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Minimal generating sets in groups of p-automata

Lavrenyuk Y.V., Oliynyk A.S.1

For an arbitrary odd prime p, we consider groups of all p-automata and all finite p-automata.

We construct minimal generating sets in both the groups of all p-automata and its subgroup of

finite p-automata. The key ingredient of the proof is the lifting technique, which allows the con-

struction of a minimal generating set in a group provided a minimal generating set in its abelian

quotient is given. To find the required quotient, the elements of the groups of p-automata and finite

p-automata are presented in terms of tableaux introduced by L. Kaloujnine. Using this presentation,

a natural homomorphism on the additive group of all infinite sequences over the field Zp is defined

and examined.
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Introduction

The problem to find a minimal genarating set of a given algebraic structure is well-known.

In many cases it has useful positive solutions, say for vector spaces or free semigroups and

groups. However, even to prove that a given group has a minimal generating set is in general

a challenging task.

This paper can be regarded as a natural continuation of the first named author’s research

from [5], where for a wide class of groups splitting into a semidirect product the existence

of minimal generating sets is shown. In particular, it allows to prove that the group of all

finite automata over finite alphabet has a minimal generating set and therefore to solve a long-

standing open problem formulated in [1]. This positive result in particular contrasts with

negative ones for generic semigroups of finite automata [6].

For arbitrary odd prime p we consider groups of all p-automata and all finite p-auto-

mata. The latter group contains amalgamated free products of cyclic p-groups [9], certain

HNN-extensions of free abelian groups [8, 10] and free non-abelian groups [7]. Applying

method from [5], we show that both groups of all p-automata and of all finite p-automata

possess minimal generating sets. Note that the case p = 2 is covered in [5]. The key ingredi-

ent of our proof for the group of all finite p-automata is a statement about the structure of its

image under a natural homomorphism on the additive group of all infinite sequences over the

field Zp.
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The structure of the paper is following. In Section 1, we briefly recall required definitions

and properties about groups of automata. For more details we refer to [2, 3, 6]. In Section 2,

we construct minimal generating sets in groups of all p-automata and all finite p-automata.

In Section 3, we formulate a few open problems arised during our research.

1 Preliminaries

Let X be a finite alphabet, |X| ≥ 2. The set

X
∗ =

∞⋃

n=0

X
n

of all finite words over X including the empty word Λ is a free monoid with basis X under

concatenation. The Cayley graph of X∗ with respect to X is a regular rooted tree T (X). For

each n ≥ 0 the set Xn is the nth level of this tree. The automorphism group AutT (X) of the

tree T (X) is an infinitely iterated wreath product of symmetric groups Sym(X) on X, i.e.

AutT (X) ≃ ≀∞n=1Sym(n)(X), Sym(n)(X) ≃ Sym(X), n ≥ 1.

In particular, it means that AutT (X) is profinite and contain Sylow subgroups.

An automaton A over X is a triple (Q, λ, µ) such that Q is a set, the set of states of A,

λ : Q × X → Q is the transition function and µ : Q × X → X is the output function of the

automaton A. The automaton A is called finite if the following equalities extend functions λ

and µ to the set Q × X
∗:

λ(q, Λ) = q, λ(q, xw) = λ
(
λ(q, x), w

)
,

µ(q, Λ) = Λ, µ(q, xw) = µ(q, x)µ
(

λ(q, x), w
)
,

where q ∈ Q, x ∈ X, w ∈ X
∗. Automata over X gives a convenient way to define automor-

phisms from AutT (X). Specifically, for every state q ∈ Q the restriction of µ at q defines a

mapping on X
∗, that we denote by the same symbol q such that q(w) = µ(q, w), w ∈ X

∗.

A permutation f : X
∗ → X

∗ is an automorphism of T (X) if and only if there exist an

automaton over X and its state q such that f coincides with the mapping q defined at this state.

We denote the identity automorphism by e.

An automorphism f ∈ AutT (X) is called finite state automorphism if there exist a finite

automaton over X and its state q such that f coincides with the mapping q defined at this state.

All finite state automorphisms of T (X) form a countable subgroup FAutT (X) of AutT (X). An

automorphism f ∈ AutT (X) is called finitary, if there exists m ≥ 0 such that f preserve letters

in all words on all positions starting from m. It means that f can be defined by an automaton

at some its state q such that for arbitrary word w of length m the transition function of this

automaton maps q by w to a state that defines e. All finitary automorphisms of T (X) form a

countable subgroup FinAutT (X) of FAutT (X).

Let |X| = p be an odd prime. We will identify X with the field Zp of residues modulo

p. A Sylow p-subgroup Kp of the group AutT (X) can be characterized as follows. Let us

denote by σ the mapping x 7→ x + 1 on Zp, i.e. the cycle (0 1 . . . p − 1). An automaton

over X is called p-automaton if for each its state the restriction of the output function at this

state as a permutation on the alphabet is a power of σ. Then Kp consists of automorphisms
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defined at states of p-automata. Automorphisms defined at states of finite p-automata form

a subgroup FKp in Kp. We call the group Kp as the group of p-automata and its subgroup

FKp as the group of finite p-automata. The subgroup of finitary automorphisms of FKp is

denoted by FinKp.

