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On the domain of convergence of general Dirichlet series with
complex exponents

Kuryliak M.R., Skaskiv O.B.

Let (λn) be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series

F(z) =
+∞

∑
n=0

anezλn, z ∈ C, we denote Gµ(F), Gc(F), Ga(F) the domains of the existence, of the

convergence and of the absolute convergence of maximal term µ(z, F) = max
{

|an|eRe(zλn) : n ≥ 0
}

,

respectively. It is well known that Gµ(F), Ga(F) are convex domains.

Let us denote N1(z) := {n : Re(zλn) > 0}, N2(z) := {n : Re(zλn) < 0} and

α(1)(θ) := lim
n→+∞

n∈N1(eiθ)

− ln |an|

Re(eiθλn)
, α(2)(θ) := lim

n→+∞

n∈N2(eiθ)

− ln |an|

Re(eiθλn)
.

Assume that an → 0 as n → +∞. In the article, we prove the following statements.

1) If α(2)(θ) < α(1)(θ) for some θ ∈ [0, π) then
{

teiθ : t ∈ (α(2)(θ), α(1)(θ))
}

⊂ Gµ(F) as well as
{

teiθ : t ∈ (−∞, α(2)(θ)) ∪ (α(1)(θ),+∞)
}

∩ Gµ(F) = ∅.

2) Gµ(F) =
⋃

θ∈[0,π)
{z = teiθ : t ∈ (α(2)(θ), α(1)(θ))}.

3) If h := lim
n→+∞

− ln |an|
ln n ∈ (1,+∞), then

(

h
h−1 · Ga(F)

)

⊃ Gµ(F) ⊃ Gc(F). If h = +∞ then

Ga(F) = Gc(F) = Gµ(F), therefore Gc(F) is also a convex domain.
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1 Introduction

We consider the class D(Λ) of Dirichlet series of the form

F(z) =
+∞

∑
n=0

anezλn (1)

such that anez0λn → 0 as n → +∞ for some z0, where a sequence of the exponents Λ = (λn) is

a sequence of pairwise distinct complex numbers. In the case 0 < λn ↑ +∞ as 1 ≤ n ↑ +∞ we

will write Λ+ and D (Λ+). Denote D :=
⋃

Λ D(Λ), D+ :=
⋃

Λ+
D (Λ+).

Convergence sets of Dirichlet series F ∈ D(Λ) with complex exponents Λ were studied

by W. Schnee [1–3], G.H. Hardy and M. Riesz [4], J.F. Ritt [7], E. Hille [8], J. Micusiński [9],

T.M. Gallie [10, 11], G. Peyser [12], etc. In [7], J.F. Ritt considered Dirichlet series with com-

plex exponents in the context of a differential equation of infinite order under the constraint
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that the series
+∞

∑
k=1

1/|λk| should be convergent, but at the same time does not impose any re-

strictions on the arguments λn, which other authors in the field do (see much later research

in [9,16,17]). In [9], J. Micusiński considered the Dirichlet series of the form (1) by the condition

lim
n→+∞

Re λn
ln n = +∞. E. Hille [8] and some other authors considered series under the condition

τ(Λ) := lim
n→+∞

ln n
|λn|

< +∞ and, in particular, in the case τ(Λ) = 0 (see also [15], where the se-

ries of the form
+∞

∑
n=0

anzmnezλn is considered). Note that the condition lim
n→+∞

Re λn
ln n = +∞ implies

that τ(Λ) = 0. The condition
+∞

∑
k=1

1/|λk| < +∞ implies that lim
n→+∞

n
|λn|

= 0, i.e. again τ(Λ) = 0.

We will write more about these studies below in the relevant places of the text of the article.

Let us just say that throughout the article we try to avoid a priori conditions (to the extent

possible at all) on the sequence of exponents. Actually, both in the articles just listed and in

the articles of many other authors, various a priori assumptions regarding the sequence of

exponents Λ played the main role in the research.

In this article, we will describe the domain of existence of the maximal term of the series

of form (1), establish conditions on the coefficients of the series for which the domains of

convergence, absolute convergence, and existence of the maximal term coincide. From here, in

particular, we get the convexity of the convergence domain without any additional conditions

on the sequence of exponents Λ = (λn), λn ∈ C, n ≥ 0. We borrowed the idea of studying the

domains of convergence of general Dirichlet series by studying the domains of existence of the

maximal term of the series from article [14] (see also articles [18–24]). In the end, we note that

both in this introduction and further in the text of the article, we hardly discussed the results

of the investigations of the convergence abscissas of Dirichlet series with positive exponents.

An overview of this topic can be found, for example, in papers [22, 23].

2 Domain of the existence of maximal term

For a formal Dirichlet series F ∈ D(Λ) we denote by

Dµ(F) :=
{

z ∈ C : anezλn → 0 (n → +∞)
}

the set of the existence of maximal term µ(z, F) = max
{

|an|eRe(zλn) : n ≥ 0
}

of the series (1),

Gµ(F) = Dµ(F) \ ∂Dµ(F) is the domain of the existence of maximal term of the series (1).

It is obvious that Gµ(F) is a convex domain or Gµ(F) = ∅, and as simple examples show, it

can be both bounded and unbounded in the general case.

Indeed, first consider a formal Dirichlet series F ∈ D(Λ) of form (1) with a sequence of

exponents Λ = (λn) such that λn ≥ 0, n ≥ 0. It is well known that for such Dirichlet series F

the value

σµ(F) := sup
{

σ : an(ω)exλn(ω) → 0 as n → +∞ ∀x < σ
}

is the abscissa of the existence of the maximal term of the Dirichlet series and in this case

Gµ(F) = Πa := {z : Re z < a} with a = σµ(F) and σµ(F) 6= −∞. Thus, the domain

Gµ(F) = Πa with a = σµ(F) is a nonempty and unbounded half-plane.

