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Analyzing the normalized Laplacian and Randi¢ spectrum of
cozero-divisor graph of the ring Z,

Rehman N.U.}, Nazim!, Mir Sh.A.l, Nazim M.2

In this article, we investigate the normalized Laplacian and Randi¢ spectrum of the cozero-
divisor graph of a finite commutative ring R with identity 1 # 0. Let Z'(R) be the set of non-
unit and non-zero elements of ring . The cozero-divisor graph of R, denoted by I(R), is a sim-
ple undirected graph having vertex set Z’'(R) and two distinct vertices u and v are joined by an
edge if and only if u ¢ v9 and v € u, where afi is the ideal generated by the element « in R.
Specifically, we describe the normalized Laplacian spectrum and Randi¢ spectrum of the graph
I'(Z,) for various values of .

Key words and phrases: cozero-divisor graph, normalized Laplacian spectrum, Randi¢ spectrum,
ring of integer modulo 7.
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1 Introduction

Consider R as a commutative ring with a non-zero identity element denoted by 1 # 0. We
define afR as the ideal generated by an element & within R as follows aR = {af : B € R}. We
denote the set of non-unit and non-zero elements in the ring R as Z'(R). When dealing with
a positive integer 1, we employ Z, to symbolize the ring of integers under modulo 7.

We use V to denote the vertex set and E to represent the edge set of the graph G, which can
be denoted as G = (V,E). The neighbourhood of a vertex v is defined as the set of vertices in
G that are connected to v, and we symbolize it as Ng(v). The number of edges that connect
to a vertex v € V is denoted as deg(v), which is referred to as the degree of the vertex v. A
graph § is considered s-reqular if the degree of every vertex v € V is equal to s. We represent
the spectrum of any graph G, including its eigenvalues and multiplicities, using the notation
o(G). If two vertices u and v are connected in G, we express it as u ~ v. The complete graph
with n vertices is denoted as K;;, and the complete bipartite graph with order u + v is denoted
as Ky ». Also, it is important to mention that the references [11,17] might have more symbols
and definitions that we have not defined here.

The adjacency matrix of a graph G, denoted by A(G) is an n x n matrices, defined as follows

1, 0iv; € E(Q),

0, otherwise.

A(G) = (a;) = {
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The matrices L(G) = Deg(G) — A(G) and SL(G) = Deg(G) + A(G) are called the Laplacian
and signless Laplacian matrices of G, respectively. Note that Deg(G) is the diagonal matrix of
vertex degrees given by Deg(G) = diag(deg(vy),deg(vz),...,deg(vy)). The signless Laplacian
spectral radius of a graph G is the largest eigenvalue of SL(G). The spectrum of the Laplacian
matrix and signless Laplacian matrix are known as the Laplacian spectrum and signless Laplacian
spectrum G, respectively. For more on spectrum of graphs we refer the readers to [5,9,13,14, 16,
18,19, 21].

The normalized Laplacian matrix introduced by F.R. K. Chung [10] in 1997 to study random
walks, is denoted by NL(G) and is defined as

where D(G )_% is the diagonal matrix whose ith diagonal entry is ﬁ. Note that NL(G) is
real symmetric positive semidefinite matrix. We order the normalized ’Laplacian eigenvalues
of NL(G) as 0 = A{(NL) > Ap(NL) > --- > A,(NL) = 2. In certain situations normalized
Laplacian matrix is a natural tool that works better than adjacency and Laplacian matrices.
More literature about NL(G) can be found in [8,12] and references therein.

The Randi¢ matrix of a graph G is defined as

This matrix is real symmetric and all its eigenvalues are real. So, we can order its eigenvalues
aspp > p2 > -+ > py. Itis easy to verify that

NL(G) = I —Rg.

More about the Randi¢ matrix can be found in [4, 6].

