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Some new identities for Schur polynomials

Bedratyuk L.P.

The Schur polynomials play a central role in combinatorics, representation theory, and symmet-
ric functions. Classical identities such as the Cauchy and Littlewood formulas establish fundamen-
tal relationships between these polynomials. In this article, we present novel generalizations of these
identities for bounded and unbounded cases. Specifically, we prove that a family of Schur polyno-
mial expansions, parameterized by arbitrary polynomial sequences, satisfies a determinant-based
factorization property. This result extends the classical Cauchy identities and provides a unifying
framework for bounded analogues. Additionally, we derive new bounded identities for Schur poly-
nomials, which refine Macdonald’s earlier results and incorporate constraints on partitions. These
findings include determinant representations that encapsulate both classical and bounded settings,
enabling further generalizations. Applications of these results to combinatorial structures and the
theory of symmetric functions are also discussed.
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Introduction

Let P, be the set of all partitions with a maximum length of n. A partition A = (A4, ..

'/A?I)

is a sequence of nonnegative integers, which are called parts, and are ordered as A; > A;;;.
The sum of the entries is denoted [A| = A; + Ay + - - - + A,,. We introduce a partial ordering <

in P, by defining A < pif A; < y; for all i.

The Schur polynomial corresponding to A € P, is defined as the following polynomial in

variables x = (x1,x2,...,X):
x)\1+1fl*1 xé\1+i’l*1 x21+n71
x)\z—Hl—Z xA2+n—2 x£2+n—2
1 2
d t Ai+n—i /\ A /\
AN x1" X" X"
S/\(x> = —i n—-1 .n—1 n—1
det <x]. ) M 2 2 2 o 2
n— n— n—
xj x5 ceooxh
1 1 ... 1

The total degree of the Schur polynomial s, (x) equals |A|.
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Some new identities for Schur polynomials 707

The Schur polynomials are invariants of the symmetric group S;,. One can read more about
symmetric functions and symmetric polynomials in books [1,2].
The classical Cauchy identities for Schur polynomials state that

L s HH

7

AEP, i=1j= 1- XiYj
m

¥ si®su(y) = 11T (1+xw),
AEP, i=1j=1

where y = (y1,Y2,...,ym) and A’ is the conjugate partition (see [2] for the definition of the
conjugate partition).

There are many different generalizations of these identities (see, for example, [3-6, 8]).

The aim of the paper is to prove some variants of the Cauchy identities. Firstly, we prove
that for an arbitrary family of polynomials f; = fi(y),i = 0,1, ..., the following identity

f)u fA1+1 fA1+2 f)\1+n71

Z s,\(x) {c)\z—l ,:f/\z f)\z-i-l fA2+n_2 lj

=1]F(y x)
AEP,

Fru=tn=1) Pru—(n=2) fan—n=3) -+ fa,
holds, where

z) = ifizi
i=0

We prove that this identity implies the Cauchy identities.
Also, for the set of indeterminates ¢y, t5, .. ., t; the following identity

n—i
det <1—]x-t->
ZSth(AJr] l>: ]t

AEP, det (x}”’)

holds. Here we take f; = 0 and t; = 0 for all i < 0.
In [7], D.E. Littlewood presented the following identity

I1

—Yi<ici<n

Z SA(X):ﬁl !

AEP, i=1

1
1—x1-xj'

I.G. Macdonald [2, p.84] proved the following bounded analogue of the Littlewood identi-

ties [7] det( a-+2n—j j—l)
Y sax) =5 :
AP [Tai-1) T (xi—x) (xix;—1)

i=1 1<i<j<n

for the case A < (a,a,...,a).
Very recent work on bounded Littlewood identities can be found in [8].
Let

Zﬁ F(y,z,a), a€NN.
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In this paper, we improve the Macdonald’s result and prove the folowing two bounded
identities:

det <x}“’i1—“ (y, xi, ai))

Y. sa(x)det(fy i) = : , 4 €N,
AEP, det (x'?_z>
A<(ay,a2,...,4n) J
and
—q a;+1
X? ! <1 — (X]'ti) )
det
o 1-— Xl'i']'
) s, det <t;‘i+}7l) = ,
AEP, det (x;-“*l)

AS (allaZI“‘/a}’l)

IfA;+j—i<O0orA;+j—1i> a; then corresponding entries of the matrices ( f/\f+j—i) and
Aitj—i
(;

i ) are equal to 0.