Next, reasoning in a similar way, we will consider the Dirichlet series F ∈ D(Λ) of form (1)
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with exponents λn = inn, n ≥ 0, and write

F(z) =
4

∑
j=1

Fj(z), Fj(z) =
+∞

∑
k=0

a
(j)
k eλ

(j)
k z,

where λ
(1)
k =λ4k=4k, λ

(2)
k =λ4k+2=−4k−2, λ

(3)
k =λ4k+1= (4k+ 1)i, λ

(4)
k =λ4k+3 =−(4k+ 3)i,

a
(j)
k = e

−
∣

∣

∣
λ
(j)
k

∣

∣

∣

. It easy to see that Fj ∈ D(Λ), Fj ∈ D(Λ),

Gµ(F1) = Π1, Gµ(F2) = C \ Π−1 = −Π1, Gµ(F3) = −iΠ1, Gµ(F4) = iΠ1,

and Gµ(F) =
4
∩

j=1
Gµ

(

Fj

)

is the square
{

z = x + iy : |x| < 1, |y| < 1
}

, that is, the bounded

domain.

Denote N1(z) = N1(z, F) := {n : Re(zλn) > 1}, N2(z) = N2(z, F) := {n : Re(zλn) < −1},

N3(z) := {n : −1 ≤ Re(zλn) ≤ 1}.

Remark 1. It easy to see that N1

(

ei(θ+π)
)

= N2

(

eiθ
)

for θ ∈ [0, π).

Proposition 1. Let F ∈ D(Λ) be of form (1). In order to Gµ(F) = C, it is necessary and

sufficient that

∀z ∈ C : lim
n→+∞

n∈N1(z)

− ln |an|

Re (zλn)
= +∞, lim

n→+∞

n∈N2(z)

− ln |an|

−Re (zλn)
= +∞, lim

n→+∞
|an| = 0.

Proof. Let us first assume ♯ N1(z) = +∞ and ♯ N2(z) = +∞.

Necessarity. Let Gµ(F) = C. Then |an| exp
(

x Re(zλn)
)

→ 0 as n → +∞ for every z ∈ C,

x ∈ R, thus − ln |an| − x Re (zλn) → +∞ as n → +∞. Hence, − ln |an| ≥ x Re (zλn) for all

enough large n. Therefore,

lim
n→+∞

n∈N1(z)

− ln |an|

Re (zλn)
≥ x.

It remains to use the arbitrariness of the choice x > 0. Similarly,

lim
n→+∞

n∈N2(z)

− ln |an|

Re(zλn)
≤ x =⇒ lim

n→+∞

n∈N2(z)

− ln |an|

−Re(zλn)
≥ −x.

Again, it remains to use the arbitrariness of choosing x < 0.

Sufficiency. From condition it follows that ln |an| + Re (zλn) → −∞ as n → +∞ with

n ∈ N1(z). Indeed, for any x > 0 and for all enough large n ∈ N1(z) is fulfilled the inequality

− ln |an| > (1 + x)Re (zλn), thus

− ln |an| − Re (zλn) > x Re (zλn) > x

for all enough large n ∈ N1(z) and for every z ∈ C. Using the arbitrariness of the choice of

x > 0, we obtain ln |an|+Re (zλn) → −∞ as n → +∞ with n ∈ N1(z). Hence, |an| eRe(zλn) → 0

as n → +∞ with n ∈ N1(z) for every z ∈ C. Similarly we obtain that |an| eRe(zλn) → 0 as

n → +∞ with n ∈ N2(z) for every z ∈ C.
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Thus, z ∈ Dµ in case ♯ N3(z) < +∞. But |an| eRe(zλn) ≤ e · |an| → 0 as n → +∞ with

n ∈ N3(z) in case ♯ N3(z) = +∞. Therefore, z ∈ Dµ, so Dµ = C in case ♯N1(z) = +∞,

♯N2(z) = +∞. If ♯N1(z) < +∞ and ♯N2(z) < +∞ for some z ∈ C then ♯N3(z) = +∞ and

|an|eRe(zλn) ≤ e · |an| → 0 as n → +∞ with n ∈ N3(z), that is,

lim
n→+∞

|an|e
Re(zλn) = lim

n→+∞

n∈N3(z)

|an|e
Re(zλn) = 0.

Thus, z ∈ Dµ and vice versa. Therefore, z ∈ Dµ ⇐⇒ lim
n→+∞

an = 0 in case ♯ N1(z) < +∞,

♯N2(z) < +∞. The cases ♯N1(z) = +∞, ♯N2(z) < +∞ and ♯N1(z) < +∞ and ♯N2(z) = +∞

are considered similarly as above. Therefore, Dµ(F) = Gµ(F) = C. The proof of Proposition 1

is complete.

Lemma 1 ([22, Proposition 2]). Let F ∈ D(Λ) be of form (1), where Λ = (λn) such that λn ≥ 0,

n ≥ 0, and lim
n→+∞

λn := λ > 0. Then

σµ(F) = α0 := lim
n→+∞

− ln |an|

λn
.

Remark 2 ([22, Remark 3]). If F ∈ D(Λ) is of form (1), where Λ = (λn) such that λn ≥ 0,

n ≥ 0, a set J ⊂ N is unbounded and |an| → +∞ as n → +∞ with n ∈ J, then λn(ω) → +∞

as n → +∞ with n ∈ J, because otherwise σµ(F, ω) = −∞.

