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Minimal generating sets in groups of p-automata

Lavrenyuk Y.V., Oliynyk A.S.!

For an arbitrary odd prime p, we consider groups of all p-automata and all finite p-automata.
We construct minimal generating sets in both the groups of all p-automata and its subgroup of
finite p-automata. The key ingredient of the proof is the lifting technique, which allows the con-
struction of a minimal generating set in a group provided a minimal generating set in its abelian
quotient is given. To find the required quotient, the elements of the groups of p-automata and finite
p-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation,
anatural homomorphism on the additive group of all infinite sequences over the field Z, is defined
and examined.
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Introduction

The problem to find a minimal genarating set of a given algebraic structure is well-known.
In many cases it has useful positive solutions, say for vector spaces or free semigroups and
groups. However, even to prove that a given group has a minimal generating set is in general
a challenging task.

This paper can be regarded as a natural continuation of the first named author’s research
from [5], where for a wide class of groups splitting into a semidirect product the existence
of minimal generating sets is shown. In particular, it allows to prove that the group of all
finite automata over finite alphabet has a minimal generating set and therefore to solve a long-
standing open problem formulated in [1]. This positive result in particular contrasts with
negative ones for generic semigroups of finite automata [6].

For arbitrary odd prime p we consider groups of all p-automata and all finite p-auto-
mata. The latter group contains amalgamated free products of cyclic p-groups [9], certain
HNN-extensions of free abelian groups [8, 10] and free non-abelian groups [7]. Applying
method from [5], we show that both groups of all p-automata and of all finite p-automata
possess minimal generating sets. Note that the case p = 2 is covered in [5]. The key ingredi-
ent of our proof for the group of all finite p-automata is a statement about the structure of its
image under a natural homomorphism on the additive group of all infinite sequences over the
field Z,.
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The structure of the paper is following. In Section 1, we briefly recall required definitions
and properties about groups of automata. For more details we refer to [2,3,6]. In Section 2,
we construct minimal generating sets in groups of all p-automata and all finite p-automata.
In Section 3, we formulate a few open problems arised during our research.

1 Preliminaries

Let X be a finite alphabet, |X| > 2. The set

X* _ U Xn
n=0

of all finite words over X including the empty word A is a free monoid with basis X under
concatenation. The Cayley graph of X* with respect to X is a regular rooted tree 7 (X). For
each n > 0 the set X" is the nth level of this tree. The automorphism group Aut7 (X) of the
tree 7 (X) is an infinitely iterated wreath product of symmetric groups Sym(X) on X, i.e.

AutT (X) ~ 1 Sym™ (X), Sym™ (X) ~ Sym(X), n > 1.

In particular, it means that Aut7 (X) is profinite and contain Sylow subgroups.

An automaton A over X is a triple (Q, A, #) such that Q is a set, the set of states of A,
A1 Qx X — Q is the transition function and y : Q x X — X is the output function of the
automaton A. The automaton A is called finite if the following equalities extend functions A
and y to the set Q x X*:

Mg, A) =g, Algxw) = A(Ag,x),w),

u(g, A) = A, p(g,xw) = u(g, x)u(Ag, x),w),

where g € Q, x € X, w € X*. Automata over X gives a convenient way to define automor-
phisms from Aut7T (X). Specifically, for every state g € Q the restriction of y at g defines a
mapping on X*, that we denote by the same symbol g such that g(w) = u(gq, w), w € X*.

A permutation f : X* — X* is an automorphism of 7 (X) if and only if there exist an
automaton over X and its state g such that f coincides with the mapping g defined at this state.
We denote the identity automorphism by e.

An automorphism f € AutT (X) is called finite state automorphism if there exist a finite
automaton over X and its state g such that f coincides with the mapping g defined at this state.
All finite state automorphisms of 7 (X) form a countable subgroup FAutT (X) of AutT (X). An
automorphism f € Aut7 (X) is called finitary, if there exists m > 0 such that f preserve letters
in all words on all positions starting from m. It means that f can be defined by an automaton
at some its state g such that for arbitrary word w of length m the transition function of this
automaton maps g by w to a state that defines e. All finitary automorphisms of 7 (X) form a
countable subgroup FinAutT (X) of FAutT (X).

Let [X| = p be an odd prime. We will identify X with the field Z, of residues modulo
p. A Sylow p-subgroup K, of the group Aut7 (X) can be characterized as follows. Let us
denote by ¢ the mapping x +— x +1 on Z,, i.e. the cycle (01 ... p —1). An automaton
over X is called p-automaton if for each its state the restriction of the output function at this
state as a permutation on the alphabet is a power of ¢. Then K, consists of automorphisms
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defined at states of p-automata. Automorphisms defined at states of finite p-automata form
a subgroup FK, in K. We call the group K, as the group of p-automata and its subgroup
FKp as the group of finite p-automata. The subgroup of finitary automorphisms of 7K, is
denoted by FinkCy,.

