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Some new identities for Schur polynomials

Bedratyuk L.P.

The Schur polynomials play a central role in combinatorics, representation theory, and symmet-

ric functions. Classical identities such as the Cauchy and Littlewood formulas establish fundamen-

tal relationships between these polynomials. In this article, we present novel generalizations of these

identities for bounded and unbounded cases. Specifically, we prove that a family of Schur polyno-

mial expansions, parameterized by arbitrary polynomial sequences, satisfies a determinant-based

factorization property. This result extends the classical Cauchy identities and provides a unifying

framework for bounded analogues. Additionally, we derive new bounded identities for Schur poly-

nomials, which refine Macdonald’s earlier results and incorporate constraints on partitions. These

findings include determinant representations that encapsulate both classical and bounded settings,

enabling further generalizations. Applications of these results to combinatorial structures and the

theory of symmetric functions are also discussed.
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donald identity.
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Introduction

Let Pn be the set of all partitions with a maximum length of n. A partition λ = (λ1, . . . , λn)

is a sequence of nonnegative integers, which are called parts, and are ordered as λi ≥ λi+1.

The sum of the entries is denoted |λ| = λ1 + λ2 + · · ·+ λn. We introduce a partial ordering ≤

in Pn by defining λ ≤ µ if λi ≤ µi for all i.

The Schur polynomial corresponding to λ ∈ Pn is defined as the following polynomial in

variables x = (x1, x2, . . . , xn):

sλ(x) =
det

(

xλi+n−i
j

)

det
(

xn−i
j

) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xλ1+n−1
1 xλ1+n−1

2 . . . xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 . . . xλ2+n−2
n

...
... . . .

...

xλn
1 xλn

2 . . . xλn
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

xn−1
1 xn−1

2 . . . xn−1
n

xn−2
1 xn−2

2 . . . xn−2
n

...
... . . .

...

1 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The total degree of the Schur polynomial sλ(x) equals |λ|.
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The Schur polynomials are invariants of the symmetric group Sn. One can read more about

symmetric functions and symmetric polynomials in books [1, 2].

The classical Cauchy identities for Schur polynomials state that

∑
λ∈Pn

sλ(x)sλ(y) =
n

∏
i=1

m

∏
j=1

1

1 − xiyj
,

∑
λ∈Pn

sλ(x)sλ′(y) =
n

∏
i=1

m

∏
j=1

(1 + xiyj),

where y = (y1, y2, . . . , ym) and λ′ is the conjugate partition (see [2] for the definition of the

conjugate partition).

There are many different generalizations of these identities (see, for example, [3–6, 8]).

The aim of the paper is to prove some variants of the Cauchy identities. Firstly, we prove

that for an arbitrary family of polynomials fi = fi(y), i = 0, 1, . . ., the following identity

∑
λ∈Pn

sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2 . . . fλ1+n−1

fλ2−1 fλ2
fλ2+1 . . . fλ2+n−2

...
...

... . . .
...

fλn−(n−1) fλn−(n−2) fλn−(n−3) . . . fλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n

∏
i=1

F (y, xi)

holds, where

F(y, z) =
∞

∑
i=0

fiz
i.

We prove that this identity implies the Cauchy identities.

Also, for the set of indeterminates t1, t2, . . . , tn the following identity

∑
λ∈Pn

sλ det
(

t
λi+j−i
j

)

=

det

(
xn−i

j

1 − xjti

)

det
(

xn−i
j

)

holds. Here we take fi = 0 and ti = 0 for all i < 0.

In [7], D.E. Littlewood presented the following identity

∑
λ∈Pn

sλ(x) =
n

∏
i=1

1

1 − xi
∏

1≤i<j≤n

1

1 − xixj
.

I.G. Macdonald [2, p.84] proved the following bounded analogue of the Littlewood identi-

ties [7]

∑
λ∈Pn

sλ(x) =
det

(

x
a+2n−j
i − x

j−1
i

)

n

∏
i=1

(xi − 1) ∏
1≤i<j≤n

(
xi − xj

) (
xixj − 1

)

for the case λ ≤ (a, a, . . . , a).

Very recent work on bounded Littlewood identities can be found in [8].

