
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2025, 17 (2), 766–777 Карпатськi матем. публ. 2025, Т.17, №2, С.766–777

doi:10.15330/cmp.17.2.766-777

Analyzing the normalized Laplacian and Randić spectrum of
cozero-divisor graph of the ring Zn

Rehman N.U.1, Nazim1, Mir Sh.A.1, Nazim M.2

In this article, we investigate the normalized Laplacian and Randić spectrum of the cozero-

divisor graph of a finite commutative ring R with identity 1 6= 0. Let Z′(R) be the set of non-

unit and non-zero elements of ring R. The cozero-divisor graph of R, denoted by Γ′(R), is a sim-

ple undirected graph having vertex set Z′(R) and two distinct vertices u and v are joined by an

edge if and only if u /∈ vR and v /∈ uR, where αR is the ideal generated by the element α in R.

Specifically, we describe the normalized Laplacian spectrum and Randić spectrum of the graph

Γ′(Zn) for various values of n.
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1 Introduction

Consider R as a commutative ring with a non-zero identity element denoted by 1 6= 0. We

define αR as the ideal generated by an element α within R as follows αR = {αβ : β ∈ R}. We

denote the set of non-unit and non-zero elements in the ring R as Z′(R). When dealing with

a positive integer n, we employ Zn to symbolize the ring of integers under modulo n.

We use V to denote the vertex set and E to represent the edge set of the graph G , which can

be denoted as G = (V, E). The neighbourhood of a vertex v is defined as the set of vertices in

G that are connected to v, and we symbolize it as NG(v). The number of edges that connect

to a vertex v ∈ V is denoted as deg(v), which is referred to as the degree of the vertex v. A

graph G is considered s-regular if the degree of every vertex v ∈ V is equal to s. We represent

the spectrum of any graph G , including its eigenvalues and multiplicities, using the notation

σ(G). If two vertices u and v are connected in G , we express it as u ∼ v. The complete graph

with n vertices is denoted as Kn, and the complete bipartite graph with order u + v is denoted

as Ku,v. Also, it is important to mention that the references [11, 17] might have more symbols

and definitions that we have not defined here.

The adjacency matrix of a graph G , denoted by A(G) is an n × n matrices, defined as follows

A(G) = (aij) =

{

1, vivj ∈ E(G),
0, otherwise.
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The matrices L(G) = Deg(G) − A(G) and SL(G) = Deg(G) + A(G) are called the Laplacian

and signless Laplacian matrices of G , respectively. Note that Deg(G) is the diagonal matrix of

vertex degrees given by Deg(G) = diag(deg(v1), deg(v2), . . . , deg(vn)). The signless Laplacian

spectral radius of a graph G is the largest eigenvalue of SL(G). The spectrum of the Laplacian

matrix and signless Laplacian matrix are known as the Laplacian spectrum and signless Laplacian

spectrum G , respectively. For more on spectrum of graphs we refer the readers to [5,9,13,14,16,

18, 19, 21].

The normalized Laplacian matrix introduced by F.R.K. Chung [10] in 1997 to study random

walks, is denoted by NL(G) and is defined as

NL(G) = D(G)− 1
2 L(G)D(G)− 1

2 ,

where D(G)− 1
2 is the diagonal matrix whose ith diagonal entry is 1√

di
. Note that NL(G) is

real symmetric positive semidefinite matrix. We order the normalized Laplacian eigenvalues

of NL(G) as 0 = λ1(NL) ≥ λ2(NL) ≥ · · · ≥ λn(NL) = 2. In certain situations normalized

Laplacian matrix is a natural tool that works better than adjacency and Laplacian matrices.

More literature about NL(G) can be found in [8, 12] and references therein.

The Randić matrix of a graph G is defined as

RG = D(G)− 1
2 A(G)D(G)− 1

2 .

This matrix is real symmetric and all its eigenvalues are real. So, we can order its eigenvalues

as ρ1 ≥ ρ2 ≥ · · · ≥ ρn. It is easy to verify that

NL(G) = I − RG .

More about the Randić matrix can be found in [4, 6].

