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On the domain of convergence of general Dirichlet series with
complex exponents

Kuryliak M.R., Skaskiv O.B.

Let (A,) be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series
+00
F(z) = ¥ ane*™, z € C, we denote G,(F), G(F), G4(F) the domains of the existence, of the
n=0
convergence and of the absolute convergence of maximal term j(z, F) = max {|a, |eRe(hn) + jy > 0},
respectively. It is well known that G, (F), G,(F) are convex domains.
Let us denote V1 (z) := {n : Re(zA,) > 0}, Ma(z) := {n : Re(zA,) < 0} and

. —In|ay| —  —Injay|
M) := 1 ——nl @) := Iim ——0 L
o : im . o : i . .
if ’ n—+oo i
HQE% Re(efA,) ne/\/;(fi% Re(efA,)

Assume that g, — 0 as n — 4-o0. In the article, we prove the following statements.
1) If a®(0) < a(V)(0) for some 6 € [0, ) then {te® : t € (?)(0),a1)(0))} C G, (F) as well as
{te®® : t € (—oc0,a®(0)) U (aV)(0),+00)} N Gu(F) = 2.

2)GuF)= U {z=te®:t e (?(0),a(0))}.
0€lo,m)

3) 1 h = lim —pl € (1,400), then (55 Ga(F)) D Gu(F) O Ge(F). If h = +oo then
n——+o0

Ga(F) = G¢(F) = Gy(F), therefore G¢(F) is also a convex domain.
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1 Introduction

We consider the class D(A) of Dirichlet series of the form
+00
F(z) = Z 1" (1)
n=0

such that a,e?* — 0 as n — oo for some zp, where a sequence of the exponents A = (A,,) is
a sequence of pairwise distinct complex numbers. In the case 0 < A, T +o0as1 < n 1 +oo we
will write A} and D (A ). Denote D := Jp D(A), D4 := Up, D (A4).

Convergence sets of Dirichlet series F € D(A) with complex exponents A were studied
by W. Schnee [1-3], G.H. Hardy and M. Riesz [4], ].F. Ritt [7], E. Hille [8], ]J. Micusinski [9],
TM. Gallie [10, 11], G. Peyser [12], etc. In [7], ].E. Ritt considered Dirichlet series with com-
plex exponents in the context of a differential equation of infinite order under the constraint
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—+00

that the series ) 1/|Ax| should be convergent, but at the same time does not impose any re-
k=1

strictions on the arguments A,, which other authors in the field do (see much later research

in [9,16,17]). In [9], ]. Micusiriski considered the Dirichlet series of the form (1) by the condition

lirf % = +o0. E. Hille [8] and some other authors considered series under the condition

n——+0o0

T(A) = lirJrrl |lf\‘—"‘ < 400 and, in particular, in the case T(A) = 0 (see also [15], where the se-
n—-+oo |I*n

—+oo
ries of the form Y. a,z"ne*\n is considered). Note that the condition lim % =

+oo implies
n=0 n—-+o0

that 7(A) = 0. The condition :Zo:z 1/|Ax| < 400 implies that nl_i>rJrr100 I/\Ln\ =0,i.e.again T(A) = 0.

We will write more about these studies below in the relevant places of the text of the article.
Let us just say that throughout the article we try to avoid a priori conditions (to the extent
possible at all) on the sequence of exponents. Actually, both in the articles just listed and in
the articles of many other authors, various a priori assumptions regarding the sequence of
exponents A played the main role in the research.

In this article, we will describe the domain of existence of the maximal term of the series
of form (1), establish conditions on the coefficients of the series for which the domains of
convergence, absolute convergence, and existence of the maximal term coincide. From here, in
particular, we get the convexity of the convergence domain without any additional conditions
on the sequence of exponents A = (A,), A, € C, n > 0. We borrowed the idea of studying the
domains of convergence of general Dirichlet series by studying the domains of existence of the
maximal term of the series from article [14] (see also articles [18-24]). In the end, we note that
both in this introduction and further in the text of the article, we hardly discussed the results
of the investigations of the convergence abscissas of Dirichlet series with positive exponents.
An overview of this topic can be found, for example, in papers [22,23].

2 Domain of the existence of maximal term

For a formal Dirichlet series F € D(A) we denote by
D,(F) := {z €C:aet = 0(n— +oo)}

the set of the existence of maximal term y(z, F) = max {|a,[eR}) 1 n > 0} of the series (1),
Gu(F) = Dy(F) \ 0D,(F) is the domain of the existence of maximal term of the series (1).