We will also consider some specifications of these identities.

1 Unbounded identities

The symmetric group S, acts on IN" by permuting coordinates. Let us define a binary
relation ~ on the set IN" as follows: for y, v € IN" we have p ~ v, if there exists a permutation
7, € Sy such that y + 6, = 7, (v+6,). Here §, = (n —1,n—2,...,1,0). It is easy to show
that the relation ~ is an equivalence relation on IN". Then IN” is a union of mutually disjoint
equivalence classes [y]~, namely

N'= (J [#~

HEN"/~

where y runs the set of representatives of the equivalence relation ~.
Let f; = fi(y), i = 0,1,..., be a polynomial family and for any © € IN" we denote

fy :fylfyz o 'fyn-

The following lemma plays important role in the proof of our main results.

Lemma 1. Suppose that for u, A € IN" we have y ~ A and A is a partition. Then

Y sgn () fu = det (fa i) -

HE[A]~

Proof. Since yt = 71 (A+0n) —6n, weget pj = Ay (y+ (=70 (j)) — (n—J) = A, (jy— mu(j) +7.
Then

Z sgn (ﬂﬂ) fV = Z Sgn(n)fn()\+5n)f§n = Z Sgn(ﬂ) ﬁf)‘n(j)_”(j)"‘j = det (f)\i*iﬂ) .
=

HE[A]~ TES, TES,

For the case A; — i+ j < 0 the corresponding entries of the determinant should be equal to
Zero. U

To clarify Lemma 1, we present an example.



Some new identities for Schur polynomials 709

Example 1. Forn = 3 and for a partition A = (A1, Ay, A3) we have the following table.

p=11 (A+0,) — 0y | sgn(my)
(A&,AQ,AB) e +1
(A, A3 —1,A2+1) (23) —1
(A —1, A1 +1,73) (12) -1
(A —1,A3—1,A1 +2) | (123) +1
(
(

As—2, M+ 1L, A +1) | (132) | +1
A3 — 2, A2, A1 +2) 13) | -1

Then

Z sgn (7'[’4) fﬂ'y (A+0n)—0n = f)‘lf)‘Zf)\S _f)\lf)\3_1f)\2+1 _f/\g, —2f)\2f/\1 +2_f/\2—1f/\1 +1f/\3

€Sy

f/\l f)\1+1 f/\1+2
+ fra—2fnatfrort T fo-tfs-1fan2 = | faom1 fao faoer | =det (faivg) -
fas—2 fas—1 g

Note that the Lemma 1 remains true for any finite sequence of polynomials fy, fi,..., fa
for a € IN. Then for the case A; —i+j > a the corresponding entries of the determinant
det (fy,—i+;) should be equal to zero.

Now, for any y € IN" define the polynomial

det (it
Sulx) = deE (JX”"))
]

The following lemma states that S, (x) either equals zero or up to sign is equal to the Schur
polynomial s, (x), where the partition A is a representative of equivalence class to which u
belongs.

Lemma 2. If p € IN" is equivalent to A € Py, and 71, is the corresponding permutation, then
S, (x) = sgn (7,) s (x). If u is not equivalent to any partition then S, (x) = 0.

Proof. For a partition A the sum A + J,, consists of a strong decreasing sequence of integers
MAn—1>A+n—-2>---> A,

Since y + Jy is obtained from A + §, by permutation 77, the corresponding determinants
are equal up to a sign to det (y + 8,) = sgn (71,) det (A +8,) # 0. Dividing the both sides by
det (x;-q_z), we get S, (x) = sgn (71,) sy (x), as required.

Suppose now that u does not equivalent to any partition A. Then y + J,, has two equal parts
and it implies that det (¢ + 6,,) = 0. O

The following theorem is the main result of the section.

Theorem 1. (i) Let f; = fi(y) be a polynomial family and

ifiz" = F(y,z).
i=0
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Then the following identity holds

f)\l f/\1+1 f)\l+2 f)\1+n—1
frp—1 fa frg+1 frgtn—2 "
Z sa(x) | i - : * : o :HF(y,xi).
)\EPn ° ° i=1
frn=n=1) fan—tmn=2) Frn—(n-3) fa

(ii) Letty,ty,...,ty be some set of variables. Then

Z S det(Aﬂ l)z

AEP,
Here we take f; =0and t; = O forall i < 0.