This research article explores a unique concept known as the cozero-divisor graph of the com-
mutative ring R. M. Afkhami and K. Khashyarmanesh [1] introduced the concept of cozero-
divisor graph. The cozero-divisor graph of the ring R is denoted by I'"(9R) and is defined
as the graph with vertex set Z'(R) and u ¢ vR and v ¢ ufR if and only if two distinct ver-
tices u and v are adjacent. For a more comprehensive exploration of the cozero-divisor graph,
please consult [1-3] and the references therein. The main focus of this paper is to provide a
detailed analysis of two spectral properties of the cozero-divisor graph, namely the normalized
Laplacian spectrum and the Randi¢ spectrum. These spectral characteristics offer insights into the
structural and algebraic properties of the graph I (Z,,), for different values of .

P. Mathil et. al. [15] analysed the Laplacian spectrum of the cozero-divisor graph I'(Z,),
for n = p"g"2, where p < g are primes and n;,n; € IN. In this research article, we extend
their study by exploring both the normalized Laplacian and Randi¢ spectra of the cozero-
divisor graph, but with a different parametrization. Specifically, we consider the case when the
number 7 is expressed as n = d){\/I d)é\[ , with ¢ and ¢, as prime numbers satisfying ¢1 < ¢o,
and M, N are positive integers. It is noteworthy that the authors employed matrixcalc.org
for the computational tasks related to characteristic polynomials and approximate eigenvalues
of various matrices.
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2 Preliminaries
We start with the important definitions that will be used to support the major findings.

Definition 1. Let G be a graph with vertex set {vy, ..., v, } and let Gy, . .., G, be disjoint graphs
oforderny, ..., ny, respectively. The G-join of graphs Gy, . . ., G, is denoted by GG, . .., G| and
is a graph obtained by replacing the vertex vy of G by the graph Gy and joining each vertex of
gi to every vertex of G; whenever the vertices v; and v; are adjacent in G.

This operation G[Gy, ..., Gn| is also called generalized join graph operation [7] and G-join
operation. If G = K3, the Kj-join is the usual join operation, namely G;VG,. Herein we follow
later name with notation G[Gy, . . ., G| and call it G-join.

Let 7(n) denotes the number of positive divisors of a positive integer n. The number of
positive integers less than or equal to n that are relatively prime to n is denoted by ¢(n), which
stands for Euler’s function. We refer to n as being in prime decomposition if n = ;"™ ... g™,
where my, ..., my are positive integers and ¢, . . ., g are distinct primes.

An integer d is said to be a proper divisor of n if and only if d|n and 1 < d < n. Let J;, be the
simple graph with vertex set {dy, ..., d;} of n, where dy, .. ., dy are the distinct proper divisors
of n. Two vertices of graph ¢, are adjacent if and only if d; { d; and d; { d;. If n = py™ ... p,/ is
a prime decomposition of 1, then the order of the graph ¢}, is given by

r

V) =TT m+1) -2

i=1
For 1 < r <k, consider the sets

Ay, ={xe€Z,: (x,n)=d,},

where (x, 1) denotes the greatest common divisor of x and n. Also, we see that A; N A, = ¢,
when r # x. Further, note that the sets Ay, ..., Ay, are pairwise disjoint and partitions the
vertex set of I'(Z,) as

V(F’(Zn)) = Ad1 U---u Adk'

3 Normalized Laplacian spectrum of I’ (Z,,)

In this section, the normalized Laplacian spectrum of I'(Z,) for different n is examined
with proper divisors of 1 as dy, ..., dy. For1 < r < k, we give the weight [A; [ = ¢(7) to
the vertex d, of the graph ¢/,. Let IL(5/,) denotes the k' order weighted normalized Laplacian
matrix of 4;,, which is defined in [20, Theorem 3.1] and is given by

1ty ... ty
IL(6;) = 21 1 2kl (1)
br tro ... 1
where
(o@D D d s o )
tij= Mg Mg, 7 == 1<i#j<k, My, = ) 4)<d_1>

0, otherwise, d;€Ny, (d;)
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The vertex weighted normalized Laplacian matrix of §/, is IL(4],). It can be seen that the
matrices Y(G) and IL(4},) are similar and hence (Y(G)) = o (IL(8},)).