Proposition 2. If F ∈ D(Λ) has the form (1), where Λ = (λn) such that −1 ≤ λn ≤ 1, n ≥ 0,

then Gµ(F) = C.

Indeed, |an| exλn ≤ |an| e|x| for all x ∈ R. For the sequence Λ = (λn) such that λn ∈ R,

n ≥ 0, and the Dirichlet series F ∈ D(Λ) of form (1) we will denote

α(1)= α(1)(F) := lim
n→+∞

n∈N1

− ln |an|

λn
, α(2)= α(2)(F) := lim

n→+∞

n∈N2

− ln |an|

λn
.

Proposition 3. Let F ∈ D(Λ) be of form (1), where Λ = (λn) such that λn ∈ R, n ≥ 0.

1) If α(2) < α(1), then Gµ(F) =
{

z : Re z ∈
(

α(2), α(1)
)}

.

2) If α(2) ≥ α(1), then Gµ(F) = ∅.

Proof. Without loss of the generality, for the sake of simplifying, let us assume that an → 0 as

n → +∞, that is, 0 ∈ Dµ.

Let us denote N1 := N1(1), N2 := N2(1), N3 := {n : −1 ≤ Re λn ≤ 1},

Fj(z) = ∑
n=0

n∈Nj

anezλn , j ∈ {1, 2, 3}, f (τ) = F2(−τ).

By Lemma 1, σµ(F1) = α(1), σµ( f ) = −α(2). Therefore, Gµ(F1) = Πα(1) , Gµ( f ) = Π−α(2),

hence Gµ(F2) = C \ Πα(2) . Thus, Gµ(F1 + F2) = Πα(1) \ Πα(2) =
{

z : Re z ∈
(

α(2), α(1)
)}

.

Therefore, by Proposition 2, Gµ(F) =
{

z : Re z ∈
(

α(2), α(1)
)}

, because F = F1 + F2 + F3

and Gµ(F) = Gµ(F1 + F2) ∩ Gµ(F3) = Gµ(F1 + F2).
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Let us assume that there exists z0 6= 0 such that anez0λn → 0 as n → +∞, but an 6→ 0 as

n → +∞. In this case, we consider the Dirichlet series F∗(τ) = ∑
+∞
n=0 a∗neτλn with coefficients

a∗n = anez0λn instead of an. Then F(z) = F∗(τ) and τ ∈ Gµ(F∗) ⇐⇒ z ∈ Gµ(F) for z = z0 + τ,

and also α(j)(F∗) = α(1)(F)− Re z0. According to the above proof, we get

Gµ(F∗) =
{

τ : α(2) (F∗) < Re τ < α(1) (F∗)
}

=
{

τ : α(2)(F) < Re τ + Re z0 < α(1)(F)
}

=
{

z : α(2)(F) < Re z < α(1)(F)
}

= Gµ(F).

In what follows, we will assume that an → 0 as n → +∞, that is, 0 ∈ Dµ. If it is false,

then instead of a series of the form (1) with coefficients (an), we again can consider the series

F∗(τ) = ∑
+∞
n=0 a∗neτλn at τ = z − z0 with coefficients a∗n := anez0λn , where z0 ∈ Dµ(F), i.e.

anez0λn → 0 as n → +∞. As above, we have that z ∈ Gµ(F) ⇐⇒ τ ∈ Gµ (F∗). We will not give

the formulations of the statements derived for the general case, both to short the paper and

due to the obviousness of these reformulations.

Let us denote

α(1)(θ) = α(1)(θ, F) := lim
n→+∞

n∈N1(e
iθ)

− ln |an|

Re(eiθλn)
, α(2)(θ) = α(2)(θ, F) := lim

n→+∞

n∈N2(e
iθ)

− ln |an|

Re(eiθλn)

for θ ∈ [0, π), t ∈ R. Remark Gµ

(

f(θ)
)

∩
(

eiθ · R
)

⊂ Gµ(F) and α(j)(θ, F) = α(j) ( fθ,F) for

θ ∈ [0, π), because for t ∈ R we have
∣

∣anet Re(eiθλn)
∣

∣ =
∣

∣aneit Im(eiθλn)et Re(eiθλn)
∣

∣ and

f(θ,F)(t) =
+∞

∑
n=0

aneit Im(eiθλn)et Re(eiθλn) =
+∞

∑
n=0

ane(te
iθ)λn = F

(

teiθ
)

, t ∈ R.

Proposition 4. Let F ∈ D(Λ) be of form (1) and z0 ∈ Dµ. If α(2) (θ, F∗) < α(1) (θ, F∗) for some

θ ∈ [0, π), then
{

z0 + teiθ : t ∈
(

α(2) (θ, F∗) , α(1) (θ, F∗)
)

}

⊂ Gµ(F),

and
{

z0 + teiθ : t ∈
(

− ∞, α(2) (θ, F∗)
)

∪
(

α(1) (θ, F∗) ,+∞
)

}

∩ Gµ(F) = ∅.

Proof. For a given θ ∈ [0, π), applying Proposition 3 to the Dirichlet series f(θ)(t) with a se-

quence of exponents
(

Re(eiθλn)
)

, which is constructed according to the series F∗ instead of

the series F, we obtain the assertion of Proposition 4.

Proposition 5. Let F ∈ D(Λ) be of form (1) and z0 ∈ Dµ. Then

Gµ(F) =
⋃

θ∈[0,π)

{

z = z0 + teiθ : t ∈
(

α(2) (θ, F∗) , α(1) (θ, F∗)
)

}

.