Elements of K, can be defined in terms of tableaux introduced by L. Kaloujnine. A tableau
is a sequence

[ag, a1 (x1),... a0 (x1,...,%n),... |, (1)
where ag € Zp,an(x1,...,Xxn) : Zy — Zpn > 1.
For arbitrary word w = (aq,ap,...,am) € Z;”, m > 1, its image under tableau (1) is the
word (a1 + a9, ap + a1 (¢1), ..., &n + am—1 (21, ...,&y_1) ). The residue of tableau (1) defined
by the word w is the tableau

[am (a1, 0m) , A1 (01, <o) Qo X1) ey A (@1, oo B, X1, X)), .

Tableau (1) defines an element from F K, if and only if the set of all its residues is finite.

2 Minimal generating sets

The main result of the paper is the following assertion.
Theorem 1. Groups K, and F K, contain minimal generating sets.

Let Z3 be the vector space of all sequences over Z,. A sequence (a,,n > 0) is called
ultimately periodic if there exist k,/ > 1 such thata, ; = a,, n > k.

A sequence (a,,n > 0) is called finitary if there exists k > 0 such thata, =0, n > k.

Denote by FinZ;} and UPZ}’ the sets of all finitary and ultimately periodic sequences
over Zj, respectively. Then FinZ}’ and UPZ}’ are countable subspaces of Z.

Consider the mapping 7t : K, — Z7’ such that for arbitrary ¢ € K, defined by tableau (1)
the image 77(g) has the form

(ao, Z a1(aq), ..., Z an(rxl,...,rxn),...).

€2y (@1, n) EZ}

Lemma 1 ([2]). The mapping 7t is a surjective homomorphism. The kernel H of 7t coincides
with the commutator subgroup [K,, K,].

Denote by 711 the restriction of 7t on the subgroup F/C,,.

Lemma 2. The homomorphism 7 is a surjection on UPZ}’. The kernel H; of 71y contains the
commutator subgroup [FK,, FK,).

Proof. Letg € FKp. Assume that g is defined by tableau (1). Denote by Q(g) the set of residues
of g, including g. Let n be the cardinality of Q(g), i.e. Q(g) = {<1,.-.,4n}. We will show that
all sequences 71(g1), ..., m1(gx) are ultimately periodic.

Assume that g; is defined by the tableau

[aiy, ai1(x1), ., @i (X1, .., Xn), ... ], 1>mn.
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Denote by t;; the number of states of g;, defined by words of length 1, that equal to g,
1<i,j<n ThenT = (tl-]-)l-,]- = nis an n x n integer matrix. We will consider T as a matrix
over Zp.

Let 7t1(g;) = (bio, bir, - -, bin, . ..), 1 < i < n. We will show by induction on m that

(blrn/- . -;bnm)T =T". (ﬂlm; .- -/ﬂnm)T- (2)

Since (byo, .-, buo)" = (a1, ...,an0) ", equality (2) holds for the case m = 0. For arbitrary
i,1 <i<mn,m>0,definitions of v and T imply by, = ti1b1y—1 + - - + tinbym—1. Under
inductive assumption for m — 1 it implies the the required equality for m.

Since the matrix T is a matrix over a finite field the sequence (T, m > 0) is ultimately
periodic. Then equality (2) implies that all sequences 711 (g;), 1 < i < n, are ultimately periodic
as well.

On the other hand, for arbitrary sequence (b,,n > 0) € LIPZ‘;, let us consider the tableau

[ag,a1(x1), ..., an(x1, ..., Xn),...]

such that ag = by and
bn, ifxlz...:.Xn,

an(xl,...,xn):{

0, otherwise.

Then this tableau defines a finite state automorphism g such that 771(g¢) = (bn,n > 0). Hence,
71 is a surjection on UPZ.
The second statement of the lemma follows from Lemma 1. The proof is complete. O

Now we proceed with defining minimal generating sets of K, and F K. The construction
is based on the approach presented in [5]. Consider the group K.

Since every vector space contains a Hamel basis (see, e.g., [4]) all three spaces Z;?, FinZy
and UPZ3 contain a basis. In particular, each basis is a minimal generating set of the additive
group of the corresponding space.

Let I be a set of contunuum cardinality. Since the homomorphism 7t is surjective there
exists a subset {sy; : i € I} € Kp such that the set {7(sy;) : i € I} is a basis of Z}. On the
other hand, the commutator subgroup [K,, K] has continuum cardinality and we can use I
to index its elements. Hence, [KC,, K] = {sy; : i € I}. Now for each i € I define s; € K, such
that s; preserves the first two letters of each word w and for arbitrary aq, 4 € Z, its residue
si(a1,2) on (aq, ap) satisfy the following condition

s1i, ifag =a =0,
Si(“l/ “2) = 3 S2i/ if a1 =& =p— 1’

e, otherwise.