It is obvious that G, (F) is a convex domain or G, (F) = &, and as simple examples show, it
can be both bounded and unbounded in the general case.

Indeed, first consider a formal Dirichlet series F € D(A) of form (1) with a sequence of
exponents A = (A,) such that A, > 0, n > 0. It is well known that for such Dirichlet series F
the value

0u(F) := sup {0 : ay(w)e™ @) — 0 as n — 400 Vx < o}

is the abscissa of the existence of the maximal term of the Dirichlet series and in this case
Gu(F) = II; := {z : Rez < a} witha = 0,(F) and 0,(F) # —oco. Thus, the domain
Gu(F) = I, with a = ¢, (F) is a nonempty and unbounded half-plane.

Next, reasoning in a similar way, we will consider the Dirichlet series F € D(A) of form (1)
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with exponents A, = i"n, n > 0, and write
() A0
F(z) =) _Fi(z), Fi(z) =Y a e’ 7,
k=0

where A = A =4k, AP = Ay = —4k—2, A = gy = (4k+1)i, ALY = gy 5 = — (4K +3);,
. 15
a](j) =e ’/\k ’ It easy to see that F; € D(A), F; € D(A),

Gu(F1) =111, Gu(R) =C\Ily = —TL;, Gu(F) = —illy, Gyu(Fy) = illy,

4
and Gu(F) = N

domain.
Denote N(z) = Ni(z,F) := {n: Re(zA,) > 1}, Na(z) = Na(z,F) := {n : Re(zA,) < —1},
N3(z) := {n: =1 <Re(zA,) < 1}.

Gy (F;) is the square {z = x +iy: [x] < 1,|y| < 1}, that is, the bounded

Remark 1. It easy to see that N7 (e!"F7)) = N; () for 6 € [0, 7).

Proposition 1. Let F € D(A) be of form (1). In order to G,(F) = C, it is necessary and
sufficient that

. —1In |ay,| —In|a,|
vzeC m e - T M TReay TP mJad =0
neNi(z) neN,(z)

Proof. Let us first assume § N7(z) = +oco and § N, (z) = +o0.

Necessarity. Let G,(F) = C. Then |a,| exp (xRe(zA,)) — 0as n — oo for every z € C,
x € R, thus —In|a,| — xRe (zA,) — 400 asn — +o0. Hence, —In|a,| > xRe (zA,) for all
enough large n. Therefore,

lim M > x
n— 0o Re (Z)\n ) o
neNi(z)

It remains to use the arbitrariness of the choice x > 0. Similarly,

—In|ay| , —In |ay,|
— < — —_— > —Xx.
Jim o) = Im ey = 7%
neNs(z) neN;(z)

Again, it remains to use the arbitrariness of choosing x < 0.

Sufficiency. From condition it follows that In|a,| + Re (zA,) — —o0 as n — o0 with
n € Ni(z). Indeed, for any x > 0 and for all enough large n € N;(z) is fulfilled the inequality
—1In|a,| > (14 x)Re (zA,), thus

—In|a,| —Re (zA;) > xRe (zA,) > x

for all enough large n € N7(z) and for every z € C. Using the arbitrariness of the choice of
x > 0, we obtain In |a,| + Re (zA,,) — —c0asn — +oo withn € Ni(z). Hence, |a,| eReFA) — 0
as n — +oo with n € Ni(z) for every z € C. Similarly we obtain that |a,|eR¢}) — 0 as
n — 4oo0 with n € N(z) for every z € C.
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Thus, z € Dy in case § N3(z) < +oo. But |a,|eRGW) < ¢ |a,| — 0asn — +oo with
n € N3(z) in case § N3(z) = 4oo. Therefore, z € Dy, so D, = C in case § Ni(z) = +oo,
N2 (z) = +o0. If N7(z) < +oo and § N;(z) < +oo for some z € C then § N3(z) = 400 and
|an|eRe(Z)‘") <e-l|ay| — 0asn — +oo with n € N3(z), thatis,

Re(zA,) Re(zA,) -0

= l1m |an|e
n€N3()

lim |ayle
n—-+00

Thus, z € D, and vice versa. Therefore, z € D), <= hT a, = 01in case f N1(z) < +oo,
n—

f N2(z) < +o0. The cases f N1(z) = +o0, § Na(z) < +ocoand § N(z) < +ooand f N3(z) = +o0
are considered similarly as above. Therefore, D,,(F) = G, (F) = C. The proof of Proposition 1
is complete. O

Lemma 1 ([22, Proposition 2]). Let F € D(A) be of form (1), where A = (A,) such thatA, > 0,
n>0,and lim A, := A > 0. Then

n——+o00

—1
0u(F) = ag := lim M.
n—r—4o00 n
Remark 2 ([22, Remark 3]). If F € D(A) is of form (1), where A = (A,) such that A, > 0,
n > 0,aset] C N is unbounded and |a,| — +oco asn — +oo withn € |, then A,(w) — 400
asn — oo withn € |, because otherwise 0, (F, w) = —co.