Let
a

∑
i=0

fi(y)z
i = F(y, z, a), a ∈ N.
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In this paper, we improve the Macdonald’s result and prove the folowing two bounded

identities:

∑
λ∈Pn

λ≤(a1,a2,...,an)

sλ (x) det
(

fλi−i+j

)
=

det
(

xn−i
j F (y, xi, ai)

)

det
(

xn−i
j

) , ai ∈ N,

and

∑
λ∈Pn

λ≤(a1,a2,...,an)

sλ det
(

t
λi+j−i
j

)

=

det




xn−i

j

(

1 −
(

xjti

)ai+1
)

1 − xitj





det
(

xn−i
j

) .

If λi + j − i < 0 or λi + j − i > ai, then corresponding entries of the matrices
(

fλi+j−i

)
and

(
t
λi+j−i
j

)
are equal to 0.

We will also consider some specifications of these identities.

1 Unbounded identities

The symmetric group Sn acts on N
n by permuting coordinates. Let us define a binary

relation ∼ on the set N
n as follows: for µ, ν ∈ N

n we have µ ∼ ν, if there exists a permutation

πµ ∈ Sn such that µ + δn = πµ (ν + δn). Here δn = (n − 1, n − 2, . . . , 1, 0). It is easy to show

that the relation ∼ is an equivalence relation on N
n. Then N

n is a union of mutually disjoint

equivalence classes [µ]∼, namely

N
n =

⋃

µ∈Nn/∼

[µ]∼,

where µ runs the set of representatives of the equivalence relation ∼.

Let fi = fi(y), i = 0, 1, . . ., be a polynomial family and for any µ ∈ N
n we denote

fµ = fµ1 fµ2 · · · fµn .

The following lemma plays important role in the proof of our main results.

Lemma 1. Suppose that for µ, λ ∈ N
n we have µ ∼ λ and λ is a partition. Then

∑
µ∈[λ]∼

sgn
(
πµ

)
fµ = det

(
fλi−i+j

)
.

Proof. Since µ = πµ(λ+ δn)− δn, we get µj = λπµ(j)+(n−πµ(j))− (n− j) = λπµ(j)−πµ(j)+ j.

Then

∑
µ∈[λ]∼

sgn
(
πµ

)
fµ = ∑

π∈Sn

sgn(π) fπ(λ+δn)−δn
= ∑

π∈Sn

sgn(π)
n

∏
j=1

fλπ(j)−π(j)+j = det
(

fλi−i+j

)
.

For the case λi − i + j < 0 the corresponding entries of the determinant should be equal to

zero.

To clarify Lemma 1, we present an example.



Some new identities for Schur polynomials 709

Example 1. For n = 3 and for a partition λ = (λ1, λ2, λ3) we have the following table.

µ = πµ (λ + δn)− δn πµ sgn(πµ)

(λ1, λ2, λ3) e +1

(λ1, λ3 − 1, λ2 + 1) (23) −1

(λ2 − 1, λ1 + 1, λ3) (12) −1

(λ2 − 1, λ3 − 1, λ1 + 2) (123) +1

(λ3 − 2, λ1 + 1, λ2 + 1) (132) +1

(λ3 − 2, λ2, λ1 + 2) (13) −1

Then

∑
πµ∈Sn

sgn
(
πµ

)
fπµ(λ+δn)−δn

= fλ1
fλ2

fλ3
− fλ1

fλ3−1 fλ2+1− fλ3−2 fλ2
fλ1+2− fλ2−1 fλ1+1 fλ3

+ fλ3−2 fλ1+1 fλ2+1 + fλ2−1 fλ3−1 fλ1+2 =

∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2

fλ2−1 fλ2
fλ2+1

fλ3−2 fλ3−1 fλ3

∣
∣
∣
∣
∣
∣

= det
(

fλi−i+j

)
.

Note that the Lemma 1 remains true for any finite sequence of polynomials f0, f1, . . . , fa

for a ∈ N. Then for the case λi − i + j > a the corresponding entries of the determinant

det
(

fλi−i+j

)
should be equal to zero.

Now, for any µ ∈ N
n define the polynomial

Sµ(x) =
det

(

x
µi+n−i
j

)

det
(

xn−i
j

) .

The following lemma states that Sµ(x) either equals zero or up to sign is equal to the Schur

polynomial sλ(x), where the partition λ is a representative of equivalence class to which µ

belongs.

Lemma 2. If µ ∈ N
n is equivalent to λ ∈ Pn and πµ is the corresponding permutation, then

Sµ(x) = sgn
(
πµ

)
sλ(x). If µ is not equivalent to any partition then Sµ(x) = 0.