Proof. (i) Lemma 1 and Lemma 2 imply

fa fa+1 fag+2 o fag+n—1
Y 8,0 = sAx) ,.f)\zfl fAz fAZH : ,.f)\eran
ye[/\] . “ .. .
fru—n=1) fan—(n-2) fap—(n-3) -+ fau
On the one hand, we have
fa fa 41 fa+2 o fag4n—1
faz—1 fa a1 o faan2
Y Su®fi= L sx)| 1 - - T
peN” AEP, . : : e -
fru=tn=1) fran—(n=2) fan—(n=3) - fan
We can find this sum explicitly, namely
xy1+n71 y1+n 1 ur+n—1
00 Hp+n—2 y2+n 2 Up+n—2
X X
det(x/ ) ¥ Sufu= Y ! 2 ! furfus - fun
MEN” Bl =0 [o e s
Hn xg” xh
-1 g — _pa+n—1
Z x’fl ! fin Z xm " Z " fin
=0 #1=0
+n—2 + 2 +n—2
Z xTZ ! Sz Z xﬂz " fuz Z " fua
— #2=0 pH2=0 u2=0
Z xilnfﬂn Z xgnfﬂn Z x%nfﬂn
#in=0 pn=0 =0
1'F(y, 1) x57'F(y,x0) x5 'F (y, xn)
| AT (v 1) T (3, %) X 2F (y, )
F(y,x1) F (y,x2) F (y, xn)
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Therefore

f)\l f/\1+1 f)\1+2 v f/\1+n—1
DR — n
Y sa(x) {cAzl {AZ {cAerl _:f)\ern 2| _ T (v,
AEP,

fru=tn=1) fran—(n=2) fap—(n=3) - fau

Let us prove the part (i) of the theorem. By a similar argument we have

t)Ll t)\1+1 t)\1+2 t)\1+n—1
1 2 3 DR n
g2t £)? #2t L. prtne2
Y, Sutf'=} s : :
HEN" AEP, : : : cee o
A B e A N Ak
On the other hand
x/\l—Hl 1 A+n—1 xﬁl-i-n—l
) Ap+n—2 Ap+n—2 Ap+n—2
_i X X e X A A A
n—i uo_ 1 2 n 1472
det <x]- ) Y, St =), S AR
HGNH )Ll/"'/)\nzo ..../.\ ......... ;\ .............. .)L....
xln xzn xnﬂ
Y xi\1+" 1ti\1 y x£\1+” 1ti\1 y x21+” 1ti\1
A=0 A=0 1=0
Z xilz-i-n Zt)Lz 2 xﬁ\z—‘-n Zt)Lz 2 XQZ_HI Zt)Lz
= |M2=0 A2=0 Ap=0
= A ./\ A
Y X" Y X" y" Y X t"
Ap=0 Ap= An=0
xT‘l xg_l xi-1
1-— x£t1 1-— JC2t1 1-— xntl
n— n—2 n—2 n—i
X X Xn x]
1 x1t2 1 thz 1 xntz 1— xjti
1 1 1
Thus _
x}“’l
det 1 ;
. — x:t;
A jti
Y sa(x)det <t].l l+]> = —
AEP, det <x]-

0

The theorem implies the two classical Cauchy identities. In fact, put f; = h;, where h; is the
complette symmetrical polynomial in the m variables y = (y1, Y2, . .., ym). Taking into account
the identity

yoh =T
i=0

i 1 —yiz’
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the Theorem 1 implies

h)Ll h)\1+1 h)Ll +2 s h)Ll +n—1

hy,_ h h . h _ m
Zs/\(x) .)Lz 1 .)Lz .)L2+1 .)L2+?l 2 _ H 1

1 : : : cel izljzll—xi]/j.
By—n=1) Mr—mn—2) Mr,—(n—3) --- ha,

By using the Jacobi-Trudi identity

we get the Cauchy identity

=

Y si@saly) =11

AEP, im1jo1 L~ XY

Similarly, by using the dual Jacobi-Trudi identity

sy(y) = det (ex,-iv)).
we obtain the dual Cauchy identity

n

Z sy(x)sy(y) = H 1—{—x1y]

AEP, i=1j=1

Let us consider some specialization of the formulas.

