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Cauchy problem for the double nonlinear
parabolic equation not in divergent form with a
time-dependent source or absorption

Aripov M.}, Bobokandov M.

This paper studies the properties of solutions for a double nonlinear time-dependent parabolic
equation with variable density, not in divergence form, with a source or absorption. The problem is
formulated as a partial differential equation with a nonlinear term that depends on the solution and
the time. The main results are the existence of weak solutions in suitable function spaces; regularity
and positivity of solutions; asymptotic behavior of solutions as time goes to infinity; comparison
principles; and maximum principles for solutions. The proofs are based on comparison methods
and asymptotic techniques. Some examples and applications are also given to illustrate the features
of the problem.
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1 Introduction

In the domain Q = {(t,x):t>1t >0, x € RV}, we consider the following Cauchy
problem to the double nonlinear parabolic equation with variable density, not in divergence
form, with a time-dependent source or absorption,

|x| "0 = u‘%liv(\x]”lum*l}Vuk‘p_ZVu) +elx|"uP, (t,x) €Q, (1)

u(0,x) =ug(x) >0, xcRN, (2)

where k,m > 1, p > 2,0 < g < 1, e = £1 and nonnegative 7,1, f are given numerical para-
meters.

Problem (1)—(2) arises in different applications [14, 15,20]. Equation (1) is of degenerate
type. Therefore, in the domain Q, where u = 0, Vu = 0, it is of degenerate type. Therefore,
in this case, we need to consider a weak solution that has physical meaning. The qualitative
properties of problem (1)—(2) depending on ¢ = 1 and ¢ = —1 are different (see [5, 10, 11]).

Equation (1) for the particular value of numerical parameters when ¢ = 1 and ¢ = —1
intensively studied by many authors (see [3, 4, 6,8] and references therein).

Weak solutions play an essential role in modelling real-world phenomena, since many dif-
ferential equations are unable to admit sufficiently smooth solutions, and the weak formula-
tion is the only method available for solving them. It often proves advantageous to prove the
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existence of weak solutions first and then show that those solutions are sufficiently smooth,
even when an equation has differentiable solutions [19]. The elegant and beautiful work [15]
revealed a new phenomenon of nonlinear PDEs and stimulated the study of similar phenom-
ena for various parabolic, hyperbolic, and nonlinear Schrodinger-type equations [24]. Many
significant discoveries have emerged since then, but it is not possible to provide a thorough
summary in such a short paper. The interested reader is referred to the paper by Sh. Kamin
and J.L. Vazquez [18] and references therein for a good account of related works. A brief re-
view of some related results on parabolic equations is provided below.

Investigating qualitative properties of the problem, such as Fujita type global solvability,
asymptotic solution, localisation of solution, finite speed propagation of distribution, blow-up
solution, and so on, by many authors based on self-similar solutions (for example, see [9, 10]
and references therein).

A.V. Martynenko and A.F. Tedeev [21] studied the Cauchy problem in the case g = n = 0,
k=1,1 =0,e = 1. They showed that under some restrictions on the parameters, any nontrivial
solution to the Cauchy problem blows up in a finite time and established a sharp universal
estimate of the solution near the blow-up point. D. Andreucci and A.F. Tedeev [2] studied the
Neumann problem in the casen =1 = 0,k = m = 1, v = 1. They established a sharp universal
estimate of the solution near the blow-up point and showed the condition for the solutions to
exist and to which class they belonged.

Also, D. Andreucci and A.F. Tedeev [1] proved prior supremum bounds for solutions in the
casen =1 =0,y = 1 as t approaches the time, when © becomes unbounded. Such bounds are
universal in the sense that they do not depend on u.

Furthermore, we recall some well-known results. In particular, when v = 1, [ = 0, the
authors of the work [6] studied the heat conduction equation with a nonlinear source term.
They showed that for the Cauchy problem, the critical Fujita exponent is

p(l—9q)
,Bc —m—f—k(p—2)+q+m.
In the case I = n = 0, k = 1 and without a source term, the authors of [8] proved that,
depending on the values of the numerical parameters and the initial value, there are global
solutions to the Cauchy problem.