This research article explores a unique concept known as the cozero-divisor graph of the com-

mutative ring R. M. Afkhami and K. Khashyarmanesh [1] introduced the concept of cozero-

divisor graph. The cozero-divisor graph of the ring R is denoted by Γ′(R) and is defined

as the graph with vertex set Z′(R) and u /∈ vR and v /∈ uR if and only if two distinct ver-

tices u and v are adjacent. For a more comprehensive exploration of the cozero-divisor graph,

please consult [1–3] and the references therein. The main focus of this paper is to provide a

detailed analysis of two spectral properties of the cozero-divisor graph, namely the normalized

Laplacian spectrum and the Randić spectrum. These spectral characteristics offer insights into the

structural and algebraic properties of the graph Γ′(Zn), for different values of n.

P. Mathil et. al. [15] analysed the Laplacian spectrum of the cozero-divisor graph Γ′(Zn),

for n = pn1 qn2 , where p < q are primes and n1, n2 ∈ N. In this research article, we extend

their study by exploring both the normalized Laplacian and Randić spectra of the cozero-

divisor graph, but with a different parametrization. Specifically, we consider the case when the

number n is expressed as n = φM
1 φN

2 , with φ1 and φ2 as prime numbers satisfying φ1 < φ2,

and M, N are positive integers. It is noteworthy that the authors employed matrixcalc.org

for the computational tasks related to characteristic polynomials and approximate eigenvalues

of various matrices.
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2 Preliminaries

We start with the important definitions that will be used to support the major findings.

Definition 1. Let G be a graph with vertex set {v1, . . . , vn} and let G1, . . . ,Gn be disjoint graphs

of order n1, . . . , nn, respectively. The G-join of graphs G1, . . . ,Gn is denoted by G [G1, . . . ,Gn] and

is a graph obtained by replacing the vertex vk of G by the graph Gk and joining each vertex of

Gi to every vertex of Gj whenever the vertices vi and vj are adjacent in G .

This operation G [G1, . . . ,Gm] is also called generalized join graph operation [7] and G-join

operation. If G = K2, the K2-join is the usual join operation, namely G1∇G2. Herein we follow

later name with notation G [G1, . . . ,Gm] and call it G-join.

Let τ(n) denotes the number of positive divisors of a positive integer n. The number of

positive integers less than or equal to n that are relatively prime to n is denoted by φ(n), which

stands for Euler’s function. We refer to n as being in prime decomposition if n = q1
m1 . . . qk

mk ,

where m1, . . . , mk are positive integers and q1, . . . , qk are distinct primes.

An integer d is said to be a proper divisor of n if and only if d|n and 1 < d < n. Let δ′n be the

simple graph with vertex set {d1, . . . , dk} of n, where d1, . . . , dk are the distinct proper divisors

of n. Two vertices of graph δ′n are adjacent if and only if di ∤ dj and dj ∤ di. If n = p1
n1 . . . pr

nr is

a prime decomposition of n, then the order of the graph δ′n is given by

|V(δ′n)| =
r

∏
i=1

(ni + 1)− 2.

For 1 ≤ r ≤ k, consider the sets

Adr
= {x ∈ Zn : (x, n) = dr},

where (x, n) denotes the greatest common divisor of x and n. Also, we see that Adr
∩ Adx

= φ,

when r 6= x. Further, note that the sets Ad1
, . . . , Adk

are pairwise disjoint and partitions the

vertex set of Γ′(Zn) as

V(Γ′(Zn)) = Ad1
∪ · · · ∪ Adk

.

3 Normalized Laplacian spectrum of Γ
′(Zn)

In this section, the normalized Laplacian spectrum of Γ′(Zn) for different n is examined

with proper divisors of n as d1, . . . , dk. For 1 ≤ r ≤ k, we give the weight |Adr
| = φ( n

dr
) to

the vertex dr of the graph δ′n. Let L(δ′n) denotes the kth order weighted normalized Laplacian

matrix of δ′n, which is defined in [20, Theorem 3.1] and is given by

L(δ′n) =











1 t1,2 . . . t1,k

t2,1 1 . . . t2,k
...

...
. . .