Elements of Kp can be defined in terms of tableaux introduced by L. Kaloujnine. A tableau

is a sequence
[

a0, a1 (x1) , . . . , an (x1, . . . , xn) , . . .
]
, (1)

where a0 ∈ Zp, an(x1, . . . , xn) : Z
n
p → Zp, n ≥ 1.

For arbitrary word w = (α1, α2, . . . , αm) ∈ Z
m
p , m ≥ 1, its image under tableau (1) is the

word
(
α1 + a0, α2 + a1 (α1) , . . . , αn + am−1 (α1, . . . , αm−1)

)
. The residue of tableau (1) defined

by the word w is the tableau

[
am (α1, . . . , αm) , am+1 (α1, . . . , αm, x1) , . . . , am+n (α1, . . . , αm, x1, . . . , xn) , . . .

]
.

Tableau (1) defines an element from FKp if and only if the set of all its residues is finite.

2 Minimal generating sets

The main result of the paper is the following assertion.

Theorem 1. Groups Kp and FKp contain minimal generating sets.

Let Z
∞
p be the vector space of all sequences over Zp. A sequence (an, n ≥ 0) is called

ultimately periodic if there exist k, l ≥ 1 such that an+l = an, n ≥ k.

A sequence (an, n ≥ 0) is called finitary if there exists k ≥ 0 such that an = 0, n ≥ k.

Denote by FinZ
∞
p and UPZ

∞
p the sets of all finitary and ultimately periodic sequences

over Zp, respectively. Then FinZ
∞
p and UPZ

∞
p are countable subspaces of Z

∞
p .

Consider the mapping π : Kp → Z
∞
p such that for arbitrary g ∈ Kp defined by tableau (1)

the image π(g) has the form



a0, ∑
α1∈Zp

a1(α1), . . . , ∑
(α1,...,αn)∈Z

n
p

an(α1, . . . , αn), . . .



 .

Lemma 1 ([2]). The mapping π is a surjective homomorphism. The kernel H of π coincides

with the commutator subgroup
[
Kp,Kp

]
.

Denote by π1 the restriction of π on the subgroup FKp.

Lemma 2. The homomorphism π1 is a surjection on UPZ
∞
p . The kernel H1 of π1 contains the

commutator subgroup
[
FKp,FKp

]
.

Proof. Let g ∈ FKp. Assume that g is defined by tableau (1). Denote by Q(g) the set of residues

of g, including g. Let n be the cardinality of Q(g), i.e. Q(g) = {g1, . . . , gn}. We will show that

all sequences π1(g1), . . . , π1(gn) are ultimately periodic.

Assume that gi is defined by the tableau

[ ai0 , ai1(x1), . . . , ain(x1, . . . , xn), . . . ], i ≥ n.



Minimal generating sets in groups of p-automata 611

Denote by tij the number of states of gi, defined by words of length 1, that equal to gj,

1 ≤ i, j ≤ n. Then T = (tij)i,j = n is an n × n integer matrix. We will consider T as a matrix

over Zp.

Let π1(gi) = (bi0, bi1, . . . , bin, . . .), 1 ≤ i ≤ n. We will show by induction on m that

(b1m, . . . , bnm)
⊤ = Tm · (a1m, . . . , anm)

⊤. (2)

Since (b10, . . . , bn0)
⊤ = (a10, . . . , an0)

⊤, equality (2) holds for the case m = 0. For arbitrary

i, 1 ≤ i ≤ n, m > 0, definitions of π and T imply b1m = ti1b1m−1 + · · · + tinbnm−1. Under

inductive assumption for m − 1 it implies the the required equality for m.

Since the matrix T is a matrix over a finite field the sequence (Tm, m ≥ 0) is ultimately

periodic. Then equality (2) implies that all sequences π1(gi), 1 ≤ i ≤ n, are ultimately periodic

as well.

On the other hand, for arbitrary sequence (bn, n ≥ 0) ∈ UPZ
∞
p , let us consider the tableau

[ a0, a1(x1), . . . , an(x1, . . . , xn), . . . ]

such that a0 = b0 and

an(x1, . . . , xn) =

{

bn, if x1 = . . . = xn,

0, otherwise.

Then this tableau defines a finite state automorphism g such that π1(g) = (bn, n ≥ 0). Hence,

π1 is a surjection on UPZ
∞
p .

The second statement of the lemma follows from Lemma 1. The proof is complete.

Now we proceed with defining minimal generating sets of Kp and FKp. The construction

is based on the approach presented in [5]. Consider the group Kp.

Since every vector space contains a Hamel basis (see, e.g., [4]) all three spaces Z
∞
p , FinZ

∞
p

and UPZ
∞
p contain a basis. In particular, each basis is a minimal generating set of the additive

group of the corresponding space.