The purpose of this paper is to investigate the influence of a variable density and a time-
dependent term on the evaluation of nonlinear processes. It is proved that the Fujita-type
global solvability and asymptotic properties of the self-similar solution are based on an algo-
rithm of nonlinear splitting. The problem has been solved with an initial approximation for
the numerical solution of the problem (1)—(2), and it is suggested that the numerical scheme
method and algorithm for solution keep the nonlinear properties solution of fast diffusion,
slow diffusion, critical and singular cases.

Definition 1. A weak solution to the problem (1)-(2) in (tg, T) with 0 < T < +o0 is the
function u(t, x) with the property

0<u, |x™ umfl}Vuk‘p_ZVu € C(Q)
and satisfying the equation (1) in a distributional sense.

The existence of a weak solution is proved as in [10], where doubly nonlinear parabolic
equations are considered.
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2 Global solvability
Let us introduce the notation v = u!~7 and put this into problem (1)—(2), we get
L(v) = —|x| "o + div(|x|"1vm2_1}V0k2}p72V0) +¢(1 —q)|x| "o, 3)

(4)

Uli=t, = 0o (x) = [uo(x)]l/(l—fn,

m k B—q
Wheremzzﬂ,kzzl— ﬁz—ﬂ

We are looking for the solution v(t, r) that has the following form

o(t,r) = B(t)w(t(t), ¢(|x])),

where ”
LT, if 1# -1, #1,
1
— ILh(Int)TF2, if | = —1, 1,
o(t) = { 2 ( rllﬂ) 1 B2 #
et if 1 #£-1,8=1,
t=l, if Bp=—-1=1,

1

Iy (B2 = 1)), Iy = [13 (B, — 1)] 7P

withly = e(1=q),ls = ;5 h =
-tk

()= Lri-p  TB7FPL
l6lnt,

if Is = By — 1,

withls = (1+1) (my+ka (p — 2) — 1), Ig = ["727271 4nq

p—n—nq

pr ’* if
o) =S p—m—ny MPTEEM
Inr, if p=n+ny.

It is easy to verify that, for p —n —ny > 0, the unknown function w satisfies the following

“radially symmetric” equation

dw —s J s—1, . my—1 o' piza_w wk2 tw (5)
Pk EP R g | og LT
N—n Is+1—
where s = %,17 = _STlﬁz,n <N,p>n+n.
Let us put in (5) the function
o (6)

w(t,9)=f(), =91
Then, for defining function f (&), we have degenerate type self-similarly differential equation
dfka|p=24 d + fB2
AU 9.0 -
| d&) e L

Af gl s <€s 1fm2 1
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Notice that in the singular case p = n + n; the equation (1) after transformation (5) have
the following form

P=29w

de

owk?
d¢

) 0 owk?
a5 ®

B P=29w wh2 4+ w
9T ¢ 9 > '

9

) +1(N —n) (wmzl

Z7T

We construct self-similar solutions in two ways, forward and backward, and then prove
that all solutions satisfying equation (7) have the following asymptotic

_ {(u—bcﬁ,‘“ﬂf, if my+ka(p—2)#1, )

f(g) - efbgvl, if my+ ko (p— ) =1,

1
_ p—2] " p-1 _ P _ p—1 _ >
where b = ['yl'yzpkz } ;Y1 = —P 7 Y2 = etk (p—2) -1 a = const > 0 and
(d), = max{d,0}.
Let us introduce new notation
z(t,x) =T(t) f(E), (10)

1+1

whereo(t) = l1t7 P2, 1 > —1, By # 1.

Theorem 1. Let my +ky(p—2) —1 > 0, p > n+ny, u(0,x) < z(0,x), x € RN. Then for
solution of problem (1) —(2) the estimate u (t,x) < z (¢, x) holds in Q.

Proof. We use the comparison of the solutions approach described in [10]. For the comparison
of solution is taken the function z (¢, x). Substituting (10) into (3), we get

dFP2dFN  cdf FAF
3 d@)*pdc B ) 1

Now, to prove Theorem 1, we should show that L(z(t,x)) < 0in

D= {(t,x):tz >0, |x| < ((g)lH(#)pT)”ll}

For this goal, we need to show that

L(Z(t,x)) _ [U(t)]m2+kzp 2) <€1 s <€s 1fm2 1

g (12)

dferrdf | edf FAFR
& r3 d?)*pdﬁ A

It is obvious that for the function (&), the inequality (12) can be rewritten as follows

(é:s gt

1 s (a N bgfyl)’Yzf;z*l
_hEM\T2 | +
(a bg )+ [Z7 p + l7

<0

4

or
1 — bEm T2p2—1
7 7

@‘Ih



Cauchy problem for the double nonlinear parabolic equation not in divergent form... 697

1 s
To execute the last inequality, it is necessary that — — v <0, ie.