...

tk,1 tk,2 . . . 1











, (1)

where

ti,j =















−
√

φ( n
di
)φ( n

dj
)

Mdi
Mdj

, di ∼ dj ∈ δ′n,

0, otherwise,

1 ≤ i 6= j ≤ k, Mdj
= ∑

di∈Nδ′n (dj)

φ
( n

di

)

.
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The vertex weighted normalized Laplacian matrix of δ′n is L(δ′n). It can be seen that the

matrices Y(G) and L(δ′n) are similar and hence σ(Y(G)) = σ(L(δ′n)).

Theorem 1. The normalized Laplacian spectrum of Γ′(Zn) is given by

σN L (Γ′(Zn)) =

(

t
⋃

r=1

(

1 + 0
(

σN L (Γ′(Adi
)) \ {0}

))

)

⋃

σN L (L(δ′n)),

where 1 + 0(σN L (Γ′(Adi
)) \ {0}) indicates that each element of the multiset

0(σN L (Γ′(Adi
)) \ {0})

has 1 added to it.

Proof. By using [15, Lemma 3.6], we have Γ′(Zn) = δ′n[Γ
′(Ad1

), . . . , Γ′(Adk
)]. Thus, by using

the relation σ(Y(G)) = σ(L(δ′n)) and consequence of [20, Theorem 3.1], the result holds.

By [15, Corollary 3.4], Γ′(Adr
) is isomorphic to Kφ( n

dr
) for r ∈ {1, . . . , t}. Thus, by Theorem 1,

n − φ(n)− 1 normalized Laplacian eigenvalues of Γ′(Zn) exists. Out of which n − φ(n)− 1− t

are known. The remaining t normalized Laplacian eigenvalues of Γ′(Zn) are the roots of the

characteristic polynomial of the matrix L(δ′n) given in equation (1).

Lemma 1. Let n = φ1φ2 with distinct primes φ1 and φ2. Then the normalized Laplacian

spectrum of Γ′(Zn) is given by

{

0 1 1 2

1 φ2 − 2 φ1 − 2 1

}

.

Proof. Let n = φ1φ2, where distinct primes φ1 and φ2 are the proper divisors of n.

So, by [15, Lemma 3.6], we get Γ′(Zφ1φ2
) = δ′φ1φ2

[Γ′(Aφ1
), Γ′(Aφ2

)], where δφ1φ2
= K2,

Γ′(Aφ1
) = Kφ(φ2) and Γ′(Aφ2

) = Kφ(φ1)
. Thus, by using [21, Proposition 2.1] and [15, Corol-

lary 3.4], we get

Γ′(Zφ1φ2
) = δ′φ1φ2

[Kφ(φ2), Kφ(φ1)
].

Also, we have Mφ1
= φ1 − 1 and Mφ2

= φ2 − 1. So, by the consequence of Theorem 1, the

normalized Laplacian spectrum of Γ′(Zφ1φ2
) is

σN L (Γ′(Zφ1φ2
)) =

(

(1 + 0(σN L (Γ′(Aφ1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
)) \ {0})

)

⋃

σN L (L(δ′φ1φ2
))

=

{

1 1

φ2 − 2 φ1 − 2

}

⋃

σN L (L(δ′φ1φ2
)).

Now, by using equation (1), the matrix L(δ′φ1φ2
) is given by

L(δ′φ1φ2
) =

[

1 −1

−1 1

]

,

which has the characteristic polynomial x2 − 2x and the eigenvalues are 0 and 2. Hence, we

have the result.
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Lemma 2. Let n = φ2
1φ2 with φ1 and φ2 as distinct primes. Then the normalized Laplacian

spectrum of Γ′(Zn) is given by
{

1 1 1 1

φ(φ1φ2)− 1 φ(φ2
1)− 1 φ(φ2)− 1 φ(φ1)− 1

}

and the remaining eigenvalues are the roots of the characteristic polynomial of matrix (2).