Proof. For a partition λ the sum λ + δn consists of a strong decreasing sequence of integers

λ1 + n − 1 > λ2 + n − 2 > · · · > λn.

Since µ + δn is obtained from λ + δn by permutation πµ, the corresponding determinants

are equal up to a sign to det (µ + δn) = sgn
(
πµ

)
det (λ + δn) 6= 0. Dividing the both sides by

det
(

xn−i
j

)
, we get Sµ(x) = sgn

(
πµ

)
sλ(x), as required.

Suppose now that µ does not equivalent to any partition λ. Then µ+ δn has two equal parts

and it implies that det (µ + δn) = 0.

The following theorem is the main result of the section.

Theorem 1. (i) Let fi = fi(y) be a polynomial family and

∞

∑
i=0

fiz
i = F(y, z).
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Then the following identity holds

∑
λ∈Pn

sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2 . . . fλ1+n−1

fλ2−1 fλ2
fλ2+1 . . . fλ2+n−2

...
...

... . . .
...

fλn−(n−1) fλn−(n−2) fλn−(n−3) . . . fλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n

∏
i=1

F (y, xi) .

(ii) Let t1, t2, . . . , tn be some set of variables. Then

∑
λ∈Pn

sλ det
(

t
λi+j−i
j

)

=

det

(
xn−i

j

1 − xjti

)

det
(

xn−i
j

) .

Here we take fi = 0 and ti = 0 for all i < 0.

Proof. (i) Lemma 1 and Lemma 2 imply

∑
µ∈[λ]

Sµ(x) fµ = sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2 . . . fλ1+n−1

fλ2−1 fλ2
fλ2+1 . . . fλ2+n−2

...
...

... . . .
...

fλn−(n−1) fλn−(n−2) fλn−(n−3) . . . fλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

On the one hand, we have

∑
µ∈Nn

Sµ(x) fµ = ∑
λ∈Pn

sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2 . . . fλ1+n−1

fλ2−1 fλ2
fλ2+1 . . . fλ2+n−2

...
...

... . . .
...

fλn−(n−1) fλn−(n−2) fλn−(n−3) . . . fλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

We can find this sum explicitly, namely

det
(
x

n−j
i

)

∑
µ∈Nn

Sµ fµ =
∞

∑
µ1,··· ,µn=0

∣
∣
∣
∣
∣
∣
∣
∣
∣

x
µ1+n−1
1 x

µ1+n−1
2 . . . x

µ1+n−1
n

x
µ2+n−2
1 x

µ2+n−2
2 . . . x

µ2+n−2
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
µn

1 x
µn

2 . . . x
µn
n

∣
∣
∣
∣
∣
∣
∣
∣
∣

fµ1 fµ2 · · · fµn

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∞

∑
µ1=0

x
µ1+n−1
1 fµ1

∞

∑
µ1=0

x
µ1+n−1
2 fµ1 . . .

∞

∑
µ1=0

x
µ2+n−1
n fµ1

∞

∑
µ2=0

x
µ2+n−2
1 fµ2

∞

∑
µ2=0

x
µ2+n−2
2 fµ2 . . .

∞

∑
µ2=0

x
µ2+n−2
n fµ2

...
... . . .

...

∞

∑
µn=0

x
µn

1 fµn

∞

∑
µn=0

x
µn

2 fµn . . .
∞

∑
µn=0

x
µn
n fµn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

xn−1
1 F (y, x1) xn−1

2 F (y, x2) . . . xn−1
n F (y, xn)

xn−2
1 F (y, x1) xn−2

2 F (y, x2) . . . xn−2
n F (y, xn)

...
...

... . . .

F (y, x1) F (y, x2) . . . F (y, xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= det
(

x
n−j
i

) n

∏
j=1

F
(
y, xj

)
.
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Therefore

∑
λ∈Pn

sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

fλ1
fλ1+1 fλ1+2 . . . fλ1+n−1

fλ2−1 fλ2
fλ2+1 . . . fλ2+n−2

...
...

... . . .
...

fλn−(n−1) fλn−(n−2) fλn−(n−3) . . . fλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n

∏
j=1

F
(
y, xj

)
.

Let us prove the part (ii) of the theorem. By a similar argument we have

∑
µ∈Nn

Sµtµ = ∑
λ∈Pn

sλ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

tλ1
1 tλ1+1

2 tλ1+2
3 . . . tλ1+n−1

n

tλ2−1
1 tλ2

2 tλ2+1
3 . . . tλ2+n−2

n
...