Proof. The assertion of Proposition 5 follows directly from Proposition 4.
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Remark 3. Since α(2) (θ, F∗) = −∞ in case ♯ N2

(

eiθ
)

< +∞, the set of the convergence Dµ(F)

is unbounded. Since N1

(

ei(θ+π)
)

= N2

(

eiθ
)

, for θ ∈ [0, π) we have

α(2) (θ, F∗) = lim
n→+∞

n∈N2(eiθ)

− ln |a∗n|

−Re
(

ei(θ+π)λn

) = lim
n→+∞

n∈N1(ei(θ+π))

− ln |a∗n|

−Re
(

ei(θ+π)λn

) = −α(1) (θ + π, F∗) .

Hence, for θ ∈ [π, 2π) we get

z − z0 = α(1) (θ, F∗) eiθ = −α(2) (θ − π, F∗) eiθ = α(2) (θ − π, F∗) ei(θ−π), θ − π ∈ [0, π).

Therefore, Proposition 5 implies

∂Gµ(F) =
{

z = z0 + α(1) (θ, F∗) eiθ : θ ∈ [0, 2π]
}

.

Remark 4. It easy to see that

α(1) (θ, F∗) = lim
n→+∞

n∈N1(eiθ)

− ln |an| − Re (z0λn)

Re (eiθλn)
, α(2) (θ, F∗) = lim

n→+∞

n∈N2(eiθ)

− ln |an| − Re (z0λn)

Re (eiθλn)
.

In the case {λn} ⊂ R,

α(1) (θ, F∗) =
α(1)(F)− Re z0

cos θ
, α(2) (θ, F∗) =

α(2)(F)− Re z0

cos θ
.

Let us formulate some simple corollaries.

Corollary 1. Let Λ = (λn), λn ≥ 0, n ≥ 0. If F ∈ D(Λ) of form (1), then σµ(F) = α0.

The statement of Corollary 1 was previously proved in the master’s thesis of A.Yu. Bodnar-

chuk, Ivan Franko Lviv National University, 2021 (see also [24]).

Proof. Again, without loss of the generality, assume that an → 0 as n → +∞, i.e. z0 ∈ Dµ.

Since α(2)(θ) = −∞ for θ ∈ [0, π/2), α(1)(θ) = +∞ for θ ∈ [π/2, π) and Re(eiθλn) = λn cos θ,

α(1)(θ) = lim
n→+∞

− ln |an|

λn cos θ
=

α0

cos θ
for θ ∈ [0, π/2)

and

α(2)(θ) = lim
n→+∞

− ln |an|

λn cos θ
=

α0

cos θ
for θ ∈ (π/2, π].

In addition, it is obvious that |an| et Re(eiθλn) = |an| → 0 as n → +∞ at θ = π/2 for all t ∈ R.

Hence, by Proposition 5,

∂Gµ(F) =
⋃

θ∈[0,π)

{

z = α0eiθ/ cos θ : θ ∈ [0, π)
}

=
{

z : Re z = α0

}

.

Therefore, σµ = α0.
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Corollary 2. Let Λ = (λn), {λn} =
4
⊔

j=1

{

λ
(j)
n

}

, λ
(1)
n ≥ 0, λ

(2)
n < 0, iλ

(3)
n < 0, iλ

(4)
n > 0, n ≥ 0.

Let F ∈ D(Λ) be of form (1) and an → 0 as n → +∞.

1. If α(2)(π) < α(1)(0) and α(2)(−π/2) < α(1)(π/2), then

Gµ(F) =
{

z = x + iy : α(2)(π) < x < α(1)(0), α(2)(−π/2) < y < α(1)(π/2)
}

.

2. If α(2)(π) ≥ α(1)(0) or α(2)(−π/2) ≥ α(1)(π/2), then Gµ(F) = ∅.

Proof. Let us write

F(z) =
4

∑
j=1

Fj(z), Fj(z) =
+∞

∑
k=0

a
(j)
k eλ

(j)
k z,

where a
(j)
k = an in the case λ

(j)
k = λn. We get successively

α(1)(0) = lim
n→+∞

n∈N1(0)

− ln |an|

Re λn
= lim

k→+∞

− ln
∣

∣

∣
a
(1)
k

∣

∣

∣

λ
(1)
k

,

α(2)(π) = lim
n→+∞

n∈N2(π)

− ln |an|

−Re λn
= lim

k→+∞

− ln
∣

∣

∣
a
(2)
k

∣

∣

∣

∣

∣

∣
λ
(2)
k

∣

∣

∣

,

α(1)
(π

2

)

= lim
n→+∞

n∈N1(π/2)

− ln |an|

Re(iλn)
= lim

k→+∞

− ln
∣

∣

∣
a
(4)
k

∣

∣

∣

iλ
(4)
k

,

α(2)
(

−
π

2

)

= lim
n→+∞

n∈N2(−
π
2 )

− ln |an|

−Re(iλn)
= lim

k→+∞

− ln
∣

∣

∣
a
(3)
k

∣

∣

∣

−iλ
(3)
k

.

It remains to apply Proposition 4 twice, first to F1(z)+ F2(z), and then to F3(z/i)+ F4(z/i).

Remark 5. In particular, under the conditions of the Corollary 2, in the case α(2)(π) = −∞,

α(1)(0) < +∞ or α(2)(π) > −∞, α(1)(0) = +∞ we obtain horizontal semi-strips

Gµ(F) =
{

z = x + iy : x < α(1)(0), α(2)(−π/2) < y < α(1)(π/2)
}

or

Gµ(F) =
{

z = x + iy : x > α(2)(π), α(2)(−π/2) < y < α(1)(π/2)
}

,

respectively.