Proof. Let n = φ2
1φ2, where φ1 and φ2 are distinct primes and we see that φ1,φ2,φ2

1 and φ1φ2

are the proper divisors of n. So, δ′
φ2

1φ2
: φ1 ∼ φ2 ∼ φ2

1 ∼ φ1φ2. By [15, Lemma 3.6], we have

Γ′(Zφ2
1φ2

) = δ′
φ2

1φ2
[Γ′(Aφ1

), Γ′(Aφ2
), Γ′(Aφ2

1
), Γ′(Aφ1φ2

)],

where Γ′(Aφ1
) = Kφ(φ1φ2), Γ′(Aφ2

) = Kφ(φ2
1)

, Γ′(Aφ2
1
) = Kφ(φ2) and Γ′(Aφ1φ2

) = Kφ(φ1)
. Thus,

by using [21, Proposition 2.1] and [15, Corollary 3.4], we get

Γ′(Zφ2
1φ2

) = δ′
φ2

1φ2
[Kφ(φ1φ2), Kφ(φ2

1)
, Kφ(φ2), Kφ(φ1)

].

Also, the values of Msr are as follows

Mφ1
= φ2

1 −φ1, Mφ2
= φ1(φ2 − 1), Mφ2

1
= φ2

1 − 1 and Mφ1φ2
= φ2 − 1.

Therefore, by Theorem 1, the normalized Laplacian spectrum of Γ′(Zφ2
1φ2

) is given by

σN L (Γ′(Zφ2
1φ2

)) =
(

(1 + 0(σN L (Γ′(Aφ1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ1φ2
)) \ {0})

)

⋃

σN L (L(δ′φ1φ2
))

=

{

1 1 1 1

φ(φ1φ2)− 1 φ(φ2
1)− 1 φ(φ2)− 1 φ(φ1)− 1

}

⋃

σN L (δ′
φ2

1φ2
).

Now, by using equation (1), the matrix L(δ′
φ2

1φ2
) is given by

L(δ′
φ2

1φ2
) =

















1 −
√

φ1−1
φ1

0 0

−
√

φ1−1
φ1

1 −
√

1
φ1+1 0

0 −
√

1
φ1+1 1 −

√

1
φ1+1

0 0 −
√

1
φ1+1 1

















. (2)

Next, we calculate the normalized Laplacian eigenvalues of Γ′(Zφm
1 φ2

), which is the second

main result of this section.

Theorem 2. Let n = φm
1 φ2, where m is a positive integer and φ1,φ2 are distinct primes. Then

the normalized Laplacian spectrum of Γ′(Zφm
1 φ2

) consists of the eigenvalues

{

1 1 · · · 1 1 1 · · · 1

φ(φm−1
1 φ2)− 1 φ(φm−2

1φ2)− 1 · · · φ(φ2)− 1 φ(φm
1 )− 1 φ(φm−1

1 )− 1 · · · φ(φ1)− 1

}

and the remaining eigenvalues are the eigenvalues of matrix (3).
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Proof. Let n = φm
1 φ2, where m is a positive integer and φ1,φ2 are distinct primes. The proper

divisors of n are {φ1,φ2
1, . . . ,φm

1 ,φ2,φ1φ2,φ2
1φ2, . . . ,φm−1

1 φ2}. Now, by definition of δ′n, we

have the following adjacency relations:

φ2 ∼ φα
1 , 1 ≤ α ≤ m,

φα
1 ∼ φx−1

1 φ2, 1 ≤ α ≤ m, 1 ≤ x ≤ α,

φα
1φ2 ∼ φα+x

1 , 1 ≤ α ≤ m − 1, 1 ≤ x ≤ m − α.

By [15, Lemma 3.6], we get

Γ′(Zφm
1 φ2

) = δ′φm
1 φ2

[Γ′(Aφ1
), Γ′(Aφ2

1
), . . . , Γ′(Aφm

1
), Γ′(Aφ2

), Γ′(Aφ1φ2
), . . . , Γ′(A

φm−1
1 φ2

)].

By using [15, Corollary 3.4], we have

Γ′(Zφm
1 φ2

) = δ′φm
1 φ2

[Kφ(φm−1
1 φ2)

, Kφ(φm−2
1 φ2)

, . . . , Kφ(φ2), Kφ(φm
1 )

, Kφ(φm−1
1 ), . . . , Kφ(φ1)].

It also follows that

Mφ1
= φ(φm

1 ) = φm
1 −φm−1

1 ,

Mφ2
1
= φ(φm

1 ) + φ(φm−1
1 ) = φm

1 −φm−2
1 ,

Mφ3
1
= φ(φm

1 ) + φ(φm−1
1 ) + φ(φm−2

1 ) = φm
1 −φm−3

1 ,

...

