References

  1. D\(\rm\tilde{u}\)ng D., Temlyakov V.N., Ullrich T. Hyperbolic Cross Approximation. In: Romero D. (Eds.) Advanced Courses in Mathematics - CRM Barcelona. Birkhauser, CRM Barcelona, 2018. doi:10.1007/978-3-319-92240-9
  2. Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity. Carpathian Math. Publ. 2021, 13 (3), 838–850. doi:10.15330/cmp.13.3.838-850
  3. Fedunyk-Yaremchuk O.V., Hembars’ka S.B. Estimates of approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of several variables with given majorant of mixed moduli of continuity in the space \(L_{q}\). Carpathian Math. Publ. 2019, 11 (2), 281–295. doi:10.15330/cmp.11.2.281-295
  4. Fedunyk-Yaremchuk O.V., Hembars’kyi M.V., Hembars’ka S.B. Approximative characteristics of the Nikol’skii-Besov-type classes of periodic functions in the space \(B_{\infty,1}\). Carpathian Math. Publ. 2020, 12 (2), 376–391. doi:10.15330/cmp.12.2.376-391
  5. Fedunyk-Yaremchuk O.V., Solich K.V. Estimates of approximative characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables with given majorant of mixed continuity moduli in the space \(L_{\infty}\). J. Math. Sci. (N.Y.) 2018, 231 (1), 28–40. doi:10.1007/s10958-018-3803-3 (translation of Ukr. Mat. Visn. 2017, 14 (3), 345–360. (in Ukrainian))
  6. Hembars’ka S.B., Fedunyk-Yaremchuk O.V. Approximation characteristics of the Nikol’sky-Besov-type classes of periodic single- and multivariable functions in the \(B_{1,1}\) space. J. Math. Sci. (N.Y.) 2021, 259 (1), 75–87. doi:10.1007/s10958-021-05600-2 (translation of Ukr. Mat. Visn. 2021, 18 (3), 289–405. (in Ukrainian))
  7. Hembars’ka S.B., Romaniuk I.A., Fedunyk-Yaremchuk O.V. Characteristics of the linear and nonlinear approximations of the Nikol’skii-Besov-type classes of periodic functions of several variables. J. Math. Sci. (N.Y.) 2023, 274 (3), 307–326. doi:10.1007/s10958-023-06602-y (translation of Ukr. Mat. Visn. 2023, 20 (2), 161–185. (in Ukrainian))
  8. Hembars’kyi M.V., Hembars’ka S.B. Approximate characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of one variable and many ones. J. Math. Sci. (N.Y.) 2019, 242 (6), 820–832. doi:10.1007/s10958-019-04518-0 (translation of Ukr. Mat. Visn. 2019, 16 (1), 88–104. (in Ukrainian))
  9. Hembars’kyi M.V., Hembars’ka S.B. Linear and kolmogorov widths of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of one and several variables. J. Math. Sci. (N.Y.) 2020, 249 (5), 720–732. doi:10.1007/s10958-020-04968-x (translation of Ukr. Mat. Visn. 2020, 17 (2), 171–187. (in Ukrainian))
  10. Konograi A.F. Estimates of the approximation characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of several variables with given majorant of mixed moduli of continuity. Math. Notes 2014, 95 (5), 656–669. doi:10.1134/S0001434614050095 (translation of Mat. Zametki 2014, 95 (5), 734–749. (in Russian))
  11. Lizorkin P.I., Nikol’skii S.M. Spaces of functions with mixed smoothness from the decomposition point of view. Proc. Steklov Inst. Math. 1990, 187, 163–184. (translation of Tr. Mat. Inst. Steklova 1989, 187, 143–161. (in Russian))
  12. Nikol’skii S.M. Approximation of Functions of Several Variables and Embedding Theorems. Nauka, Moscow, 1977. (in Russian)
  13. Pustovoitov N.N. Approximation of multidimensional functions with a given majorant of mixed moduli of continuity. Math. Notes 1999, 65 (1), 89–98. doi:10.1007/BF02675013 (translation of Mat. Zametki 1999, 65 (1), 107–117. (in Russian))