Proposition 2. If F € D(A) has the form (1), where A = (A,,) such that —1 < A, <1,n >0,
then G, (F) = C.

Indeed, |a,| e < |ay|el! for all x € R. For the sequence A = (A,) such that A, € R,
n > 0, and the Dirichlet series F € D(A) of form (1) we will denote

(V= a0(F) = tim —0 ] @ 42 (py o fim ],
n—+co An n—4co An
}’IGNl ”ENZ

Proposition 3. Let F € D(A) be of form (1), where A = (Ay,) such that A\, € R, n > 0.
1) Ifa® < aV), then G,(F) = {z :Rez € (a?,aV)}.
2) Ifa? > aV), then G, (F) = @.

Proof. Without loss of the generality, for the sake of simplifying, let us assume that a, — 0 as
n — +oo, thatis, 0 € Dy,.
Let us denote N7 := N1(1), N2 := Np(1), N3 :={n: -1 <Re), <1},

=) a,e™,  je{1,2,3}, f(t) = B(-1).

n€/\/’j

By Lemma 1, 0, (F;) = o), ou(f) = —a2). Therefore, Gu(F) = [x(l), Gu(f) = I1_,0),
hence G, (F,) = C\IL, ). Thus, G, (F; + F,) = I1 ) \ IT 2) {z Rez € ( 2) rx(l))}.

Therefore, by Proposition 2, G, (F) = {z : Rez € ( al) )} because F = F; + F, + F3
and Gy( ) Gy(Fl + Fz) N Gy(Fg) Gy(Fl + Fz).
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Let us assume that there exists zg # 0 such that a,e?* — 0 asn — +oo, buta, 4 0 as
n — +o0. In this case, we consider the Dirichlet series F*(1) = Z 0 a5 *e™n with coefficients
a;, = a,e** instead of a,. Then F(z) = F*(1) and T € G,(F*) <= z € G,(F) forz = z9 + T,
and also o) (F*) = a(V)(F) — Re zy. According to the above proof, we get

Gu(F*) = {T: 2@ (F*) < Ret < oV (P*)} = {T: 2@ (F) < ReT+Rezg < (x(l)(F)}
= {z: 2@ (F) < Rez < (x(l)(F)} = Gu(F).

0

In what follows, we will assume that a, — 0asn — +oo, thatis, 0 € Dy. If it is false,
then instead of a series of the form (1) with coefficients (a, ), we again can consider the series

F*(t) = L% ase™ at T = z — zg with coefficients a}, := a,e%", where zg € D,(F), i.e.
a,e®* — 0 as n — +o0. As above, we have that z € G,(F) <= T € G, (F*). We will not give
the formulations of the statements derived for the general case, both to short the paper and
due to the obviousness of these reformulations.

Let us denote

In |a,| —1In |ay,|

Wy =aW(o.F):= lim —rl @) =a@.F) = Iim —1nl

@ 7(0) = a6, F) e Re(e?A,)’ w7 (0) = a7 (6,F) ﬂgﬂj Re(ei?A,,)
neN (eff) neNy (eif)

for § € [0,7), t € R. Remark G,(f(s)) N (e -R) C Gyu(F) and al)(6,F) = all) (for) for

tRe(eA,) itTm(eA,) ot Re(e®A,)

6 € [0, r), because for t € R we have ‘ane and

= |ane

tln ztIm( BA) ot Re (e®An) _ an (te®)Auw _ E(te®  teR.
(G,F)
n=0

Proposition 4. Let F € D(A) be of form (1) and zg € D,. Ifa® (8, F*) < a() (8, F*) for some
6 € [0, i), then

{zo +te?: t (oc(z) (B,F*),a(l) (6, F*) )} C GH(F),
and

{zo +tet e (—o0,a® (8, FF)) U (aV) (6, FF) ,—l—oo)} NGu(F) = @.