Theorem 1. The normalized Laplacian spectrum of I'(Z,) is given by
t
01 2(U(Z)) = ( U (1+0(0ur2(T'(44)) \ {0}))) Uor 2 (L)),
r=1

where1+0(0 y #(I'(Ag,)) \ {0}) indicates that each element of the multiset

0(crz(T'(Ag)) \ {0})
has 1 added to it.

Proof. By using [15, Lemma 3.6], we have I"(Z,) = 0,[I"(Aq4,),...,T"(Ag)]. Thus, by using
the relation c(Y(G)) = ¢(IL(4},)) and consequence of [20, Theorem 3.1], the result holds. [

By [15, Corollary 3.4], T’(Ay, ) is isomorphic to K¢( ) forr € {1,...,t}. Thus, by Theorem 1,

n — ¢(n) — 1 normalized Laplacian eigenvalues of I (Z,,) exists. Out of whichn — ¢(n) —1—¢
are known. The remaining f normalized Laplacian eigenvalues of I'(Z,) are the roots of the
characteristic polynomial of the matrix IL(J},) given in equation (1).

Lemma 1. Let n = ¢ with distinct primes ¢ and ¢,. Then the normalized Laplacian
spectrum of T'(Z,,) is given by

0 1 1 2

1T -2 ¢1-2 1)

Proof. Let n = &1¢,, where distinct primes ¢; and ¢, are the proper divisors of n.
So, by [15,_Lemma 3.6], we get 1”_’(Z¢1¢2) = 4,11 (Ag), T'(Ag,)], where 6,9, = Ko,
I'(Ag,) = Kp(g,) and I'(Ag,) = Ky(g,)- Thus, by using [21, Proposition 2.1] and [15, Corol-
lary 3.4], we get

T(Z.4102) = 3105 [Kp() Kp(an)-
Also, we have My, = ¢1 —1and My, = ¢ — 1. So, by the consequence of Theorem 1, the
normalized Laplacian spectrum of I'(Zg, 4, ) is

0y 2 (T (Zgyp)) =((1+ 000 2(T'(4g,)) \ {O}))
U (140001 2(I" (46,)) \{OD) ) U 0r 2 (L (8 )

— 1 1 /
~{ ola o2 U (L)
Now, by using equation (1), the matrix IL(Jy, 4,) is given by
1 -1
]L((Sébﬂbz) - {_1 1 ] ¢

which has the characteristic polynomial x> — 2x and the eigenvalues are 0 and 2. Hence, we
have the result. O
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Lemma 2. Letn = d)%d)z with ¢ and ¢, as distinct primes. Then the normalized Laplacian
spectrum of T'(Z,,) is given by

{ 1 1 1 1 }
P(b1d2) =1 P(d7) =1 P(d2) —1 P(d1) —1

and the remaining eigenvalues are the roots of the characteristic polynomial of matrix (2).

Proof. Letn = (1) 2, where ¢ and ¢, are distinct primes and we see that ¢, ¢o, d)% and ¢1¢»
are the proper divisors of 7. So, tb1 ~ Py~ d)% ~ $p1¢d2. By [15, Lemma 3.6], we have

T(Z 424,) = 0424, [T (Ag,) T (Agy), T'(Ag2), T (Agy2)]s

where I"(Ag, ) = Ky (¢,,), I'(Ag) = Ky (g2), T'(Ag2) = Kp(gp) and T’ (Ag,g,) = Ky(gy,)- Thus,
by using [21, Proposition 2.1] and [15, Corollary 3.4], we get

I'(Zg24,) = 420, Kp(102) Koz Koptan) Koo

Also, the values of M;, are as follows
o =0T — b1, My, = b1(d2—1), Mg =0¢7—1 and Mg, =2~ 1
Therefore, by Theorem 1, the normalized Laplacian spectrum of I (Z2,,,) is given by
0y 2(T(Z2,)) =((1+0(0r 2(T"(4,)) \ {0}))
U ((1+0(r 2T (Ag: )\ {0)) U (1 +0(er 2(I(Ag2)) \ {0}))
U (140001 2 (T (Ag,6:) \ 01) ) U 02 (L (G )