3 Domain of absolute convergence

For a formal Dirichlet series F ∈ D(Λ) of form (1) we denote Dc(F), Da(F) the set of

the convergence and the set of the absolute convergence of the series (1), respectively. Let

Gc(F) = Dc(F) \ ∂Dc(F) and Ga(F) = Da(F) \ ∂Da(F) be the domains of the convergence and

the absolute convergence, respectively.

By Hölder’s inequality (see also [7, p. 47], [8, 9]) the set Da(F) 6= ∅ is convex, hence the

domain Ga(F) is convex or Ga(F) = ∅.



On the domain of convergence of general Dirichlet series with complex exponents 601

It easy to see that Da(F) ⊂ Dc(F) ⊂ Dµ(F), Ga(F) ⊂ Gc(F) ⊂ Gµ(F). The set Dc(F) of

convergence of a Dirichlet series can be not convex (see [8]). There are examples of Dirich-

let series that have this property, that is, their convergence set is not convex. For example

(see [8]), an ordinary trigonometric series f (t) =
+∞

∑
k=0

fkeikt, t ∈ R, is a Dirichlet series with

exponents λk = ik. The set of convergence of such a series may reduce to a set of points of

measure zero on the real axis [13], that is, a Dirichlet series has a set of the convergence on

the real axis of measure zero. W. Schnee [3] gave an example of a Dirichlet series that had

an isolated point of convergence in addition to the usual half-plane. At the same time, he

noted that when considering the problem, it is necessary to narrow the class of sequences of

exponents. E. Hille [8] investigated only absolute convergence. He proved without any restric-

tions on the sequence (λn) that the set of absolute convergence is a convex set. His proof now

looks elementary given that Hölder’s inequality, which he first proves and then uses, is now

well known. He attempt to determine the set of absolute convergence in terms of (an) and

(λn) under various assumptions regarding the rate of increase of
(

|λn|
)

. If ln n/λn → 0 as

n → +∞, we can determine the precise domain. In any case, we can find a maximal domain

and a minimal one. J. Micusiński [9] considered the Dirichlet series of the form (1) by condition

lim
n→+∞

Re λn

ln n
= +∞. (2)

He proved that if condition (2) is fulfilled and x0 = lim
n→+∞

− ln |an|
Re λn

, then the Dirichlet series

F ∈ D(Λ) of form (1) convereges absolutely for real z < x0, converges uniformly for

z ∈ (−∞, x1], where x1 is arbitrary such that x1 < x0, and diverges for all real z > x0. J. Mi-

cusiński [9] considerred also case

−
π

2
< δ1 = lim

n→+∞

arg λn ≤ lim
n→+∞

arg λn = δ2 <
π

2
. (3)

If δ1 < δ2, then without loss of generality we can assume that 0 < −δ1 = δ2 = δ < π
2 .

J. Micusiński [9] proved that if a series of form (1) converges at a point z = z0, it does so

absolutely at any point z = z0 + ̺eiϕ for ̺ > 0 and |π − ϕ| < π
2 − δ.

In addition, J. Micusiński [9] proved that by conditions (2), (3), the domain Gc of conver-

gence of a series of form (1) is convex, and at every interior point of this domain the series is

absolutely convergent, and uniformly convergent on every bounded and closed set E ⊂ Gc.

First, we consider some relationships between sets of convergence, absolute convergence,

and the existence of the maximum term of a Dirichlet series. In our article, we will use the

properties of the domains of existence of the maximal term, which are considered in Section 2,

to obtain new statements about domains of convergence and absolute convergence. Our state-

ments will in some sense be similar to the statements about domains of absolute convergence

from articles [8,9,15]. The fundamental difference, in particular, will be that instead of the con-

dition on the sequence of exponents ln n = o (λn) as n → +∞ and some other conditions on it

only the following restriction on the sequence of the coefficients ln n = o
(

ln |an|
)

as n → +∞

will be used.

Let us denote

aG + b := {az + b : z ∈ G}

for G ⊂ C and a, b ∈ C. Note that −Πa = C \ Π−a. In the article [20], it is proved the following

statement (see also [21, 22, 24], where this statement is formulated in almost the same form).
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Proposition 6. Let Λ = (λn), λn ≥ 0, n ≥ 0. If F ∈ D has the form (1) and δ ∈ R, γ > 0 such

that
+∞

∑
n=0

|an|
1−γ e−δλn < +∞, (4)

then σa(F) ≤ σc(F) ≤ σµ(F) = α0 and σa(F) ≥ γα0 − δ ≥ γσc(F)− δ, that is,

Πσa(F) ⊂ Πσc(F) ⊂ Πσµ(F) = Πα0 ⊂
1

γ
Πσa(F) +

δ

γ
. (5)

Proof. The inequalities σa(F) ≤ σc(F) ≤ σµ(F) are obvious, and by Corollary 1, α0 = σµ(F), so

we get σa(F) ≤ σc(F) ≤ σµ(F) = α0. Therefore, Πσa(F) ⊂ Πσc(F) ⊂ Πσµ(F) = Πα0 . An almost

verbatim repetition of the arguments from the proof in the article [20] proves the inequality

σa(F) ≥ γα0 − δ. So, we get Πσµ(F) = Πα0 ⊂
1
γ Πσa(F) +

δ
γ .

Corollary 3. Let Λ = (λn), λn ≥ 0, n ≥ 0. If F ∈ D(Λ) has the form (1) and

τ(Λ) = lim
n→+∞

ln n
λn

< +∞, then σa(F) ≤ σc(F) ≤ σµ(F) = α0 ≤ σa(F) + τ(Λ), i.e.

Πσa(F) ⊂ Πσc(F) ⊂ Πσµ(F) = Πα0 ⊂ Πσa(F) + τ(Λ).