...
... . . .

...

t
λn−(n−1)
1 t

λn−(n−2)
2 t

λn−(n−3)
3 . . . tλn

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

On the other hand

det
(

xn−i
j

)

∑
µ∈Nn

Sµtµ =
∞

∑
λ1,··· ,λn=0

∣
∣
∣
∣
∣
∣
∣
∣
∣

xλ1+n−1
1 xλ1+n−1

2 . . . xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 . . . xλ2+n−2
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xλn
1 xλn

2 . . . xλn
n

∣
∣
∣
∣
∣
∣
∣
∣
∣

tλ1
1 tλ2

2 · · · tλn
n

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∞

∑
λ1=0

xλ1+n−1
1 tλ1

1

∞

∑
λ1=0

xλ1+n−1
2 tλ1

1 . . .
∞

∑
λ1=0

xλ1+n−1
n tλ1

1

∞

∑
λ2=0

xλ2+n−2
1 tλ2

2

∞

∑
λ2=0

xλ2+n−2
2 tλ2

2 . . .
∞

∑
λ2=0

xλ2+n−2
n tλ2

2

...
... . . .

...
∞

∑
λn=0

xλn
1 tλn

n

∞

∑
λn=0

xλn
2 tλn

n . . .
∞

∑
λn=0

xλn
n tλn

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xn−1
1

1 − x1t1

xn−1
2

1 − x2t1
. . .

xn−1
n

1 − xnt1
xn−2

1

1 − x1t2

xn−2
2

1 − x2t2
. . .

xn−2
n

1 − xnt2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1 − x1tn

1

1 − x2tn
. . .

1

1 − xntn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= det

(
xn−i

j

1 − xjti

)

.

Thus

∑
λ∈Pn

sλ(x)det
(

t
λi−i+j
j

)

=

det

(
xn−i

j

1 − xjti

)

det
(

xn−i
j

) .

The theorem implies the two classical Cauchy identities. In fact, put fi = hi, where hi is the

complette symmetrical polynomial in the m variables y = (y1, y2, . . . , ym). Taking into account

the identity
∞

∑
i=0

hiz
i =

n

∏
i=0

1

1 − yiz
,
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the Theorem 1 implies

∑
λ

sλ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

hλ1
hλ1+1 hλ1+2 . . . hλ1+n−1

hλ2−1 hλ2
hλ2+1 . . . hλ2+n−2

...
...

... . . .
...

hλn−(n−1) hλn−(n−2) hλn−(n−3) . . . hλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n

∏
i=1

m

∏
j=1

1

1 − xiyj
.

By using the Jacobi-Trudi identity

sλ(y) = det
(
hλi−i+j

)
,

we get the Cauchy identity

∑
λ∈Pn

sλ(x)sλ(y) =
n

∏
i=1

m

∏
j=1

1

1 − xiyj
.

Similarly, by using the dual Jacobi-Trudi identity

sλ′(y) = det
(
eλi−i+j

)
,

we obtain the dual Cauchy identity

∑
λ∈Pn

sλ(x)sλ′(y) =
n

∏
i=1

m

∏
j=1

(
1 + xiyj

)
.

Let us consider some specialization of the formulas.

Example 2. Put fi = pi, where pi is the power sum polynomial. Then, taking into account the

equality
∞

∑
i=0

piz
i =

n

∑
i=0

1

1 − xiz
,

we obtain

∑
λ∈Pn

sλ(x)det
(

pλi−i+j

)
=

m

∏
j=1

i

∑
i=1

1

1 − xiyj
.

Example 3. Put t1 = t2 = · · · = tn = z. It is easy to see that for λ2 6= 0 the first two rows of

the determinant det
(
zλi−i+j

)
are proportional. Then for all partitions except λ = (n) it equals

to zero. For λ = (n) we get upper-triangular matrices with the main diagonal (zn, 1, 1, . . . , 1).

Thus

det
(

zλi−i+j
)

= det (diag (zn, 1, 1, . . . , 1)) = zn.

Since s(n) (x) = hi, then
∞

∑
i=0

hiz
i =

n

∏
i=0

1

1 − xiz
.
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2 Bounded identities

For bounded sums the following theorem holds.