1 1 1 1 /
:{ P(d1d2) —1 ¢(d2)—1 ¢(d2) =1 P(d1) —1 } Uer el d)%dnz)'

Now, by using equation (1), the matrix IL(¢’ ,, ) is given by

/
P2y
_ = _
1 (1])1 0 0
—y/ & 1 —/ 52 0
/ _ b1 ¢1+1
L( d)%d)z) - 0 _ /1 1 _ /1| @)
b1+1 d1+1
1
L 0 0 SV e 1 i

0

Next, we calculate the normalized Laplacian eigenvalues of I’ (Zd’T ,), Which is the second
main result of this section.

Theorem 2. Letn = ¢7'$p, where m is a positive integer and ¢1, ¢ are distinct primes. Then
the normalized Laplacian spectrum of T’ (Zypg,) consists of the eigenvalues

{ 1 1 1 1 1 1 }
PO p2) =1 p(d™2d2) =1 - p(b2) =1 P(dF) —1 (7 =1 - (1) —1

and the remaining eigenvalues are the eigenvalues of matrix (3).
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Proof. Let n = ¢1'do, where m is a positive integer and ¢1, ¢, are distinct primes. The proper
divisors of n are {1, ¢3,.. ., 1, b2, b1, d)%d)z, e, d)T_ltbz}. Now, by definition of 4], we
have the following adjacency relations:

d)ZNd)liCr 1§0€§m,
O ~ T My, 1<a<m 1<x<ua,
Pbr ~ P, 1<a<m-—1,1<x<m-—ua.

By [15, Lemma 3.6], we get
F’(Zw%) - ‘Sbed)z [T’(A¢1),F’(A¢%),...,F’(Ad);ln),T’(Ad)z),r’(Ad)ld)z), .. .,F’(Ad)Tfld)z)].

By using [15, Corollary 3.4], we have

!/ V) 574 b N N
F (ZQ)Td)z) - (Sd)Td)z [qu(d)}lw—ld)z), K¢(¢T72¢2)’ e ,K(P(d)z),K(P(d)T),K(P(d){n—l), eee ’K‘P(d)l)]

It also follows that

Mg, = (o) = o' — 7",
Mgz = ¢(&7) + p(o' 1) = b — $]' 7,
Mgz = (&) + (&7 1) + (o' %) = o' — b7,
My = $(dF) + ¢(d]' ) + - + o(dF) + d(d1) = b,
Mg, = ¢(OF " b2) + p(&] 2ba) + -+ + d(d152) + p(d2) = &1 - p(d2),
Mg, = (49'1" 2P2) + p( > b2) + +<P(d>1d>z) P(P2) = &2 p(d2),
M (D7 3d2) + (b Hb2) + -+ - + p(P1B2) + p(d2) = &2 - p(b2),

P2y = P

Md)?l—ld)z - (P(d)z)

By the consequence of Theorem 1, the normalized Laplacian spectrum of I” (Z gy, ) is given
by
0 2 (U (Zapa,)) =((1+0(0r 2T (A9))) \ {0}))
U (1400 2(T" (42)) \{0D) U+ U (14 0o 2 (T (Agp)) \ {0})
U (14000 2T (46,)) \ {01)) U (1 + (00 2 (T"(Agy0)) \ {O1))
U U (14000 2T (Agn14,)) \{0D)) U or 2 (L(8,,))
B { 1 1 1 1
L@@ ) =1 p(& o) =1 - p(d2) =1 P(of) — 1

1 . /
o1 gton) 1 J U )
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Thus, the rest 2m normalized Laplacian eigenvalues are the latent roots of the matrix

[1 0 0 0 By O 0 0]
0 1 0 0 B, Ay O 0
0 0 1 0 By Az ( 0
, 0 0 0 1 Bu Aw Cu Dy,
L(& (gp4,)) = B, B, B B, 1 0 0 0 (3)
0 A, A A, 0 1 0 0
0 0 ¢ Cn 0 0 1 0
000 0 - Dy 0 0 0 - 1
where
G YR I JC o T 4>
— o) T — I )’
(1) _ ¢<¢T‘2>¢<¢’” d>1 )
¢m1¢m o1y e (e ¢m1¢1 -3
- V P(OT ) P(dpr \/ i
m— / Cl_ -3 /
¢1 I3 (1 — I~
_ |9
m m—l

0

For distinct primes ¢ and ¢, our next result gives the normalized Laplacian spectrum of
I'(Zy,), where n = ¢MopY.