Proof. For a given 6 € [0, 7r), applying Proposition 3 to the Dirichlet series fg)(t) with a se-
quence of exponents (Re(e??A,)), which is constructed according to the series F* instead of
the series F, we obtain the assertion of Proposition 4. O

Proposition 5. Let F € D(A) be of form (1) and zg € D,,. Then

Gu(F)= | {z =z +te®: t € (a? (6, F),aV (9, F%)) }
0€l0,7)

Proof. The assertion of Proposition 5 follows directly from Proposition 4. O
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Remark 3. Since a(?) (8, F*) = —co in case ff N> (') < +oo, the set of the convergence Dy(F)
is unbounded. Since \; (ei(9+”)) = N; (e), for 6 € [0, T) we have

— —In/|aj| — —In|aj|
x , im . im .
néj\zzr:;b) ~Re <61(9+H)An) ne/\ffaigi"» ~Re <el(0+n)An)

= —aW (0 +m, F").

Hence, for 6 € [t,27) we get
z—z9=al (0,F)e? = —a® (0 — 1, F*) e = al® (0 — 1, F*) O, 6—me(o,n).
Therefore, Proposition 5 implies
3G, (F) = {z=2zp+aW (8, F*)e®: 0 € [0,271]}.

Remark 4. It easy to see that

06(1) (9 F*) — lim —ln|an| —Re (ZO)\H) 04(2) (9 P*) _ m _ln|an| — Re (ZOAH)
’ oo Re (¢A,) ’ ' ri—y4oo Re (01,) '
i 0
ne/\/l(elg> ne/\[z(e’ )

In the case {\,} C R,

aM) (F) — Rezg

~ al?(F) —Rezg
cos @ - '

(1) *)
(6, F) cos 6

, «?) (6, F¥)

Let us formulate some simple corollaries.
Corollary 1. Let A = (Ay), Ay > 0,n > 0. If F € D(A) of form (1), then (TH(F) = .

The statement of Corollary 1 was previously proved in the master’s thesis of A.Yu. Bodnar-
chuk, Ivan Franko Lviv National University, 2021 (see also [24]).

Proof. Again, without loss of the generality, assume that a, — 0 asn — +oo, i.e. zg € Dy.
Since a(?) (0) = —oo for 0 € [0, 71/2), «M)(0) = 40 for § € [1/2, 7r) and Re(ePA,,) = A, cos¥,

o L )

«V(9) = lim

= for 6 2
N teo Apcosf  cosf or 6 €[0,7/2)

and

— —In|ay| x
(2) 0) = T nl_ 0
@ (0) Tl—1>I}‘10° Ay cos 6 cosf

for 0 € (71/2, 7.

tRe(eie)L,1>

In addition, it is obvious that |a,| e =|ay| > 0asn — +ooatf = w/2forallt € R.

Hence, by Proposition 5,

G (F) = |J {z = wpe'®/ cos B : 6 € [0, 7'[)} ={z:Rez=ap}.
0€l0,m)

Therefore, 0, = ap. O
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4 .
Corollary 2. Let A = (Au), {An} = U LAY > 0,42 <0, <0,iAY > 0,7 >0
]:
Let F € D(A) be of form (1) and a,, — 0 as n — +o0.
1 If a® (1) < aM(0) and a? (—71/2) < aV(77/2), then

Gu(F) = {z=x+iy:a@(n) < x <aW(0), a®(-7/2) <y <aW(7/2)}.

2. If a@ (1) > aM(0) ora®(—m/2) > aV)(7/2), then G,(F) = 2.
Proof. Let us write
- 3 )0z
=) Fi(z), Fi(z) = Y a e’ 7,
j=1 k=0

where a,((j ) = ay in the case )\,((j ) = Ay We get successively

inja _ e
«M(0) = lim — = lim

n—+oo Re )\n k——+oo0 A}({l) ’

neN7(0)
- —1In a(z)
neNy(m) —Re k—>+00 ’Ak ’
—ln’aw’
(1) E o li _ln’a”’ —_— 71(
o = m —F—— = l1m
am . === ., (4 ’
<2) ne”/?l(tr%) Re(iAy) k—+o0 z)\](()
—In a(3)’
@ (.~ Tm —Inja,| _ lim ’ K
o = lim ; m :
< ) ne@(tw%) —Re(idy) koo —i)\,(f)

It remains to apply Proposition 4 twice, first to F; (z) + F»(z), and then to F5(z/i) + F4(z/i). O

Remark 5. In particular, under the conditions of the Corollary 2, in the case a2 (1) = —oo,
a(0) < +o00 or a® () > —co, aV)(0) = 4-c0 we obtain horizontal semi-strips

Gu(F) = {z=x+iy:x <al(0),a®(~n/2) <y < aW(7/2)}
Gu(F) = {z=x+iy:x>a®(n),a®(—n/2) <y <aW(7/2)},

respectively.