Let I be a set of contunuum cardinality. Since the homomorphism π is surjective there

exists a subset {s1i : i ∈ I} ∈ Kp such that the set {π(s1i) : i ∈ I} is a basis of Z
∞
p . On the

other hand, the commutator subgroup [Kp,Kp] has continuum cardinality and we can use I

to index its elements. Hence, [Kp,Kp] = {s2i : i ∈ I}. Now for each i ∈ I define si ∈ Kp such

that si preserves the first two letters of each word w and for arbitrary α1, α2 ∈ Zp its residue

si(α1, α2) on (α1, α2) satisfy the following condition

si(α1, α2) =







s1i, if α1 = α2 = 0,

s2i, if α1 = α2 = p − 1,

e, otherwise.

Let {gi, i ≥ 0} be the set of finitary automorphisms such that g0 is defined by the tableau

[ 1, 0, 0, . . . , 0, . . . ] and for arbitrary i ≥ 1 the automorphism gi is defined by the tableau

[ 0, . . . , 0, ai(x1, . . . , xi), 0, . . . ],

where

ai(x1, . . . , xi) =

{

1, if x1 = . . . = xi = 0,

0, otherwise.
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Let S = {g0, g1} ∪ {si : i ∈ I}.

Now proceed with the group FKp. Define the sequences

ei = (ei0, . . . , eij, . . .), i ≥ 0,

such that

eij =

{

1, if i = j,

0, if i 6= j,
i, j ≥ 0.

Then we directly obtain the following assertion.

Lemma 3.

(i) The set {ei : i ≥ 0} is a basis of the space FinZ
∞
p .

(ii) There exists a countable set { fi : i ≥ 1} of ultimately periodic sequences such that the

union {ei : i ≥ 0} ∪ { fi : i ≥ 1} forms a basis of the space UPZ
∞
p .

Proof. The first statement is well-known and its proof is straightforward. Since the space

UPZ
∞
p is countable and contains periodic sequences of arbitrary least period the second state-

ment follows.

Lemma 4. For each i ≥ 0 the automorphism gi has order p and π1(gi) = ei.

Proof. For each i ≥ 0 the automorphism gi defines a cyclic permutation of length p on the

words of the form

(0, . . . , 0
︸ ︷︷ ︸

i

, α1, . . . , αm), m ≥ 1,

and acts trivially on all other words. Hence, the order of gi is p. The equality π1(gi) = ei

immediately follows from the definitions of π1 and gi.

Since the kernel of π1, namely the subgroup H1, is countable, we can enumerate its ele-

ments and obtain H1 = {hi : i ≥ 0}.

Lemma 3 allows to choose a subset {ti : i ≥ 1} of FKp such that π1(ti) = fi, i ≥ 1.

Then define finite state automorphisms r1i, i ≥ 0, and r2i, i ≥ 1, such that they preserve the

first two letters of each word w and for arbitrary α1, α2 ∈ Zp their residues s1i(α1, α2), i ≥ 0,

and s2i(α1, α2), i ≥ 1, on (α1, α2) satisfy the following conditions

s1i(α1, α2) =







gi, if α1 = α2 = 0,

hi, if α1 = α2 = p − 1,

e, otherwise,

i ≥ 0,

and

s2i(α1, α2) =

{

ti, if α1 = α2 = 0,

e, otherwise,
i ≥ 1,

respectively.

Let R = {g0, g1} ∪ {r1i : i ≥ 0} ∪ {r2i : i ≥ 1}.

Proof of Theorem 1. The sets S and R constructed above are minimal generating sets of the

groups Kp and FKp, respectively. The proof uses lemmata proved above and it is solely the

same as the proof of [5, Theorem 2] and we omit it.
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3 Open problems

Problem 1. Is it true that the kernel of the homomorphism π1 coincides with the commu-

tator subgroup [FKp,FKp]?

Problem 2. Is there an algorithm for effective enumeration of finite state automorphisms

from the kernel of the homomorphism π1?
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Лавренюк Я.В., Олiйник А.С. Мiнiмальнi системи твiрних у групах p-автоматiв // Карпатськi

матем. публ. — 2023. — Т.15, №2. — C. 608–613.

Для довiльного непарного простого числа p розглядаються групи всiх p-автоматiв та всiх

скiнченних p-автоматiв. Будуються мiнiмальнi системи твiрних як у групi всiх p-автоматiв,

так i в її пiдгрупi скiнченних p-автоматiв. Ключовим елементом доведення є технiка пiднят-

тя, яка дозволяє конструювати мiнiмальну систему твiрних у групi за умови, що мiнiмальну

систему твiрних задано у її абелевiй факторгрупi. Для знаходження вiдповiдної факторгрупи

елементи груп p-автоматiв та скiнченних p-автоматiв подаються у термiнах таблиць, введених

Л. Калужнiним. З використанням цього подання визначається та дослiджується природний

гомоморфiзм на адитивну групу всiх нескiнченних послiдовностей над полем Zp.

Ключовi слова i фрази: скiнченний автомат, p-автомат, мiнiмальна система твiрних.