Theorem 3. Let n = d){w d)é\[ , where M, N are positive integers and ¢1, ¢ distinct primes. Then
the normalized Laplacian spectrum of T'(Z,) contains the eigenvalues

1 1 1 1 1
{qb(wlw)—l P(OM2ON) =1 - p(PY) =1 p(dMPY ) -1 p(pMpY2) —
1 1 1 1
P(OM) =1 ¢(dMTTPY ) —1 p(dM2PY ) =1 - p(d) ) -

1 1 1
POT I hy ) =1 e p(e T =1 () — 1 }
and the remaining (M +1)(N + 1)
equation (1).

— 2 eigenvalues are the eigenvalues of the matrix given in

Proof. Letn = d){\/I cbé\[ , where M, N are positive integers and ¢, ¢ distinct primes. The proper
divisors of n are

{b1,01,..., oMo, P103,

1Y, p30Y, ..., dM 1N

oY, P1d2, G, ...,
7 d)glwd)%’ 4

oM, o, b3, ...,
13, . ..
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By using the definition of §;,, we have the following adjacency relations:

¢} ~ ¢y, forallu,v,
oY ~ oY d3, foru > wand x >0,
5 ~ i3, forv>xandu >0,
OVPF ~ d]d3, ifeitherw >y,x <zorx>zw <y.

By using [15, Lemma 3.6], we get

T'(Zgprgy) = g [T (Ao T (Aga) o T (Agp) T (Aga) T Ay - T (Agos, )]

By using [15, Corollary 3.4] and [21, Proposition 2.1], we can write

I"(Agn) =K wherel <u < M,
o1
I'(Agg) =K

T'(Agrgg) = K

oo

MY/ where1l < v < M,
1

oY pN

Therefore, by Theorem 1, the normalized Laplacian spectrum of I (Z oM 2N> is

0 2 (U (Zggrgy)) =((1+0(0r2(T'(46,)) \{01)) U (1 +0(r (T (442)) \ {01) )

U+ U (14000 2 (T (Agp)) \ {01) ) U (1 +0(0r 2 (T (Ag,)) \ {01) )

U (1 +0@r 2T (AN \ {01 ) U+ U (1 + 002 (T'(Agp)) \ {0}))
(
(

(
U (14 0(r 2 (T (Ag0:) \ {01 ) U+ U (14 00 2(T (Agyrg,)) \ {OD)
U U (400 2T (A, )\ 01)
UU ((1+0(0’JV$(F/(A¢4\A*1¢N {0} )UO’JVX ¢>M¢>é\]))
B 1 1 1 1
_{ P(OYTIPY) =1 p(dYPPY) 1 oo p(dY) -1 (oY) -

1 1 1 1
POYP ) =1 o p(@) =1 @@ 0T — 1 (e PRy — 1
1 1 1

oY) =1 (e 1Py ) =1 - (b)) -1

1 /

The remaining (M + 1)(N + 1) — 2 eigenvalues are the eigenvalues of the matrix ]L((S:b M d)N)
1 2
given in equation (1). O

Example 1. The normalized Laplacian spectrum of cozero-divisor graph of Z3 is

1 -0.017 0.577 0976 1.066 1.617 1.780
15 1 1 1 1 1 1 '
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Proof. Let n = 30. Then the proper divisors of n are 2, 3, 5, 6, 10 and 15. So, we obtain
(530 :3~5~2~3~10~6~15~ 25~ 6,10 ~ 15. Now, increasing the divisor
sequence to order the vertices and using [15, Lemma 3.6], we have

I'(Z30) = 630[T"(A2),T"(A3),T'(As), T'(Ag), T'(A10), T' (A1s)].

