцiї з джерелом

або поглинанням. Задачу сформульовано у виглядi диференцiального рiвняння з частинни-

ми похiдними з нелiнiйним членом, який залежить як вiд розв’язку, так i вiд часу. Основними

результатами є iснування слабких розв’язкiв у вiдповiдних функцiональних просторах; регу-

лярнiсть i додатнiсть розв’язкiв; асимптотична поведiнка розв’язкiв при прямуваннi часу до

нескiнченностi; принципи порiвняння; принципи максимуму для розв’язкiв. Доведення ґрун-

туються на методах порiвняння та асимптотичних методах. Також наведено кiлька прикладiв

i застосувань, якi iлюструють особливостi проблеми.

Ключовi слова i фрази: вироджене параболiчне рiвняння, глобальна розв’язнiсть, слабкий

розв’язок, критична Фуджiта, асимптотика.