Theorem 2. Let
a

∑
i=0

fiz
i = F(y, z, a), a ∈ N. Then

∑
λ∈Pn

λ≤(a1,a2,...,an)

sλ (x) det
(

fλi−i+j

)
=

det
(

xn−i
j F (y, xi, ai)

)

det
(

xn−i
j

) ,

∑
λ∈Pn

λ≤(a1,a2,...,an)

sλ det
(

t
λi+j−i
j

)

=

det




xn−i

j

(

1 −
(

xjti

)ai+1
)

1 − xitj





det
(

xn−i
j

) .

Here fλi+j−i and t
λi+j−i
j is equal to 0, if λi + j − i < 0 or λi + j − i > ai.

Proof. We have

∑
µ∈N

n

µ≤(a1,a2,...,an)

Sµ(x) fµ = ∑
λ∈Pn

sλ(x)det
(

fλi−i+j

)
.

On the other hand, we can find this sum explicitly

det
(

xn−i
j

)

∑
µ∈N

n

µ≤(a1,a2,...,an)

Sµ fµ =
a1

∑
µ1=0

a2

∑
µ2=0

· · ·
an

∑
µn=0

det
(

x
µi+n−i
j

)
fµ1 fµ2 · · · fµn

=
a1

∑
µ1=0

a2

∑
µ2=0

· · ·
an

∑
µn=0

det
(

x
µi+n−i
j fµi

)
= det

( ai

∑
µi=0

x
µi+n−i
j fµi

)

= det
(

xn−i
j F (y, xi, ai)

)

.

Thus

∑
λ≤(a1,a2,...,an)

sλ(x)det
(

fλi−i+j

)
=

det
(

xn−i
j F (y, xi, ai)

)

det
(

xn−i
j

) ,

as required. In the same way

det
(

xn−i
j

)

∑
λ∈Pn
λi≤ai

Sλtλ1
1 · · · tλn

n = ∑
λPn

λi≤ai

det
(
xλi+n−i

j

)
tλ1
1 tλ2

2 · · · tλn
n

= ∑
λ

λi≤ai

det
(

xλi+n−i
j tλi

i

)

= det

(
ai

∑
λi=0

xλi+n−i
j tλi

i

)

= det




xn−i

j

(

1 −
(

xjti

)ai+1
)

1 − xjti





=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xn−1
1

(

1 − (x1t1)
a1+1

)

1 − x1t1

xn−1
2

(

1 − (x2t1)
a1+1

)

1 − x2t1
. . .

xn−1
n

(

1 − (xnt1)
a1+1

)

1 − xnt1

xn−2
1

(
1 − (t2x1)

a2+1 )

1 − x1t2

xn−2
2

(

1 − (t2x2)
a2+1

)

1 − x2t2
. . .

xn−2
1

(

1 − (xnt2)
a2+1

)

1 − xnt2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 − (x1tn)
an+1

1 − x1tn

1 − (x2tn)
an+1

1 − x2tn
. . .

1 − (xntn)
an+1

1 − xntn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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For the case a1 = a2 = · · · = an = a we have

det
(

xn−i
j F (y, xi, a)

)

det
(

xn−i
j

) =

det
(

xn−i
j

) n

∏
i=1

F (y, xi, a)

det
(

xn−i
j

) =
n

∏
i=1

F (y, xi, a)

and

∑
λ≤(a,a,...,a)

sλ(x)det
(

fλi−i+j

)
=

n

∏
i=1

F (y, xi, a) .

Example 4. Put fi = ei, where ei is the elementary symmetrical polynomial in y1, y2, . . . , ym.

Since

F(z) =
m

∑
i=0

eiz
i =

m

∏
i=1

(1 + yiz) ,

we have

∑
λ≤(m,m,...,m)

sλ(x)det
(
eλi−i+j

)
=

n

∏
i=1

F (xi) =
n

∏
i=1

m

∏
j=1

(
1 + xiyj

)
.

Note that here det
(
eλi−i+j

)
does not equal to sλ′(y) because the corresponding entry of the

matrix
(
eλi−i+j

)
is zero, if λi − i + j > m.

For the case a1 = a2 = · · · = an = a and t1 = t2 = · · · = tn = t we have

det

(
xn−i

j

(
1 − (xjt)

a+1
)

1 − xjt

)

det
(

xn−i
j

) =

det
(

xn−i
j

) m

∏
j=1

1−(xjt)
a+1

1−xjt

det
(

xn−i
j

) =
n

∏
i=1

1 −
(
xjt
)a+1

1 − xjt
.