Mφm
1
= φ(φm

1 ) + φ(φm−1
1 ) + · · ·+ φ(φ2

1) + φ(φ1) = φm−1
1 ,

Mφ2
= φ(φm−1

1 φ2) + φ(φm−2
1 φ2) + · · ·+ φ(φ1φ2) + φ(φ2) = φm−1

1 · φ(φ2),

Mφ1φ2
= φ(φm−2

1 φ2) + φ(φm−3
1 φ2) + · · ·+ φ(φ1φ2) + φ(φ2) = φm−2

1 · φ(φ2),

Mφ2
1φ2

= φ(φm−3
1 φ2) + φ(φm−4

1 φ2) + · · ·+ φ(φ1φ2) + φ(φ2) = φm−3
1 · φ(φ2),

...

M
φm−1

1 φ2
= φ(φ2).

By the consequence of Theorem 1, the normalized Laplacian spectrum of Γ′(Zφm
1 φ2

) is given

by

σN L (Γ′(Zφm
1 φ2

)) =
(

(1 + 0(σN L (Γ′(Aφ1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
1
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(Aφm
1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ1φ2
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(A
φm−1

1 φ2
)) \ {0})

)

⋃

σN L (L(δ′φ1φ2
))

=

{

1 1 · · · 1 1

φ(φm−1
1 φ2)− 1 φ(φm−2

1 φ2)− 1 · · · φ(φ2)− 1 φ(φm
1 )− 1

1 · · · 1

φ(φm−1
1 )− 1 · · · φ(φ1)− 1

}

⋃

σN L (δ′
φ2

1φ2
).
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Thus, the rest 2m normalized Laplacian eigenvalues are the latent roots of the matrix

L(δ′(φm
1 φ2

)) =







































1 0 0 · · · 0 B1 0 0 · · · 0

0 1 0 · · · 0 B2 A2 0 · · · 0

0 0 1 · · · 0 B3 A3 C1 · · · 0
...

...
...

. . .
...

...
...

... · · · ...

0 0 0 · · · 1 Bm Am Cm · · · Dm

B1 B2 B3 · · · Bm 1 0 0 · · · 0

0 A2 A3 · · · Am 0 1 0 · · · 0

0 0 C1 · · · Cm 0 0 1 · · · 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 · · · Dm 0 0 0 · · · 1







































, (3)

where

A2 =−

√

√

√

√

φ(φm−2
1 )φ(φm−1

1 )

φm−2
1 (φm

1 −φm−2
1 )

, A3 =−

√

√

√

√

φ(φm−3
1 )φ(φm−1

1 )

φm−2
1 (φm

1 −φm−3
1 )

, Am =−

√

√

√

√

φ(φm−1
1 )

φm−2
1 (φm

1 − 1)
,

B1 =−

√

√

√

√

φ(φm−1
1 )φ(φm

1 )

φm−1
1 (φm

1 −φm−1
1 )

, B2 =−

√

√

√

√

φ(φm−2
1 )φ(φm

1 )

φm−1
1 (φm

1 −φm−2
1 )

, B3 =−

√

√

√

√

φ(φm−3
1 )φ(φm

1 )

φm−1
1 (φm

1 −φm−3
1 )

,

Bm =−
√

φ(φm
1 )

φm−1
1 (φm

1 − 1)
, C1 =−

√

φ(φm−3
1 )φ(φm−2

1 )

φm−3
1 (φm

1 −φm−3
1 )

, Cm =−
√

φ(φm−2
1 )

φm−3
1 (φm

1 − 1)
,

Dm =−
√

φ(φ1)

φm
1 − 1

.

For distinct primes φ1 and φ2, our next result gives the normalized Laplacian spectrum of

Γ′(Zn), where n = φM
1 φN

2 .