Proof. The proof uses only Proposition 6 and is exactly the same as in the article [20] (under the

additional condition lim
n→+∞

λn > 0). Condition (4) of Proposition 6 follows from the condition

τ(Λ) < +∞ at γ = 1 and τ(Λ) + ε instead δ for arbitrary ε > 0. Note ln n <
(

τ(Λ) + ε/2
)

λn,

n ≥ n0, exp {−δλn} < exp
{

−
(

τ(Λ) + ε
)

/
(

τ(Λ) + ε/2
)

· ln n
}

. Therefore,
+∞

∑
n=n0

e−δλn < +∞.

By Proposition 6, we now obtain σc(F) ≤ σµ(F) = α0 ≤ σa(F) + τ(Λ) + ε. Due to the arbitrari-

ness of ε > 0, we get

σc(F) ≤ σµ(F) = α0 ≤ σa(F) + τ(Λ), i.e. Πσc(F) ⊂ Πσµ(F) = Πα0 ⊂ Πσa(F) + τ(Λ).

Proposition 7. Let Λ = (λn), λn ≤ 0, n ≥ 0. If F ∈ D has the form (1) and δ ∈ R, γ > 0 are

such that condition (4) is fulfilled, then Gµ(F) = C \ Π
α
(2)
0

and

1

γ
Ga(F) +

δ

γ
⊃ C \ Π

α
(2)
0

⊃ Gc(F) ⊃ Ga(F).

Proof. Let us consider a Dirichlet series F∗(z) =
+∞

∑
n=0

anezλ∗
n , where λ∗

n = −λn. From condi-

tion (4) for the sequences (an) and (λn) it follows that for the sequences (an) and (λ∗
n) we have

+∞

∑
n=0

|an|
1−γ e−δ1λ∗

n < +∞, where δ1 = −δ. Then, by Proposition 6, we get

σa(F∗) ≤ σc(F∗) ≤ σµ(F∗) = lim
n→+∞

− ln |an|

λ∗
n

= − lim
n→+∞

− ln |an|

λn
:= −α

(2)
0

and σa(F∗) ≥ −γα
(2)
0 − δ1 ≥ γσc(F∗)− δ1. Thus, σa(F∗) ≥ −γα

(2)
0 + δ ≥ γσc(F∗) + δ, that is,

1
γ σa(F∗)− δ

γ ≥ −α
(2)
0 ≥ σc(F∗). It is obvious that z ∈ Gµ(F) ⇐⇒ −z ∈ Gµ (F∗). Therefore
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Gµ(F) = C \ Π−σµ(F∗) = C \ Π
α
(2)
0

. In addition, z ∈ Ga(F) ⇐⇒ −z ∈ Ga (F∗) , z ∈ Gc(F) ⇐⇒

−z ∈ Gc (F∗). Hence,

1

γ
Ga(F) +

δ

γ
=

1

γ
C \ Πσa(F∗) +

δ

γ
⊃ C \ Π

α
(2)
0

⊃ C \ Πσc(F∗) = Gc(F).

Remark 6. If in condition (4) γ = 1, then in the case λn ≥ 0, n ≥ 0, it is necessary δ > 0, and

in the case λn ≤ 0, n ≥ 0, it is necessary δ < 0.

Corollary 4. Let Λ be a sequence of real numbers λn such that ♯N1 = +∞, ♯N2 = +∞, and

F ∈ D(Λ) be of form (1). If τj(Λ) = lim
n→+∞
n∈Nj

ln n
|λn|

< +∞, j ∈ {1, 2}, Ga(F) 6= ∅ and α(2) < α(1),

then

Gµ(F) = Πα(1) \ Πα(2) and Ga(F)− τ2(Λ) ⊂ Gµ(F) ⊂ Ga(F) + τ1(Λ).

Proof. We put F = F1 + F2, Fj(z) = ∑n∈Nj
aneλnz, j ∈ {1, 2}. By Corollary 3, we obtain

the inclusion Gµ(F1) ⊂ Ga(F1) + τ1(Λ). The inclusion Ga(F2) − τ2(Λ) ⊂ Gµ(F2) follows

from the Proposition 7 in the same way as in the proof of Corollary 3 the previous inclu-

sion from Proposition 6. Actually, it is enough to take γ = 1 and (−τ2(Λ)− ε) instead δ for

arbitrary ε > 0.

It remains to note that Gµ(F) = Gµ(F1) ∩ Gµ(F2), Ga(F) = Ga(F1) ∩ Ga(F2) and

Ga(F1) = Πσa(F1)
, Ga(F2) = C \ Πσa(F2), Gµ(F1) = Πα(1) , Gµ(F2) = C \ Πα(2) .

Applying Propositions 6 and 7 to the function f(θ), we obtain the following statement.

Proposition 8. Let Λ = (λn), λn ∈ C, n ≥ 0. If F ∈ D has the form (1), F = F1 + F2, where

Fj(z) = ∑
n∈Nj(eiθ)

aneλnz,

and δj = δj(θ) ∈ R, γj = γj(θ) > 0, j ∈ {1, 2}, θ ∈ [0, π), are such that

∑
n∈Nj(eiθ)

|an|
1−γj e−δj Re(eiθλn) < +∞, j ∈ {1, 2}, (6)

then Gµ (F1) ∩
(

eiθ · R
)

=
(

− ∞, α(1)(θ)
)

· eiθ, Gµ(F2) ∩
(

eiθ · R
)

= (α(2)(θ),+∞) · eiθ,

Gµ(F) ∩
(

eiθ · R
)

=
(

α(2)(θ), α(1)(θ)
)

eiθ and

1

γj(θ)

(

Ga(Fj) ∩
(

eiθ · R
)

)

+
δj(θ)

γj(θ)
· eiθ ⊃ Gµ(Fj) ∩

(

eiθ · R
)

⊃ Gc(Fj) ∩ (eiθ · R) (7)

for j ∈ {1, 2}.