Thus

∑
λ≤(a,a,...,a)

sλ (x)det
(

tλi+j−i
)

=
n

∏
j=1

1 −
(

xjt
)a+1

1 − xjt
.

Example 5. Let n = 2 and a = 2. Then there exists 6 partitions λ of length 2 such that

λ ≤ (2, 2), namely

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2).

We have the following table.

λ det
(
tλi+j−i

)
sλ

(0, 0)

∣
∣
∣
∣

1 0

0 1

∣
∣
∣
∣
= 1 1

(1, 0)

∣
∣
∣
∣

t t2

0 1

∣
∣
∣
∣
= t x1 + x2

(1, 1)

∣
∣
∣
∣

t t2

1 t

∣
∣
∣
∣
= 0 x2x1

(2, 0)

∣
∣
∣
∣

t2 0

0 1

∣
∣
∣
∣
= t2 x1

2 + x2x1 + x2
2

(2, 1)

∣
∣
∣
∣

t2 0

1 t

∣
∣
∣
∣
= t3 (x1 + x2) x2x1

(2, 2)

∣
∣
∣
∣

t2 0

t t2

∣
∣
∣
∣
= t4 x1

2x2
2
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Note that for λi + j − i < 0 or λi + j − i > 2 the corresponding entries of the matrix
(
tλi+j−i

)

are equal to zero. Then

∑
λ≤(2,2)

sλ(x)det
(
tλi+j−i

)
= 1+ (x1+x2) t+

(

x1
2+x2x1+x2

2
)

t2+ (x1+x2) x2x1t3+x1
2x2

2t4

=
(

1 + tx1 + t2x1
2
) (

1 + tx2 + t2x2
2
)

=
1 − (x1t)3

1 − x1t
·

1 − (x2t)3

1 − x2t
.

For the specialization a1 = a2 = · · · = an = a and t1 = t2 = · · · = tn = 1 let us consider

the matrix
(
1λi+j−i

)

i,j
= c(λ, a), where

ci,j(λ, a) =

{

0, if λi + j − i < 0 or λi + j − i > a,

1, otherwise.

Then

∑
λ≤(a,a,...,a)

sλ(x)det
(
c(λ, a)

)
=

n

∏
i=1

1 − xa+1
i

1 − xi
.

Example 6. Put a = 1. Then all partitions which are less or equal to (1, 1, . . . , 1) have the form

ε(k) =

(

1, 1, . . . , 1
︸ ︷︷ ︸

n−k times

, 0, 0, . . . , 0
︸ ︷︷ ︸

k times

)

, k ≤ n.

The matrices c
(
ε(k), 1

)
are lower-triangular ones with the main diagonal (1, 1, 1, . . . , 1). Since

for all k det
(
c
(
ε(k), 1

))
= 1, we obtain

∑
λ≤(1,1,...,1)

sλ(x) =
n

∏
i=1

1 − x2
i

1 − xi
=

n

∏
i=1

(1 + xi) .

The bounded Macdonald formula gives the same result.
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Бедратюк Л.П. Новi тотожностi для многочленiв Шура // Карпатськi матем. публ. — 2025. —

Т.17, №2. — C. 706–716.

Многочлени Шура вiдiграють центральну роль у комбiнаторицi, теорiї зображень i симе-

тричних функцiях. Класичнi тотожностi, такi як формули Кошi та Лiттлвуда, встановлюють

фундаментальнi взаємозв’язки мiж цими многочленами. У цiй статтi ми пропонуємо новi уза-

гальнення цих тотожностей для обмежених i необмежених випадкiв. Зокрема, доведено, що

сiмейство розкладiв многочленiв Шура, параметризоване довiльними послiдовностями много-

членiв, задовольняє властивiсть факторизацiї, засновану на визначниках. Цей результат роз-

ширює класичнi тотожностi Кошi та надає унiфiковану структуру для обмежених аналогiв.

Крiм того, отримано новi обмеженi тотожностi для многочленiв Шура, якi уточнюють резуль-

тати Макдональда та враховують обмеження на розбиття. Цi результати включають представ-

лення у виглядi визначникiв, якi охоплюють як класичнi, так i обмеженi випадки, створюючи

основу для подальших узагальнень. Також обговорюються застосування цих результатiв до

комбiнаторних структур i теорiї симетричних функцiй.

Ключовi слова i фрази: многочлен Шура, тотожнiсть Кошi, тотожнiсть Лiтлвуда, обмежена

тотожнiсть Макдональдса.