I7
I s 141 N —n 0
I7 P_ 1+ (my+ka(p—2)—1)+1—-Br p—-n—m ,
or
p—n—m
Br> o =1+ (1+1) [matka(p—2) — 14—

for sufficiently small a.
Then, according to the hypothesis of Theorem 1 and comparison principle, we obtain

v(t,x)= [u(t,x)]l/(lfq) <z(t,x)in Q,if vg(x) < z(0,x), x € RN.
The proof of Theorem 1 is completed. The value of By, is called the Fujita type critical
exponent. 0

2.1 Global solvability of Fujita type in singular case (p = n + n1)
Let us introduce the following new functions

Inr

w(t, @)= filn), n= 7
z1(t, x) =o(t) f1(n),

where f1(77) is a Barenblatt profile type function and satisfies the equation (8) (see [12]).

(13)

1 arf—l 41

Theorem 2. Assume that mp; +ky(p —2) —1 > 0, ; > — vo(x) < z1(0,x),
7

x € RN\ {0}. Then, for sufficiently small vy (x), the following inequality

v(t,x) <z (tx) (14)
holds in Q \ {0}, where the function z; (t, x) is defined above.

Proof. Theorem 2 is proved by the comparison solution method [10]. For comparing a solution,
the function z (t, x) is considered. Substituting (13) into (3), we obtain

-2
=4\ M2tka(p—2) 1y — 1df P @
L) = o) e [
N ma1|022P 2021\ mdfi  fit £ )
T _n)<zl ¢ %)ﬂ?dfﬁ )

Since the function fi(r7) has compact support (see [23]), it is enough to show that
L(z1(t,x)) <0in

D, = {(t,x) t>t0 >0, x| <exp ((a/b);l [T(t)]l/p> }

b= 2821
J¢

821{2
eI

i le
dn

Since T(N —n) <ZT2 !

> < 0in Dy, we get the following

2 B2
2P df1>+§df1 f+A < (16)

dn pdy I;
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For the function fi(77), the inequality (16) can be rewritten as follows

1 1 (a— b;ﬂl)”ﬁrl
_hpr\72 | + <
(a—Dbym)7 Ly + L <0,

or -

1 1 — bym) 2P

-+ (@ =bnm)s <0 in Dj.

l7 p l7

_ e
Since (a — b;ﬂl)?f(ﬁz U< a”2(B2=1) e have ali < .
7

Then, according to the hypothesis of Theorem 2 and the comparison principle, we obtain
v(t,x) < z1(t,x)in Q\ {0}, if vo(x) < z1(0,x), x € RN\ {0}. The proof of Theorem 2 is
completed. O

3 Asymptotic of compactly supported weak solution

We will investigate nontrivial, non-negative solutions of the equation (7) that satisfy the
following conditions:

f(0)=c>0, f(a1)=0, a3 <oo. (17)
For this purpose, we consider the function
f@) = (a—=ba"), (18)

where b, 7y1, 772 are defined above.
It is easy to show that the function (18) is a sub-solution of the equation

ol (ot g |AfRPRAFN  Cdf P
R

We will demonstrate that the function (18) is an asymptotic of solutions of the problem (1)—(2).
1

0.

¢

Now we study the asymptotic behavior of the problem (7), (17) as { — (a/b) "l We seek a
solution of the equation (7) in the following form

f@=Ff@Quw(y), n=—-In(a—b), (19)

where w (1) is an unknown function.
1

It is easy to see that, # — +ocoas ¢ — (a/ b)? After the transformation (19), equation (7)
takes the following form

/
(w” | Lw|P 2 Lw) + aywt | Lw|P~? Lw + ayLw + azw + agwP = 0, (20)
where Lw = w' — 1w, p = 1—(p—1) <1—%),111 = dp — Y2, Ay = e, 0 = nre,

P,
Y3=>b M T pkg 2, az = ’ly—;ﬂo, ag = 113672(1752)’7.
First, we demonstrate that the solution of equation (7) has a finite limit wy as  — 4-oo.