3 Domain of absolute convergence

For a formal Dirichlet series F € D(A) of form (1) we denote D.(F), D,(F) the set of
the convergence and the set of the absolute convergence of the series (1), respectively. Let
Gc(F) = D((F) \ 0D((F) and G4(F) = Dy(F) \ 0D, (F) be the domains of the convergence and
the absolute convergence, respectively.

By Holder’s inequality (see also [7, p. 47], [8,9]) the set D,(F) # @ is convex, hence the
domain G,(F) is convex or G,(F) = @.
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It easy to see that D,(F) C D.(F) C Dy(F), Gs(F) C Gc(F) C Gu(F). The set D(F) of
convergence of a Dirichlet series can be not convex (see [8]). There are examples of Dirich-
let series that have this property, that is, their convergence set is not convex. For example

+oo .
(see [8]), an ordinary trigonometric series f(t) = Y. fie’X!, t € R, is a Dirichlet series with
k=0

exponents Ay = ik. The set of convergence of such a series may reduce to a set of points of
measure zero on the real axis [13], that is, a Dirichlet series has a set of the convergence on
the real axis of measure zero. W. Schnee [3] gave an example of a Dirichlet series that had
an isolated point of convergence in addition to the usual half-plane. At the same time, he
noted that when considering the problem, it is necessary to narrow the class of sequences of
exponents. E. Hille [8] investigated only absolute convergence. He proved without any restric-
tions on the sequence (A,) that the set of absolute convergence is a convex set. His proof now
looks elementary given that Holder’s inequality, which he first proves and then uses, is now
well known. He attempt to determine the set of absolute convergence in terms of (a,) and
(An) under various assumptions regarding the rate of increase of (|A,|). If Inn/A, — 0 as
n — 400, we can determine the precise domain. In any case, we can find a maximal domain
and a minimal one. J. Micusiriski [9] considered the Dirichlet series of the form (1) by condition

lim NeAn _ oo @)
n—+o Inn
He proved that if condition (2) is fulfilled and xp = lim %)‘La"', then the Dirichlet series
n—-+oo "

F € D(A) of form (1) convereges absolutely for real z < x(, converges uniformly for
z € (—o0,x1], where x; is arbitrary such that x; < x(, and diverges for all real z > xp. J. Mi-
cusiniski [9] considerred also case

T

3)

7T . -
5 <d = nl_l%fooarg)\n < ngrfwargAn =0 < >

If 61 < 0, then without loss of generality we can assume that 0 < —6; = 6, = § < 7.

J. Micusiniski [9] proved that if a series of form (1) converges at a point z = zp, it does so
absolutely at any point z = zo + e'? for ¢ > O and |7t — ¢| < F — 6.

In addition, J. Micusinski [9] proved that by conditions (2), (3), the domain G, of conver-
gence of a series of form (1) is convex, and at every interior point of this domain the series is
absolutely convergent, and uniformly convergent on every bounded and closed set E C G.

First, we consider some relationships between sets of convergence, absolute convergence,
and the existence of the maximum term of a Dirichlet series. In our article, we will use the
properties of the domains of existence of the maximal term, which are considered in Section 2,
to obtain new statements about domains of convergence and absolute convergence. Our state-
ments will in some sense be similar to the statements about domains of absolute convergence
from articles [8,9,15]. The fundamental difference, in particular, will be that instead of the con-
dition on the sequence of exponents Inn = 0 (A,) as n — +oco and some other conditions on it
only the following restriction on the sequence of the coefficients Inn = o(In|a,| ) as n — 400
will be used.

Let us denote
aG+b:={az+b:z€ G}

for G C Canda,b € C. Note that —I1, = C \ﬁ_a. In the article [20], it is proved the following
statement (see also [21,22,24], where this statement is formulated in almost the same form).
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Proposition 6. Let A = (A,), Ay > 0,n > 0. If F € D has the form (1) and 6 € R, v > 0 such

that
—+o0

Y [an]' T e < oo, (4)
n=0

then 0, (F) < 0¢(F) < 0,(F) = ag and 0,(F) > yag — 8 > yo.(F) — 6, that is,

1 )
I, p) C g (py C gy ) = Iy C ;Haa(l-") + o )
Proof. The inequalities 0, (F) < o¢(F) < 0,(F) are obvious, and by Corollary 1, a9 = 0, (F), so
we get 0a(F) < 0c(F) < 0y(F) = ag. Therefore, I, p) C I, (p) C I, () = Iy Analmost
verbatim repetition of the arguments from the proof in the article [20] proves the inequality
0a(F) > yag — 4. So, we get  p) =y C %HUH(F) + %. O

Corollary 3. Let A = (Ay), Ay > 0, n > 0. If F € D(A) has the form (1) and
T(A) = @ Inn  too, then 04 (F) < 0c(F) < 0(F) = ap < 04(F) +T(A), i.e.
n—-+too M1

o (r) € Mo (p) © oy (py = Tlag © Ly +T(A).