Example 2. Put f; = p;, where p; is the power sum polynomial. Then, taking into account the
equality

1—xz
we obtain
m i 1
Y sa(x)det (priyj) =[]} 7——
AEP, j=1i=1 iYj
Example 3. Put ty = t) = --- = t, = z. It is easy to see that for Ay # 0 the first two rows of

the determinant det (z"~'*/) are proportional. Then for all partitions except A = (n) it equals

to zero. For A = (n) we get upper-triangular matrices with the main diagonal (z",1,1,...,1).
Thus

det <Z/\f—i+f> = det (diag (z",1,1,...,1)) = z".

Since s(y,) (x) = hj, then




Some new identities for Schur polynomials 713

2 Bounded identities

For bounded sums the following theorem holds.

a .
Theorem 2. Let ) _ f;z' = F(y,z,a),a € N. Then
i=0

det (x;?_il—“ (y, xi, ai)>

Y. sa(x)det(fy, i) =

AEP, det (x’?’i) '
Ag(allaZI“‘lan) ]
<1 _ ( )a +1)
det ]
1-— xi j

/\ez’l;n i det( 5 Z) - det (x;?_i)

A<(ay,a2,...,4n)
Here f), ;i and t;\erj_i isequal to0,if A\j+j—i<O0orA;+j—i>a.
Proof. We have
Y. Su@fu= ) sa(x)det(fy, i)

ueN" AEPy
HS(a1,a2,.~,an)

On the other hand, we can find this sum explicitly

det() L Sufu= Yo 3 3 det (T fuf e f

(yEIN" N u1=0 pp=0 Hn=0
”IS ai,a2,...,4
a1 a3

=Y ) - Z det (x VIJF" nyl = det< Z x” Ak 1 ) = det <x;7_i1—“ (y,xi,ai)>.

u1=0p2=0 un=0
Thus

det (x"'F (y,xi,a;)
Y, sa(x)det(fiirg) = ( ] - )
A< (a,az,...,.a,) det (x;?il)

as required. In the same way
det (x/ ) Y= Satye--tyr =Y det (x} T2 e

AEP, APy
Ai<a; Ai<a;
<1 N ( )tl +1)
dt<A+nzA>_dt A+nz)\ — det ]
Z e e X_: X l 1= x]- i
/\<al A
x’f‘l <1 _ (xltl)ulJrl) X~ 1 (1 _ (x2f1)a1+1> a1 <1 _ (xntl)uhLl)
1—X1t1 1—JC2t1 1—xnt1
) +1 2 +1
|-ty R A (1))
1—xt 1 — xpt» 1— xutr
............... an+1an+1an+1
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For the case a1 = a, = - - - = a,, = a we have
. n
det (x;?’iF (y, xi,a)) det (x}“’l> 11:111: (y,x;,a) n
n—i - _n—i - ! F (y’ xi’a)
det <x]- ) det <x]- ) i=1
and

n

Y. sa(x)det(fa,—ij) =] [F (v, xia).

A< (a,a,...,a) i=1

Example 4. Put f; = e;, where ¢; is the elementary symmetrical polynomial in y1,Y2, ..., Ym-
Since

F(z) =) ez =[] (1 +yiz),
i=0 i=1
we have . .
Y. sa(x)det(eriyj) = TF(x) =TTIT(1+xw)-
AL (m,m,...,m) i=1 i=1j=1

Note that here det (e),_i;;) does not equal to s)/(y) because the corresponding entry of the
matrix (ey,_iyj) is zero, if A —i+j > m.

Forthecaseay =a, =--- =a, =aand t; =t = --- = t, = t we have
X1 = (x;8)0 1T a+1
ot (LD N g ) ff ™ 1
1— xjt 1) et nol— (xjt‘)”+

1—x]-t

—_

det <x;l_i) B det (x;-q_i> i
Thus
no1_ (xjt)a+1
1-— x]'t )

Y. sp(x)det (t)‘iﬂ_i) =

A< (aa,...,a) j=1

Example 5. Let n = 2 and a = 2. Then there exists 6 partitions A of length 2 such that
A < (2,2), namely
(0,0),(1,0),(1,1),(2,0),(2,1),(2,2).

We have the following table.