Let us consider the function

z () = w" |Lw|’~* Lw.
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The expression (20) is transformed to the following form

, (21)

_n _
W = pw4w 71 |z|M 2z,
K _
2 = —mz—aw 7 |z|" 2z — azw — agwh2.

Lemma 1. Let us suppose that 0 < K; < Ky, 01 < 62 <0. Let (wy,21), (w2, z2) be the solutions
of system (21) with the initial value conditions w; (o) = Kj, z; (10) = 6;,i = 1,2. If w1 and w;
are positive in [y, +00), then wy (1) < wy (n),2z1 (1) < z2 (1) forany n € [y, +0).

Proof. Since 0 < w1 (10) < w2 (7o), z1 (10) < z2 (0) < 0, we get

__r

wh(110) = Y2wa (o) + 1w, " (10) |22(m0)| "> z2(1p0)

=
h

(10) |z (170) |2 21 (10) = W} (170) -

Hence, we get w) (170) > wj (o). Then there must exist a constant § > 0 such that
w1 (1) < w2 (n),21(n) < z2(y) on [no, o + J] (see [17] and references therein).

Analogously, we will see that this result is also valid for the segment [1o + J, 7o + 2J] (see
[9,13]). Consequently, we obtain that inequalities w; (17) < wy (1), z1 () < z2 (1) hold true
fory € [no+9(j —1),10 + 6j] ,j > 1. Moreover, by repeating this process many times, we can
derive that inequalities wq () < wa (17), z1 (1) < z2 (1) are valid for all 4 € [1g, +0). O

> YW1 (17()) + w;”

Lemma 2. Assume that 0 < K; < Kp, 0 > 61 > 6,. Let (wy,z1), (w2,22) be the solutions of
system (21) with the initial value conditions w; (19) = Kj, zj (7o) = 0;,i = 1,2. If wy and w;
are positive in [fo, +<), then w; (1) < ws (1), 21 (1) > 2 (1) forany y € [, +)

Proof. Based on the hypotheses, we get

__r
2 (1j0) + @z (1f0) = —axw, " |z 22y — azwy — agwh?

7

1="Mo
_ K
2 (10) = —a2 (wz Pz P2 + 72w2> — (a3 — a2) w2 — agwly? (10)

= —azwé (770) — (ﬂ3 - 112) Wy — a4w§2 (770)
M

Tyl 11—2 B2
< —ayw, |z1] Z1 — A3W1 — A4W)

1=Mo
= —azw’1 (770) — (ﬂ3 - 112) w1 — a4w/fz (770)
=z} (o) + a1z1 (o)

=21 (1) -
This means that z), (170) < z} (10), w5 (70) > w) (110). Then, taking into account the proof of
Lemma 1, we obtain w, (17) > w1 (1), z1 () > z2 (1) for all 7 € [r9, +00). O

Theorem 3. Let my + ka(p —2) > 0. Then a finite solution of the problem (7), (17) has an

asymptotic f (£) = CF (&) (1+0(1)) as § - ( "

equation

a

E) 71, where C is solution of an algebraic

-£ 1- -2
by Pk

,chmzkz(p*Z)*l p

+ 24Cﬁ271 =0.
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Proof. We first show that the solution of system (21) has a finite limit wp as 7 — 4-c0. It is well
known that the function wy is bounded. So, it is sufficient to show that it is monotone non-
increasing in [1g, +00). Let us take w = 1. We can see from (19) that it is a sub-solution. Then
for other solutions w; (17) we have w] (1) < 0. This shows that any solution is not increasing in
[0, #11) for any 7 > 19, where difference 171 — 1 is sufficiently small. By considering Lemma
1 and Lemma 2, we can find two solutions w1, w, such that wy (171) = w; (179). We conclude
that wy (171) > w1 (170). We can see that wq is monotone in [y, +0c0), due to the arbitrariness of
11. Consequently, it has a limit as 7 — +co. So, we get

-1
lim be

-0, w =0.
N+ g—e 1

C tly, btain li = i =0, LI = — d
onsequently, we obtain ] iToo ap ; irfw as ] irfmal Y2 an
Y3
—, 12(1-B2) =1,
0 = lim a4 = aly
ar = =
R et 0, Y2 (1—B2) <1,

00, 12 (1—p2) > 1.