Proof. The proof uses only Proposition 6 and is exactly the same as in the article [20] (under the

additional condition lim A, > 0). Condition (4) of Proposition 6 follows from the condition
n—-+00

T(A) < +ooaty = 1and T(A) + ¢ instead ¢ for arbitrary ¢ > 0. Note Inn < (T(A) +¢/2)A,,
Hoo

n > ng, exp{—0A,} < exp {—(T(A) +¢)/(T(A)+¢/2) - Inn}. Therefore, ¥ e M < 4oo.
n=ny

By Proposition 6, we now obtain ¢ (F) < 0, (F) = ag < 04(F) + T(A) + . Due to the arbitrari-

ness of ¢ > 0, we get

O'C(F) < Uy(F) =y < O’a(F) + T(A), ie. H(TC(F) C Hgy(F) = Hao C H%(F) + T(A)
]

Proposition 7. Let A = (Ay), Ay <0,n > 0. If F € D has the form (1) and 6 € R, v > 0 are
such that condition (4) is fulfilled, then G, (F) = C\ ﬁlx@) and
0

1 ) —
Y 0 %
oo \
Proof. Let us consider a Dirichlet series F*(z) = Y a,e?*1, where ¥ = —A,. From condi-
n=0
tion (4) for the sequences (a,,) and (A,) it follows that for the sequences (a,) and (A};) we have
oo .
Y |an |177 e~%M < 400, where §; = —J. Then, by Proposition 6, we get
n=0
0u(F) < 0o(F*) < 0w (F) = lim —10nl _ gy 20l )
a - notoo  Aj n—too Ay 0

and 0, (F*) > —'yocéz) — 61 > v0.(F*) — 61. Thus, 0,(F*) > —’)/rx(()z) + 0 > yo.(F*) + 6, that is,

%UQ(F*) —% > —oc(()z) > 0.(F*). It is obvious that z € G,(F) <= —z € G, (F*). Therefore
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GP‘(F) =C \ﬁ—UH(F*) =C \ﬁ“(()z)' In addition, z € Ga(F) — —z € G, (F*),Z € GC(F) <
—z € G¢ (F*). Hence,
1 o

1 0 —
—Gy(F)+—=-C H o+ = OC H 2 D C\II, sy = Ge(F).
7a() ol \ o, (F -y \ \ Iy (pr) = Ge(F)

O

Remark 6. If in condition (4) v = 1, then in the case A, > 0, n > 0, it is necessary § > 0, and
in the case A, < 0, n > 0, it is necessary 6 < 0.

Corollary 4. Let A be a sequence of real numbers A, such that f N1 = 400, § N, = +00, and
F € D(A) be of form (1). If 7;(A) = hm |1f\‘”‘ < +4oo,j € {1,2}, Gy(F) # @ and a®@ < (),

n€/\/’]

then
Gy(F) = Ha“) \ﬁa(2> and Ga(F) — Tz(A) C GV(F) C Ga(F> +T1(A).

Proof. We put F = Fi + B, Fi(z) = Yaey, ane™?, j € {1,2}. By Corollary 3, we obtain
the inclusion G, (F;) C Gu(F1) + 1 (A). The inclusion G,(F) — 2(A) C Gu(F) follows
from the Proposition 7 in the same way as in the proof of Corollary 3 the previous inclu-
sion from Proposition 6. Actually, it is enough to take v = 1 and (—1(A) — €) instead J for
arbitrary € > 0.

It remains to note that GF(F) = Gu(Fi) N Gu(FR), Ga(F) = Ga(F1) N Gy(F2) and
Ga(F1) =y, (g), Ga(F2) = C\ g, Gu(F1) = I, Gu(F2) = C\ I 0. O

Applying Propositions 6 and 7 to the function f4), we obtain the following statement.

Proposition 8. Let A = (A,), A, € C,n > 0. If F € D has the form (1), F = F; + F,, where
(D= T ad,

neN;(e?)
and d; = 5;(0) € R, v; = 7j(0) > 0,j € {1,2},0 € [0, 7r), are such that
) |an|1*71e*‘5fRe(€i9An) < o0, je{1,2}, (6)
e (e)
then G, (F) N (e R) = (—o0,aM(0))-e¥ Gu(F)N (¥ R) = (a@(0),+o0) - e,
Gu(F) N (¢ -R) = <0c(2)(6),0c(1)(6)> ¢® and
1

W(Ga(Fj) N (e R)) +

5(8)
(0

¢ 5 Gu(F) N (¢” - R) D G(F) N (e”-R) 7)

2

forj e {1,2}.
Proof. Note that N (e’ feo,p) =M (e, F1), Na (Eie,f(glp)) =N (e, F),a) (0, F) = al) (for).