A | det (#hH7) S\
10
0,0 =1 1
(0,0) 0 1‘
2
(1,0) ‘é tl =t X1+ X
2
(1,1) 'i tt =0 X2X1
0 _ oo 2
(2, O) 0 1 =1 X1+ X2X1 + X2
20| 4
(2,1) 1 ¢ =t (x1 + x2) x2x1
2
(2,2) tt t(; =t x12x72
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Note that for A; +j—i < 0 or A; +j — i > 2 the corresponding entries of the matrix (t}i*/~")
are equal to zero. Then

Z S\ (x) det (t/\f+j_i) =1+ (X1+X2> t+ <X12+X2xl+X22) t2+ (X1+X2) x2x1t3+x12x22t4
A<(22)

1= (x1t)® 1= ()’

— (14t + £ 2)(1 tx, + 2 2):
<+X1+ X1 + Xy +t°x2 1=t 1= 2t

For the specializationay = ay = -+ =a, =aandt; = tp = --- = t;, = 1 let us consider

the matrix (1)‘i+j*")ij = ¢(A, a), where

0, if j+j—i<0or Aj+j—i>aq,

ci,j()t,a) = {

1, otherwise.

Then
no1_ x{l—i—l
Y. sa(x)det(c(Aa) = 171
A< (a,a,...,a) i=1 — X

Example 6. Put a = 1. Then all partitions which are less or equal to (1,1, ...,1) have the form

e®=1(11,..,100..0), k<n.

n—k times k times

The matrices c(s(k), 1) are lower-triangular ones with the main diagonal (1,1,1,...,1). Since
for all k det (c (e(k), 1)) =1, we obtain

no1—x? n
— =Tl +x).
A |

Y. sax) =

A<(1,1,...1)

The bounded Macdonald formula gives the same result.
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beapatiok A.I1. Hosi momosicrocmi 019 mHozouneris Illypa // KapmaTtcexi MaTeM. myba. — 2025. —
T.17, N2. — C. 706-716.

Mmuorounenn lllypa BiairpaioTs IeHTpaABHY POAb Y KOMbiHaTOpMIIi, Teopii 306paxkeHs i cume-
TpuuHMX pyBsKIiax. Kaacuuni ToToXHOCTI, Taki sk dpopmyan Komri Ta AiTTABYAQ, BCTAHOBAIOIOTD
dyHAaMEHTaABHI B3a€MO3B’SI3KM MiXK IIMMIM MHOTOUYAeHaMM. Y 11l CTaTTi MM IIPOIIOHY€EMO HOBI y3a-
raAbHEHHS IIVIX TOTOXXHOCTEN A 0bMeXeHMX i HeobMeXeHNx BUITaAKiB. 30KpeMa, AOBEAEHO, IO
cimeiicTBO po3kAaais MHOrouaeHis lllypa, napameTpnsoBaHe AOBiIABHVMMI ITOCAIAOBHOCTSIMI MHOTO-
YAEHiB, 33A0BOABHSIE BAACTUBICTD dpaKTOpM3allii, 3acHOBaHy Ha BU3HauHMKax. Lleit pesyabTar pos-
IIMpPIoe KAacu4Hi ToToxHOCTi Ko Ta Hapae yHi(pikoBaHy CTPyKTYPY AAsI OOMeEXEHMX aHAAOTIB.
Kpim Toro, oTpmmaHo HOBi 06MeXeHi TOTOXHOCTI AAsT MEOroUAeHiB I1lypa, sIKi yTOUHIOIOTH pe3yAb-
TaTi MakAOHaAbAA Ta BPaXOBYIOTh O6MeXKeHHsI Ha po36uTTsi. Lli pe3yAbTaTyt BKAIOUAIOTH ITPEACTaB-
AEHHS Y BUTASIAL BU3HAUHMKIB, SIKi OXOIIAIOIOTH SIK KAACUYHI, TaK i 06Me>KeHi BUIIaAKY, CTBOPIOIOUN
OCHOBY AASI TIOAAABIINX y3aTaAbHeHb. TakoXX 06roBOPIOIOTLCS 3aCTOCYBAHHSI IMX Pe3yAbTaTiB AO
KOMObIHATOPHMX CTPYKTYP i Teopil cuMeTprIHNX (PYHKIIII.

Kntouosi cnosa i ppasu: muOrouneH llypa, Toroxsicts Komri, ToroxHicTh AiTABYAa, 06MeXeHa
TOTOXHICTh MaKAOHaAbACA.