From (20) we obtain the algebraic equation

£ 1- -2
ovq by Pakd 0 g
gw(r)nzkz(p 2)—1 . R VLY 44 wﬁz 1 0

Y 4 =
p 0

1

as ¢ — (a/b)"". Theorem 3 has been proved. O

Asymptotic of solution in the absorption case. In the work [8], authors established a large
time asymptotic solution of the problem (1)—(2) for the caseq =1 =0, e = —1, B = B¢. They
established the following asymptotic of the solution

u(t,x)N(tlnt)_ﬁexp<—\x]2/t), Bc=1=2/N for t~ co.

Generalisation of large time asymptotic and behaviour of the front of this result for a degener-
ate nonlinear parabolic equation considered in the works [6,8]. Authors of these works showed
the following large-time asymptotic

1
u(t,x) ~ ((T+£)In (T +4)) " T exp (— |x |2 /t)
of a solution of the problem (1)—(2). It was proved in the critical exponent case

p—ny—n

Be=1+1+1)|m+k(p—2)—1+ N_7

], n<N, p—ny—n>0,

and free-boundary behaviour for a particular value of the numerical parameters, namely for
I=1,9=0.
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4 Fast diffusion case

We will take into consideration nontrivial, non-negative solutions of equation (7), that
satisfy the conditions
f(e0) = f'(0) = 0. (22)
In that case, various families of solutions oscillate near ¢ = +co (see, e.g., [14,18-22]). These
types of solutions are called eigenfunctions in nonlinear media [16]. By using the nonlinear
splitting method [17], we obtain the following upper solution

§()=Aa+gm)"

1-p2—p %
('71'72) sz
p

Theorem 4. Let v, (B2 — 1) < 0. Then a finite solution of the problem (7), (22) has an asymp-
totic f (¢) = Cg () (1+0(1)), where C is solution of an algebraic equation

S _ p 1 0
<_+/)/2>/)/§ 1cy+p_2+A’Y2 71’7(@_}__) +b4CI32_1 :O
T p Iz
Proof. We will seek the solution of equation (7) in the form

f@)=8@w(n), n=Mmn(@+im). (23)
And it is easy to see that 7 — +ocoas § — +oco.
After the transformation (23), we get

of the problem (1)—(2), where A =

] , a4 = const > 0.

/
(w” |Lw|P 2 Lw) + bt [Lw|P 2 Lw + byLw + byw + byw? = 0, (24)
where
o _p-1 _ _ 5 _ 1
Lw=w +vw, p= - +2—-p, b= ,Ylbo—l-’er by = =

_ y{pA52*m2*kz(P*2) by

1-p Lp

T TA™ pbo by

by=——— Db3= ,
p T1l7 l7

Considering that w(#) has a finite limit (see the proof of Theorem 3), we get

. er2(B2=1)1

lim ——— =1, @ =0.
n—+ool —age™ "

Consequently, we obtain the following
1-p 1-p

1-p =L —p 4L
S Am A7
lim by = — 47y, lim b= A" " fim py= L2
n— +00 ’)/1 n— +00 p H— +00 l7

7

71"’Aﬁ2—m2—k2(ﬁ—2)

0 ' L ;2 (B2—1) =0,
bi = Hm bs=1o, 72(B2—1) <0,
+o0, Y2 (B2 —1) > 0.
We come to the following algebraic equation
06! p I
asn — +ooand f (&) = Cg () (1+0(1)), where C is the root of last algebraic equation. The
theorem has been proved. O
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5 Numerical analysis of solutions

As is prominent for the numerical computation of a nonlinear problem, the choice of the
initial approximation is essential, which preserves the properties of the final celerity of prop-
agation, spatial localisation, and bounded and blow-up solutions, which guarantees conver-
gence with a given precision to the solution of the problem with a minimum number of it-
erations. We note that due non-uniqueness of solutions, many different cases arise in the
numerical study of the problems of type (1)—(2). Therefore, the question of selecting a good
initial approximation and preserving properties of nonlinearity arises [7]. Depending on the
parameters of the equation, this difficulty is overcome by an appropriate choice of initial ap-
proximations, which are accepted by the asymptotic formula established above.