Proof. Note that N1

(

eiθ, f(θ,F)

)

= N1

(

eiθ, F1

)

, N2

(

eiθ, f(θ,F)

)

= N2

(

eiθ, F2

)

, α(j)(θ, F)= α(j)( fθ,F).

Let us now apply Propositions 6 and 7 to the Dirichlet series F1 and F2, respectively, with

exponents
(

eiθλn

)

instead (λn). Thus, from Propositions 6 and 7 we obtain inclusions (7).

Directly from Proposition 3 we get the equalities Gµ(F1) ∩
(

eiθ · R
)

=
(

− ∞, α(1)(θ)
)

· eiθ,

Gµ(F2) ∩
(

eiθ · R
)

=
(

α(2)(θ),+∞
)

· eiθ and Gµ(F) ∩
(

eiθ · R
)

=
(

α(2)(θ), α(1)(θ)
)

· eiθ.
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Applying Corollary 4 to the Dirichlet series f(θ) with exponents
(

Re
(

eiθλn
))

with fixed

θ ∈ [0, π), we obtain the following statement. Let Λ be a sequence of the complex numbers λn

and F ∈ D(Λ) be of the form (1).

Corollary 5. If θ ∈ [0, π) is such that τj(Λ, θ) = lim
n→+∞

n∈Nj(eiθ)

ln n/Re
(

eiθλn

)

< +∞, j ∈
{

1, 2
}

,

Ga(F) 6= ∅ and α(2)(θ) < α(1)(θ), then

Gµ(F) ∩
(

eiθ · R
)

=
(

α(2)(θ), α(1)(θ)
)

· eiθ

and

Ga(F) ∩
(

eiθ · R
)

−
(

τ2(Λ, θ)eiθ · R
)

⊂ Gµ(F) ∩
(

eiθ · R
)

⊂ Ga(F) ∩
(

eiθ · R
)

+
(

τ1(Λ, θ)eiθ · R
)

.

Proof. Since Gµ(F) ∩
(

eiθ · R
)

= Gµ

(

f(θ)
)

, Ga(F) ∩
(

eiθ · R
)

= Ga
(

f(θ)
)

, from Corollary 4

applied to the Dirichlet series f(θ) with exponents
(

Re
(

eiθλn

))

we obtain the conclusion of

Corollary 5.

From Propositions 5 and 8 we obtain also the following statement.

Corollary 6. Let Λ = (λn), λn ∈ C, n ≥ 0. If F ∈ D has the form (1) and γ > 0 is such that

+∞

∑
n=0

|an|
1−γ < +∞, (8)

then Gµ(F) =
⋃

θ∈[0,π)

{

z = teiθ : t ∈
(

α(2)(θ), α(1)(θ)
)}

and

1

γ
· Ga(F) ⊃ Gµ(F) ⊃ Gc(F). (9)

Proof. Since the condition (8) implies the conditions (6) at δj(θ) ≡ 0, γj(θ) ≡ γ, then from the

relations (7) in Proposition 8 we get the inclusions (9). Directly from Proposition 5 we obtain

the equality for Gµ(F).

Corollary 7. Let Λ = (λn), λn ∈ C, n ≥ 0. Let F ∈ D be of form (1). If condition (8) is fulfilled

for each γ ∈ (0, 1) and α(2)(θ) < α(1)(θ) for all θ ∈ [0, π), then

Ga(F) = Gc(F) = Gµ(F) =
⋃

θ∈[0,π)

{

z = teiθ : t ∈
(

α(2)(θ), α(1)(θ)
)

}

.

In particular, the domain of convergence Gc(F) is also a convex domain.

Proof. To prove the assertion it is enough to use Corollary 6 for arbitrary γ ∈ (0, 1) and

θ ∈ [0, π).

Let us denote

h := lim
n→+∞

− ln |an|

ln n
.
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Remark 7. If h = +∞, then condition (8) is fulfilled for each γ ∈ (0, 1) and by Corollary 7 we

have

Ga(F) = Gc(F) = Gµ(F) =
⋃

θ∈[0,π)

{

z = teiθ : t ∈
(

α(2)(θ), α(1)(θ)
)

}

.

In particular, the domain of convergence Gc(F) is a convex domain.

Corollary 8. Let Λ = (λn), λn ∈ C, n ≥ 0. If F ∈ D has the form (1) and h ∈ (1,+∞], then

(

h

h − 1
· Ga(F)

)

⊃ Gµ(F) ⊃ Gc(F). (10)

Proof. To prove the assertion it is enough to use Corollary 6 for arbitrary ε > 0 such that

h − 2ε > 1. Then − ln |an| > (h − ε) ln n for enough large n. Hence, we obtain

|an|
1−γ < exp

{

− (1 − γ)(h − ε) ln n
}

= exp

{

−
h − ε

h − 2ε
ln n

}

at γ = 1/(h − 2ε) ∈ (0, 1). So, ∑n |an|1−γ < +∞. Since, 1/γ = (h − 2ε)/(h − 2ε − 1), by

Corollary 6, we get
(

h − 2ε

h − 2ε − 1
· Ga(F)

)

⊃ Gµ(F) ⊃ Gc(F).

Since ε > 0 is arbitrary, we finally have (10).