Let us now apply Propositions 6 and 7 to the Dirichlet series F; and F,, respectively, with

exponents (eie}\n) instead (Ay). Thus, from Propositions 6 and 7 we obtain inclusions (7).
Directly from Proposition 3 we get the equalities G,(F;) N (¢ - R) = (—oco,a1)(9)) - e

Gu(F) N (e?-R) = (2@ (8), +00) - ¢ and G, (F) N (¢ - R) = («2)(6),a1)(0)) - €. O

i0
4
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Applying Corollary 4 to the Dirichlet series f(g) with exponents (Re (eie)\n)) with fixed
6 € [0, r), we obtain the following statement. Let A be a sequence of the complex numbers A,
and F € D(A) be of the form (1).

Corollary 5. If 6 € [0, 7) is such that Tj(A,0) = lim Inn/Re(eA,) < 400, j € {1,2},

n—-4o0

Gu(F) # @ and «'?(9) < a1 (), then e
Gu(F) N (¢ R) = («2)(6),a!)(9)) - ¢
and
Ga(F) N (¥ R) — (12(A,0)e® - R) C Gu(F) N (¢ -R) C G4(F) N (¢”-R) + (11 (A, 0)e™ - R).

Proof. Since G (F) N (¢®-R) = Gu(fig)), Ga(F) N (¢®-R) = Gu(f(p)), from Corollary 4
applied to the Dirichlet series f(g) with exponents (Re (¢”A,)) we obtain the conclusion of
Corollary 5. O

From Propositions 5 and 8 we obtain also the following statement.

Corollary 6. Let A = (A,), Ay € C,n > 0. If F € D has the form (1) and v > 0 is such that

—+00
Z |ai’l|1_’y < —{—OO, (8)
n=0

then G,(F) = U {z=te?: tc (2 (6),aV)(0))} and
6€l0,m)

%@@3@@3@@. 9

Proof. Since the condition (8) implies the conditions (6) at 6;(6) = 0, vj(6) = v, then from the
relations (7) in Proposition 8 we get the inclusions (9). Directly from Proposition 5 we obtain
the equality for G, (F). O

Corollary 7. Let A = (Ay), Ay € C,n > 0. Let F € D be of form (1). If condition (8) is fulfilled
for eachy € (0,1) and «® (9) < a1 () forall & € [0, 77), then

Ga(F) = Ge(F) = Gu(F) = | {z = te: t € («@(0),a(6)) }
6€l0,m)

In particular, the domain of convergence G (F) is also a convex domain.

Proof. To prove the assertion it is enough to use Corollary 6 for arbitrary ¢ € (0,1) and
6 € [0, m). O

Let us denote

hi:= lim M_

n——+oo Inn
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Remark 7. If h = +o0, then condition (8) is fulfilled for each iy € (0,1) and by Corollary 7 we
have

Ga(F) = Ge(F) = Gu(F) = | {z =te : t € (a2(0),aD(0)) }
0€l0,7)

In particular, the domain of convergence G.(F) is a convex domain.

Corollary 8. Let A = (Ay), Ay € C,n > 0. If F € D has the form (1) and h € (1,+o0|, then

(hhj . Gu(p)> > Gu(F) o Ge(F). (10)

Proof. To prove the assertion it is enough to use Corollary 6 for arbitrary ¢ > 0 such that
h —2¢ > 1. Then —1In |a,| > (h — €) Inn for enough large n. Hence, we obtain

ax |77 <exp{—(1—7)(h—¢)Inn} = exp {_hh—_;e lnn}

aty = 1/(h—2¢) € (0,1). So, ¥, |an|'™" < +o0. Since, 1/ = (h —2¢)/(h —2¢—1), by
Corollary 6, we get

<hﬁ;% - Ga(F)> > Gy (F) o Ge(E).