We produced the numerical calculations based on the obtained qualitative properties. The
numerical results show fast convergence of the iterative process to the solution of the Cauchy
problem (1)—(2) due to the successful choice of the initial approximation. Below, we give two

results of numerical experiments for different values of the numerical parameters.
A+l
In the slow diffusion case, as an initial approximation, the function ug (f,x) = 1t P2 f (¢)

is used.

The work for nonlinear modelling of processes, diffusion, filtration, heat dissipation etc.
shows the effect of the finite speed of perturbation, by self-similar analysis of an asymptot-
ically compactly-supported solution is established. The important problem of choosing an
initial appropriate approximation is solved. This work shows that the computational scheme
suggested by Samarskii-Sobol is effective for the numerical analysis of solutions. The given
results verified this phenomenon. The obtained results consist of cases of the porous medium
equation, p-Laplacian, and so on, which are not in divergence form. The number of iterations
did not exceed 3. Figures illustrate an evolution of the diffusion process with a finite speed of
perturbation in the one and two-dimensional cases.
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Figure 1. One-dimensional case

Global solvability of the problem Cauchy for a degenerate double nonlinear parabolic equa-
tion in non-divergent form with variable density and source or absorption is studied.
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(@g=0m=3,k=32,p=4, (b)g=0,m=31k=3,p=234,
n=02vy=11=0,=13 n=037=11=0,=3

Figure 2. Two-dimensional case

The condition of global solvability of Fujita type, an estimate of the solution for the slow
diffusion case, and a free boundary are established. It is shown that the properties of the
solution depend on the value of numerical parameters characterising nonlinear media. The
properties solution of the Cauchy problem in slow diffusion, fast diffusion, and critical cases
were investigated. For every case, asymptotic self-similar solutions are established.

The problem of choosing an appropriate initial approximation for the numerical solution
is considered a problem by the iteration method. The results of the numerical analysis are
discussed.
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Y milt cTaTTi AOCAIAXYIOTBCSI BAACTMBOCT] PO3B’SI3KiB MOABIHOTO HEAiHIHOToO mapaboaidHOro
PiBHSIHHS 31 3MiHHOIO I'YCTMHOIO, IIO 3aA€XUTH Bip Uacy, He y dpoopMi AMBepreHUii 3 AXXepeaoMm
abo morAMHaHHSIM. 3apady cpOPMYABOBAHO Y BUTASIAL AVicpepeHIIaABHOTO PiBHSIHHS 3 YaCTVHHN-
MU TIOXiAHVIMI 3 HEAIHIHIM UAEHOM, SIKMI 3aA€KUTD SIK BiA PO3B’sI3Ky, Tak i Bia yacy. OcHOBHIMM
pe3yAbTaTaMM € iCHyBaHHS cAabKMX PO3B’SI3KiB Y BiAIOBiAHMX PYHKITIOHAABHMX IIPOCTOPAX; PETY-
ASIPHICTD i AOAATHICTD pO3B’sI3KiB; aCMMIOTOTMYHA MOBEAIHKA PO3B’SI3KiB MpY MpsIMyBaHHI 4acy AO
HeCKIHYeHHOCTI; IPMHIMI IOPiBHSHHS; IPMHLIMIIA MaKCMMYMY AASI PO3B’SI3KiB. AOBeAeHHS I'PYH-
TYIOThCSI HA METOAAX IIOPIBHSIHHS Ta aCMMITOTUYHIX MeTOAaX. TakoXX HaBeAeHO KiAbKa IPUKAAAIB
i 3acTocyBaHb, IKi iAFOCTPYIOTH OCOOAMBOCTI TPOOAEMI.

Kntouosi cnosa i ¢ppasu: BUpOAXKeHe MapaboriuHe piBHSHH, TAOGaAbHA PO3B’SI3HICTD, CAAOKMI
po3B’s130K, kpuTiyHa DyAXiTa, aCMMITOTHKA.