Theorem 3. Let n = φM
1 φN

2 , where M, N are positive integers and φ1,φ2 distinct primes. Then

the normalized Laplacian spectrum of Γ′(Zn) contains the eigenvalues
{

1 1 · · · 1 1 1

φ(φM−1
1 φN

2 )− 1 φ(φM−2
1 φN

2 )− 1 · · · φ(φN
2 )− 1 φ(φM

1 φN−1
2 )− 1 φ(φM

1 φN−2
2 )− 1

· · · 1 1 1 · · · 1

· · · φ(φM
1 )− 1 φ(φM−1

1 φN−1
2 )− 1 φ(φM−2

1 φN−1
2 )− 1 · · · φ(φN−1

2 )− 1

1 · · · 1 · · · 1

φ(φM−1
1 φN−2

2 )− 1 · · · φ(φM−1
1 )− 1 · · · φ(φ1)− 1

}

and the remaining (M + 1)(N + 1)− 2 eigenvalues are the eigenvalues of the matrix given in

equation (1).

Proof. Let n = φM
1 φN

2 , where M, N are positive integers and φ1,φ2 distinct primes. The proper

divisors of n are
{

φ1,φ2
1, . . . ,φM

1 ,φ2,φ2
2, . . . ,φN

2 ,φ1φ2,φ2
1φ2, . . . ,φM

1 φ2,φ1φ
2
2,

φ2
1φ

2
2, . . . ,φM

1 φ2
2, . . . ,φ1φ

N
2 ,φ2

1φ
N
2 , . . . ,φM−1

1 φN
2

}

.
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By using the definition of δ′n, we have the following adjacency relations:

φu
1 ∼ φv

2, for all u, v,

φu
1 ∼ φw

1 φ
x
2 , for u > w and x > 0,

φv
2 ∼ φu

1φ
x
2 , for v > x and u > 0,

φw
1 φ

x
2 ∼ φ

y
1φ

z
2, if either w > y, x < z or x > z, w < y.

By using [15, Lemma 3.6], we get

Γ′(ZφM
1 φN

2
) = δ′

φM
1 φN

2
[Γ′(Aφ1

), Γ′(Aφ2
1
), . . . , Γ′(Aφm

1
), Γ′(Aφ2

), Γ′(Aφ1φ2
), . . . , Γ′(A

φm−1
1 φ2

)].

By using [15, Corollary 3.4] and [21, Proposition 2.1], we can write

Γ′(Aφu
1
) = K

φM−u
1 φN

2
, where 1 ≤ u ≤ M,

Γ′(Aφv
2
) = K

φM
1 φN−v

2
, where 1 ≤ v ≤ M,

Γ′(Aφu
1φ

v
2
) = K

φM−u
1 φN−v

2
.

Therefore, by Theorem 1, the normalized Laplacian spectrum of Γ′(ZφM
1 φN

2
) is

σN L (Γ′(ZφM
1 φN

2
)) =

(

(1 + 0(σN L (Γ′(Aφ1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
1
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(Aφm
1
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ2
2
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(AφN
2
)) \ {0})

)

⋃

(

(1 + 0(σN L (Γ′(Aφ1φ2
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(AφM
1 φ2

)) \ {0})
)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(Aφ1φ
N
2
)) \ {0})

)

⋃

· · ·
⋃

(

(1 + 0(σN L (Γ′(A
φM−1

1 φN
2
)) \ {0})

)

⋃

σN L (L(δ′
φM

1 φN
2
))

=

{

1 1 · · · 1 1

φ(φM−1
1 φN

2 )− 1 φ(φM−2
1 φN

2 )− 1 · · · φ(φN
2 )− 1 φ(φM

1 φN−1
2 )− 1

1 · · · 1 1 1

φ(φM
1 φN−2

2 )− 1 · · · φ(φM
1 )− 1 φ(φM−1

1 φN−1
2 )− 1 φ(φM−2

1 φN−1
2 )− 1

· · · 1 1 · · · 1

· · · φ(φN−1
2 )− 1 φ(φM−1

1 φN−2
2 )− 1 · · · φ(φM−1

1 )− 1

· · · 1

· · · φ(φ1)− 1

}

⋃

σN L (δ′
φ2

1φ2
).

The remaining (M + 1)(N + 1)− 2 eigenvalues are the eigenvalues of the matrix L(δ′
φM

1 φN
2
)

given in equation (1).