Since € > 0 is arbitrary, we finally have (10). ]

4 Some more examples about sharpness of estimates

Let A+ = (A,) be a sequence of nonnegative numbers increasing to +oo such that

Inn

T(A+) = m < 400

n——+00 An

It is well known (see, for example, [5,6,14,20]) that for each F € D(A )
0a(F) < 0e(F) < 0u(F) < 0a(F) + T(A4)

and (see [14, Theorem A]) for each a,m,c € [—o0,4o0] such thata < ¢ < m < a+ T(A4)
there exists F € D(A ) with the following properties 0;(F) = a, 0.(F) = ¢, 0,,(F) = m. This
statement allows us to discuss the finality of the statements obtained in this article. Let us start
with Corollary 4.

Let A be a sequence of real numbers such that § N; = +oo, j € {1,2}. Let F € D(A) be of
form (1) and

Fi(z) = ) a,e™,  F(z) = ) a,e™, ie. F=F +F, F'(z)=F(-2).

neN; neN;
_ )y _ _ (Y _
Denote AV = (An)) = ()‘”)nej\ﬂ’ A2 = A7) = (- )‘”)neNz and assume that
o I 1 .
Ti(A) = nl_l}}r\w /\HT; < 400, j € {1,2}. By Corollary 4, we have

—05 (F3) =0 (A?) < —0, (F}) < —0, (B) < 0 (F) < 0y (F1) < 0 (F) + 1 (AL).
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Let us make an additional assumption that the sequences Al) are monotonically increasing to
+o0 and the numbers aj,mj, c; such that

—ap — Tz(A(Z)) < -mp < —ap<ay <m <a+ Tl(A(l))-
According to [14, Theorem A], for each aj,mj,cj € [—00, +00] such that
(/)
aj < ¢j < mj < aj+ (AL

there exist two Dirichlet series F; € D (AS})) and F5 € D (A(f)) with the following properties
Ua(F]‘) = l}lj, U’C(Fj> = C]', O'V(F]‘) = m]
But,

Ge(Fi) = yp) =y, Ge(R) = C\TL g ) = C\ o, Ga(F1) =y ) = sy,
Ga(F2) = C\TIL g (g;) = C\Tl-ap,  Gu(F) = Iy, (5) \ 1L (5z) = Ty \ T,

Note that examples of the finality of statements that can be obtained from Corollary 5 in
the case when the domains of existence of the maximum term and absolute convergence are
convex polygons with a finite number of sides can be obtained similarly by just considered
scheme of application of [14, Theorem A].

The same can be obtained in the case of a sequence of exponents, that satisfy the conditions
of Mikusinsky’s theorem mentioned above.

Clearly, this indicates that in general the statement of Corollary 5 is sharp. However, the
question of constructing a general example for the finality of the statement of Corollary 5 in
the cases of arbitrary convex domains of convergence and existence of maximal term remains
open.

A similar question regarding the inclusions (10) from Corollary 8 also remains open.
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Hexait (A;;) — OCAIAOBHICTB IOTAPHO Pi3HMX KOMIIAEKCHMX urceA. AAst POpMaABHOTO psiay Ai-
—+o00
pixae F(z) = ¥ aue*™, z € C, uepes G, (F), G¢(F), G,(F) mosHaunmo 06AacTi icHyBaHHsI, 361 XHOCTi
n=0
Ta abCOAOTHOT 361KHOCTI MakcMMaAbHOTO uAeHa p(z, F) = max{|a,|e
[MosHaummo N (z) := {n : Re(zA,) > 0}, Ma(z) := {n: Re(zA,) < 0},

Re(zAn) © 3 > 0}, BiAIOBiAHO.

. —1In|ay| —In|ay,|
M) := 1 — 1%l @) (9) := — 1
« : im - « : i . .
n—-+oo R IQA ’ n—+oo R IB)L
na\z’;{e"g) e(e Tl) ”EN2(919> e(e 11)

IMpymycTtumo, mio a, — 0 mpu n — +-oc0. Y cTaTTi, 30KpeMa, AOBEA€HO HACTYIIHI TBEPAKEHHSL.
1) STxmo a® () < a(1)(8) ars aesxoro 8 € [0,7), To {te? : t € («?)(0),aV)(0))} C Gu(F), a
Taxox {te : t € (—o0,al2)(9)) U (a1)(6), +o0)} N Gy(F) = @.
2)Gu(F)= U {z=te:te (a?(0),a1(0))}.
0€(0,m)
3) Sxmo h := lm %ﬁf—”t € (1, +00], TO (hth . Ga(F)) D Gu(F) D G¢(F). SIkmmo h = +o00, TO

n——+oo

Ga(F) = G¢(F) = Gy(F), romy G (F) Takox OImyKAa 06AacTb.

Kntouoei cnosa i ppasu: obaacTd 36ikHOCTI, abermica 36iXHOCTI, psia Aipixae.