  14. Pustovoitov N.N. On best approximations by analogs of “proper” and “improper” hyperbolic crosses. Math. Notes 2013, 93 (3), 487–496. doi:10.1134/S0001434613030164 (translation of Mat. Zametki 2013, 93 (3), 466–476. (in Russian))
  15. Pustovoitov N.N. On the approximation and characterization of periodic functions of many variables, whose majorant of mixed continuity moduli has a special form. Anal. Math. 2003, 29 (3), 201–218. doi:10.1023/A:1025415204826 (in Russian)
  16. Pustovoitov N.N. Representation and approximation of periodic functions of several variables with given mixed modulus of continuity. Anal. Math. 1994, 20 (1), 35–48. doi:10.1007/BF01908917 (in Russian)
  17. Pustovoitov N.N. The orthowidths of classes of multidimensional periodic functions, for which the majorant of mixed continuity moduli contains power and logarithmic multipliers. Anal. Math. 2008, 34 (3), 187–224. doi:10.1007/s10476-008-0303-6 (in Russian)
  18. Romanyuk A.S. Approximation characteristics of the classes of periodic functions of several variables. Proc. Inst. Math. NAS Ukr. 93, 2012. (in Russian)
  19. Romanyuk A.S. Best approximations and widths of classes of periodic functions of several variables. Sb. Math. 2008, 199 (2), 253–275. doi:10.1070/SM2008v199n02ABEH003918 (translation of Mat. Sb. 2008, 199 (2), 93–114. (in Russian))
  20. Romanyuk A.S. Diameters and best approximation of the classes \(B^r_{p,\theta}\) of periodic functions of several variables. Anal. Math. 2011, 37, 181–213. doi:10.1007/s10476-011-0303-9 (in Russian)
  21. Romanyuk A.S. Estimates for approximation characteristics of the Besov classes \(B^{r}_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). I. Ukrainian Math. J. 2001, 53 (9), 1473–1482. doi:10.1023/A:1014314708184 (translation of Ukrain. Mat. Zh. 2001, 53 (9), 1224–1231. (in Russian))
  22. Romanyuk A.S. Estimates for approximation characteristics of the Besov classes \(B^{r}_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). II. Ukrainian Math. J. 2001, 53 (10), 1703–1711. doi:10.1023/A:1015200128349 (translation of Ukrain. Mat. Zh. 2001, 53 (10), 1402–1408. (in Russian))
  23. Romanyuk A.S., Yanchenko S.Ya. Estimates of approximation characteristics and properties of the best approximation operators of the classes of periodic functions in the space \(B_{1,1}\). Ukrainian Math. J. 2022, 73 (8), 1278–1298. doi:10.1007/s11253-022-01990-x (translation of Ukrain. Mat. Zh. 2021, 73 (8), 1102–1119. doi:10.37863/umzh.v73i8.6755 (in Ukrainian))
  24. Stasyuk S.A., Fedunyk O.V. Approximation characteristics of the classes \(B^{\Omega}_{p,\theta}\) of periodic functions of many variables. Ukrainian Math. J. 2006, 58 (5), 779–793. doi:10.1007/s11253-006-0101-x (translation of Ukrain. Mat. Zh. 2006, 58 (5), 692–704. (in Ukrainian))
  25. Temlyakov V.N. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math. 1989, 178, 1–121. (translation of Tr. Mat. Inst. Steklova 1986, 178, 3–113. (in Russian))
  26. Temlyakov V.N. Diameters of some classes of functions of several variables. Dokl. Akad. Nauk 1982, 267 (2), 314–317. (in Russian)
  27. Bari N.K., Stechkin S.B. The best approximations and differential properties of two conjugate functions. Trans. Moscow Math. Soc. 1956, 5, 483–522. (in Russian)
  28. Temlyakov V.N. Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference. Proc. Steklov Inst. Math. 1990, 189, 161–197. (translation of Tr. Mat. Inst. Steklova 1989, 189, 138–168. (in Russian))
  29. Yongsheng S., Heping W. Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness. Tr. Mat. Inst. Steklova 1997, 219, 356–377.