Example 1. The normalized Laplacian spectrum of cozero-divisor graph of Z30 is

{

1 −0.017 0.577 0.976 1.066 1.617 1.780

15 1 1 1 1 1 1

}

.
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Proof. Let n = 30. Then the proper divisors of n are 2, 3, 5, 6, 10 and 15. So, we obtain

δ′30 : 3 ∼ 5 ∼ 2 ∼ 3 ∼ 10 ∼ 6 ∼ 15 ∼ 2, 5 ∼ 6, 10 ∼ 15. Now, increasing the divisor

sequence to order the vertices and using [15, Lemma 3.6], we have

Γ′(Z30) = δ′30[Γ
′(A2), Γ′(A3), Γ′(A5), Γ′(A6), Γ′(A10), Γ′(A15)].

By [15, Corollary 3.4], we have

Γ′(Z30) = δ′30[K8, K4, K2, K4, K2, K1].

The values of Msr are given by

M2 = 7, M3 = 12, M5 = 16, M6 = 5, M10 = 9, M15 = 14.

Thus, by Theorem 1, the normalized Laplacian spectrum of Γ′(Z30) consists of the eigen-

value 1 with multiplicity 15 together with the eigenvalues of the matrix L(δ′30) given below

L(δ′30) =





























1 −
√

8
21 −

√

1
7 0 0 −2

7

−
√

8
21 1 −

√

1
24 0 −

√

2
27 0

−
√

1
7 −

√

1
24 1 −

√

1
10 0 0

0 0 −
√

1
10 1 −2

3

√

2
5 −

√

2
35

0 −
√

2
27 0 −2

3

√

2
5 1 −1

3

√

1
7

−2
7 0 0 −

√

2
35 −1

3

√

1
7 1





























.

The approximated eigenvalues of the above matrix L(δ′30) are

{−0.017, 0.577, 0.976, 1.066, 1.617, 1.780}.

4 Randic̀ spectrum of Γ
′(Zn)

In this section, the Randic̀ spectrum of Γ′(Zn) for different n is examined with proper

divisors of n as d1, . . . , dk. For 1 ≤ r ≤ k, we give the weight |Adr
| = φ( n

dr
) to the vertex dr of

the graph δ′n. Let L(δ′n) denotes the kth order weighted Randic̀ matrix of δ′n, which is defined

in [4, Theorem 2] and is given by

L(δ′n) =











0 l1,2 · · · l1,k

l2,1 0 · · · l2,k
...

...
. . .

...

lk,1 lk,2 · · · 0











, (4)

where

li,j =















√

φ( n
di
)φ( n

dj
)

Mdi
Mdj

, di ∼ dj ∈ δ′n,

0, otherwise,

1 ≤ i 6= j ≤ k, Mdj
= ∑

di∈Nδ′n (dj)

φ
( n

di

)

.
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Remark 1. The normalized Laplacian matrix and the Randić matrix are connected by the rela-

tion

NL(G) = I − RG , (5)

where NL(G) is the normalized Laplacian matrix, RG is the Randić matrix and I is the identity

matrix of order n. It is clear from the relation (5) that the spectrum of RG can be read from the

spectrum of NL(G) and vice-versa.

The proofs for the subsequent results are straightforwardly derived from relation (5). Con-

sequently, these results hold trivially based on the provided Remark 1.

Lemma 3. Let n = φ1φ2 with distinct primes φ1 and φ2. Then the Randić spectrum of Γ′(Zn)

is given by
{

0 1 −1

φ1 +φ2 − 4 1 1

}

.

Lemma 4. Let n = φ2
1φ2 with φ1 and φ2 as distinct primes. Then the Randić spectrum of

Γ′(Zn) is given by
{

0

φ(φ1φ2) + φ(φ2
1) + φ(φ2) + φ(φ1)− 4

}

and the remaining eigenvalues are the roots of the characteristic polynomial of matrix (4).

Theorem 4. Let n = φm
1 φ2, where m is a positive integer and φ1,φ2 are distinct primes. Then

the Randić spectrum of Γ′(Zφm
1 φ2

) consists of the eigenvalues

{

0 0 · · · 0 0 0 · · · 0

φ(φm−1
1 φ2)− 1 φ(φm−2

1φ2)− 1 · · · φ(φ2)− 1 φ(φm
1 )− 1 φ(φm−1

1 )− 1 · · · φ(φ1)− 1

}

and the remaining eigenvalues are the eigenvalues of matrix (4).