Let {g;,i > 0} be the set of finitary automorphisms such that g is defined by the tableau
[1,0,0,...,0,...] and for arbitrary i > 1 the automorphism g; is defined by the tableau

[O,...,O,az-(xl,...,xl-),O,...],
where

1, ifx1 :...:xi:O,
ai(xl,...,xi) =

0, otherwise.



612 Lavrenyuk Y.V., Oliynyk A.S.

LetS = {g0,s1tU{s;i:iel}.
Now proceed with the group F K. Define the sequences

e; = (ejo,---,€,--.), 1>0,

eji = Loifi=j, i,i>0
ij = e /] 2V
0, ifi#j,

Then we directly obtain the following assertion.

such that

Lemma 3.

(i) The set {e; : i > 0} is a basis of the space FinZ;’.

(ii) There exists a countable set {f; : i > 1} of ultimately periodic sequences such that the
union {e; : i > 0} U{f; : i > 1} forms a basis of the space UPZ .

Proof. The first statement is well-known and its proof is straightforward. Since the space
UPZ3 is countable and contains periodic sequences of arbitrary least period the second state-
ment follows. 0

Lemma 4. For eachi > 0 the automorphism g; has order p and 1, (g;) = e;.

Proof. For each i > 0 the automorphism g; defines a cyclic permutation of length p on the
words of the form
0,...,0,a1,...,apy), m2>1,
h\‘/—/
1
and acts trivially on all other words. Hence, the order of g; is p. The equality 711(g;) = e;
immediately follows from the definitions of 7r; and g;. O

Since the kernel of 71, namely the subgroup Hj, is countable, we can enumerate its ele-
ments and obtain Hy; = {h; : i > 0}.

Lemma 3 allows to choose a subset {t; : i > 1} of 7K, such that 71 (t;) = f;, i > 1.

Then define finite state automorphisms rq;,i > 0, and ry;,i > 1, such that they preserve the
first two letters of each word w and for arbitrary a1, ay € Z,, their residues sq;(aq,a2),i > 0,
and sp;(a1,a2),i > 1, on (a1, ) satisfy the following conditions

i, ifar =a, =0,
511‘(“1,012) =qh, ifay=ar=p—1, i>0,

e, otherwise,

and

Soi(ay, ap) = i>1

4

ti/ ilel = Ny = O,
e, otherwise,

respectively.
LetR = {go,gl} U {7’11' i > 0} U {1’21' i > 1}

Proof of Theorem 1. The sets S and R constructed above are minimal generating sets of the
groups K, and F ), respectively. The proof uses lemmata proved above and it is solely the
same as the proof of [5, Theorem 2] and we omit it. O
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3 Open problems

Problem 1. Is it true that the kernel of the homomorphism 711 coincides with the commu-

tator subgroup [FIC,, FK,?

Problem 2. Is there an algorithm for effective enumeration of finite state automorphisms

from the kernel of the homomorphism 77;?
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AAsl AOBIABHOTO HEMapHOTo IMPOCTOTO YMACAA P PO3LASAAIOTBCSI TPYIIM BCiX p-aBTOMATIB Ta BCiX
CKIHUeHHMX p-aBTOMaTiB. ByAyroTbcsl MiHIMaABHI CHMCTeMM TBipHMX SIK Y TPyIi BCiX p-aBTOMATiB,
TaK i B ii MATPyTi CKiHYeHHMX p-aBTOMaTiB. KAIOWOBMM eAeMeHTOM AOBEAEHHsI € TeXHika MiAHSAT-
Tsl, sIKa AO3BOAsIE KOHCTPYIOBAaT! MiHIMaABHY CUCTEeMY TBipHMX Y IPYII 32 YMOBM, IIO MiHiMaAbHY
CMCTeMy TBipHMX 3aAaHO y 1i abereBilt pakToprpymi. AAst 3HAXOAXKEHHS BiATIOBIAHOI (paKTOPrpyIm
eAeMEeHTH I'PYII p-aBTOMATIB Ta CKiHUeHHMX p-aBTOMATIB IOAAIOTECS y TepMiHaX TabAMIIb, BBEACHMX
A. KaryXHIiHMM. 3 BUKOPUCTAHHSIM 1IbOTO NTOAAHHSI BU3HAUAETDCS. Ta AOCAIAXYETHCSI IIPUPOAHMI
roMoMopcpi3M Ha aAMTUBHY TPYIIy BCiX HECKiHUEHHMX MOCAIAOBHOCTel Haa ToAeM Zy.

Kntouosi cnosa i ppasu: CKiHUeHHMI aBTOMAT, p-aBTOMAT, MiHiMaAbHA CMCTeMa TBipHMX.