4 Some more examples about sharpness of estimates

Let Λ+ = (λn) be a sequence of nonnegative numbers increasing to +∞ such that

τ(Λ+) = lim
n→+∞

ln n

λn
< +∞.

It is well known (see, for example, [5, 6, 14, 20]) that for each F ∈ D(Λ+)

σa(F) ≤ σc(F) ≤ σµ(F) ≤ σa(F) + τ(Λ+)

and (see [14, Theorem A]) for each a, m, c ∈ [−∞,+∞] such that a ≤ c ≤ m ≤ a + τ(Λ+)

there exists F ∈ D(Λ+) with the following properties σa(F) = a, σc(F) = c, σµ(F) = m. This

statement allows us to discuss the finality of the statements obtained in this article. Let us start

with Corollary 4.

Let Λ be a sequence of real numbers such that ♯Nj = +∞, j ∈ {1, 2}. Let F ∈ D(Λ) be of

form (1) and

F1(z) = ∑
n∈N1

anezλn , F2(z) = ∑
n∈N2

anezλn , i.e. F = F1 + F2, F∗(z) = F2(−z).

Denote Λ(1) =
(

λ
(1)
n

)

=
(

λn
)

n∈N1
, Λ(2) =

(

λ
(2)
n

)

=
(

− λn
)

n∈N2
and assume that

τj(Λ) = lim
n→+∞

ln n

λ
(j)
n

< +∞, j ∈ {1, 2}. By Corollary 4, we have

−σa (F∗
2 )− τ2

(

Λ(2)
)

≤ −σµ (F∗
2 ) ≤ −σa (F∗

2 ) ≤ σa (F1) ≤ σµ (F1) ≤ σa (F1) + τ1

(

Λ(1)
)

.
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Let us make an additional assumption that the sequences Λ(j) are monotonically increasing to

+∞ and the numbers aj, mj, cj such that

−a2 − τ2

(

Λ(2)
)

≤ −m2 ≤ −a2 ≤ a1 ≤ m1 ≤ a1 + τ1

(

Λ(1)
)

.

According to [14, Theorem A], for each aj, mj, cj ∈ [−∞,+∞] such that

aj ≤ cj ≤ mj ≤ aj + τj

(

Λ
(j)
+

)

there exist two Dirichlet series F1 ∈ D
(

Λ
(1)
+

)

and F∗
2 ∈ D

(

Λ
(2)
+

)

with the following properties

σa(Fj) = aj, σc(Fj) = cj, σµ(Fj) = mj.

But,

Gc(F1) = Πσc(F1)
= Πc1 , Gc(F2) = C \ Π−σc(F∗

2 )
= C \ Π−c2, Ga(F1) = Πσa(F1)

= Πa1 ,

Ga(F2) = C \ Π−σa(F∗
2 )

= C \ Π−a2, Gµ(F) = Πσµ(F1)
\ Π−σµ(F∗

2 )
= Πm1 \ Π−m2 .

Note that examples of the finality of statements that can be obtained from Corollary 5 in

the case when the domains of existence of the maximum term and absolute convergence are

convex polygons with a finite number of sides can be obtained similarly by just considered

scheme of application of [14, Theorem A].

The same can be obtained in the case of a sequence of exponents, that satisfy the conditions

of Mikusinsky’s theorem mentioned above.

Clearly, this indicates that in general the statement of Corollary 5 is sharp. However, the

question of constructing a general example for the finality of the statement of Corollary 5 in

the cases of arbitrary convex domains of convergence and existence of maximal term remains

open.

A similar question regarding the inclusions (10) from Corollary 8 also remains open.
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[2] Schnee W. Über Dirichlet’sche reihen. Rend. Circ. Matem. Palermo 1909, 27, 87–116. doi:10.1007/BF03019647
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Куриляк М.Р., Скаскiв О.Б. Областi збiжностi загальних рядiв Дiрiхле з комплексними показни-

ками // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 594–607.

Нехай (λn) — послiдовнiсть попарно рiзних комплексних чисел. Для формального ряду Дi-

рiхле F(z) =
+∞

∑
n=0

anezλn , z ∈ C, через Gµ(F), Gc(F), Ga(F) позначимо областi iснування, збiжностi

та абсолютної збiжностi максимального члена µ(z, F) = max{|an|eRe(zλn) : n ≥ 0}, вiдповiдно.

Позначимо N1(z) := {n : Re(zλn) > 0}, N2(z) := {n : Re(zλn) < 0},

α(1)(θ) := lim
n→+∞

n∈N1(eiθ)

− ln |an|

Re(eiθλn)
, α(2)(θ) := lim

n→+∞

n∈N2(eiθ)

− ln |an|

Re(eiθλn)
.

Припустимо, що an → 0 при n → +∞. У статтi, зокрема, доведено наступнi твердження.

1) Якщо α(2)(θ) < α(1)(θ) для деякого θ ∈ [0, π), то
{

teiθ : t ∈ (α(2)(θ), α(1)(θ))
}

⊂ Gµ(F), а

також
{

teiθ : t ∈ (−∞, α(2)(θ)) ∪ (α(1)(θ),+∞)
}

∩ Gµ(F) = ∅.

2) Gµ(F) =
⋃

θ∈[0,π)
{z = teiθ : t ∈ (α(2)(θ), α(1)(θ))}.

3) Якщо h := lim
n→+∞

− ln |an|
ln n ∈ (1,+∞], то

(

h
h−1 · Ga(F)

)

⊃ Gµ(F) ⊃ Gc(F). Якщо h = +∞, то

Ga(F) = Gc(F) = Gµ(F), тому Gc(F) також опукла область.

Ключовi слова i фрази: область збiжностi, абсциса збiжностi, ряд Дiрiхле.