Theorem 5. If n = φM
1 φN

2 , where M, N are positive integers and φ1,φ2 distinct primes. Then

the Randić spectrum of Γ′(Zn) contains the eigenvalues

{

0 0 · · · 0 0 0

φ(φM−1
1 φN

2 )− 1 φ(φM−2
1 φN

2 )− 1 · · · φ(φN
2 )− 1 φ(φM

1 φN−1
2 )− 1 φ(φM

1 φN−2
2 )− 1

· · · 0 0 0 · · · 1

· · · φ(φM
1 )− 1 φ(φM−1

1 φN−1
2 )− 1 φ(φM−2

1 φN−1
2 )− 1 · · · φ(φN−1

2 )− 1

0 · · · 0 · · · 0

φ(φM−1
1 φN−2

2 )− 1 · · · φ(φM−1
1 )− 1 · · · φ(φ1)− 1

}

and the remaining (M + 1)(N + 1)− 2 eigenvalues are the eigenvalues of the matrix given in

equation (4).

Example 2. The Randić spectrum of cozero-divisor graph of Z30 is

{

0 −0.780 −0.617 −0.066 0.024 0.423 1.017

15 1 1 1 1 1 1

}

.
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5 Conclusion

In this article, we extended the study of P. Mathil et. al. [15] on the Laplacian spec-

trum of the cozero-divisor graph Γ′(Zn), where n = pn1 qn2 with p < q being primes and

n1, n2 ∈ N. Our work focused on exploring both the normalized Laplacian and Randić spec-

trum of the cozero-divisor graph with a different parametrization. Specifically, we considered

n expressed as n = φM
1 φN

2 , with φ1 and φ2 being prime numbers such that φ1 < φ2, and

M, N as positive integers. This new parametrization allowed us to derive significant insights

into the spectral properties of the cozero-divisor graph, broadening the understanding and

applicability of spectral graph theory in algebraic structures. Our findings contribute to the

ongoing research in this field and open up new avenues for further investigation.

One may generalize these results to extend the study of cozero-divisor graphs to find the

normalized Laplacian and Randić spectrum for the ring Zn, where n is a product of more

than two distinct primes, i.e. n = φM
1 φ2φ3, n = φM

1 φN
2 φ3, n = φM

1 φN
2 φO

3 for positive integers

M, N, O and φ1,φ2,φ3 are distinct primes.

Future research could focus on further exploring the spectral properties of the cozero-

divisor graph. Specifically, the following questions may be of interest.

Question 1. What are the bounds for the smallest and largest eigenvalues of the normalized

Laplacian and Randić matrices of the cozero-divisor graph for n = φM
1 φN

2 ?

Question 2. How does the spectral radius of the cozero-divisor graph vary with different

parametrizations of n = φM
1 φN

2 ?
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Рехман Н., Назiм, Мiр Ш.А., Назiм М. Аналiз нормалiзованого лапласiана та спектра Рандича

конуль-дiльникового графа кiльця Zn // Карпатськi матем. публ. — 2025. — Т.17, №2. — C. 766–

777.

У цiй статтi дослiджується нормалiзований лапласiан та спектр Рандича конуль-дiльнико-

вого графа скiнченного комутативного кiльця R з одиницею 1 6= 0. Нехай Z′(R) позначає мно-

жину неунiтарних i ненульових елементiв кiльця R. Конуль-дiльниковий граф кiльця R, який

позначається через Γ′(R), є простим неорiєнтованим графом iз множиною вершин Z′(R), у

якому двi рiзнi вершини u та v з’єднанi ребром тодi i лише тодi, коли u /∈ vR та v /∈ uR, де

αR− iдеал, породжений елементом α в кiльцi R. Зокрема, описано нормалiзований лапласiан-

спектр та спектр Рандича графа Γ′(Zn) для рiзних значень n.

Ключовi слова i фрази: конуль-дiльниковий граф, нормалiзований лапласiан-спектр, спектр

Рандича, кiльце цiлих чисел за модулем n.