By [15, Corollary 3.4], we have

The values of M;, are given by
My =7, M3 =12, M5 =16, Mg =5, M1y =9, M;5 = 14.

Thus, by Theorem 1, the normalized Laplacian spectrum of I'(Z3y) consists of the eigen-
value 1 with multiplicity 15 together with the eigenvalues of the matrix IL(d%,) given below

_\/g_\/; _
_\/gl_
Z 0
o 0 -

1IN

WIN

— OQ‘O
Pt

—_ o (@n]
_
|
W=
—_ S o o
S

|
o O Q‘ —_
ST ([

_2
3

NN
W=
Ni—

The approximated eigenvalues of the above matrix IL(8%,) are

{-0.017,0.577,0.976,1.066,1.617,1.780}.

4 Randit spectrum of I’ (Z,,)

In this section, the Randi¢ spectrum of I'(Z,) for different n is examined with proper
divisors of n as dy, ..., dx. For1 < r <k, we give the weight [A; | = 4)(%) to the vertex d, of
the graph ¢/,. Let IL(J/,) denotes the k™" order weighted Randit matrix of ¢/, which is defined
in [4, Theorem 2] and is given by

0 hp -+ hg
() = 12.,1 ’ lz.’k , (4)
ki Ik -+ O
where
W di~d; e .. n
Lj= MMy TGS <igi<k, Mg= Y 4)(2)'

0, otherwise, di€Ny, (d;)
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Remark 1. The normalized Laplacian matrix and the Randi¢ matrix are connected by the rela-
tion
NL(G) =1—Rg, (5)

where NL(G) is the normalized Laplacian matrix, Rg is the Randi¢ matrix and I is the identity
matrix of order n. It is clear from the relation (5) that the spectrum of Rg can be read from the
spectrum of NL(G) and vice-versa.

The proofs for the subsequent results are straightforwardly derived from relation (5). Con-
sequently, these results hold trivially based on the provided Remark 1.

Lemma 3. Letn = ¢1¢, with distinct primes ¢1 and ¢;. Then the Randié spectrum of T (Z.,,)

is given by
0 1 -1
{ ¢1+dPp—4 1 1 }

Lemma 4. Let n = d)%d)z with ¢1 and ¢, as distinct primes. Then the Randié¢ spectrum of
I'(Zy) is given by

0
{ P(P1d2) +P(O]) + p(b2) + p(d1) — 4 }
and the remaining eigenvalues are the roots of the characteristic polynomial of matrix (4).

Theorem 4. Letn = ¢7'$p, where m is a positive integer and ¢1, ¢ are distinct primes. Then
the Randi¢ spectrum of I'"(Zyny,) consists of the eigenvalues

{ 0 0 0 0 0 0 }
POTIb2) =1 PO H1b2) =1 - P(d2) =1 @(&Y) =1 @@ =1 - @) -1
and the remaining eigenvalues are the eigenvalues of matrix (4).

Theorem 5. Ifn = d){\/I cbé\[ , where M, N are positive integers and ¢1, ¢, distinct primes. Then
the Randic¢ spectrum of I'(Z,) contains the eigenvalues

0 0 0 0 0
{4)(4)94—1(1)5)_1 Pe7E0Y) =1 - (@) —1 @(6110) ) —1 94y ) — 1

0 0 0 1
Po1) =1 ¢(d1" by ) —1 p(e Pby ) —1 o p(9) )~ 1

0 . 0 . 0
POY I =1 e p(@f T =1 e p(br) — 1 }
and the remaining (M + 1)(N + 1) — 2 eigenvalues are the eigenvalues of the matrix given in
equation (4).

Example 2. The Randi¢ spectrum of cozero-divisor graph of Zj is

0 —-0.780 —-0.617 —0.066 0.024 0.423 1.017
15 1 1 1 1 1 1 '
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5 Conclusion

In this article, we extended the study of P. Mathil et. al. [15] on the Laplacian spec-
trum of the cozero-divisor graph I'(Z,), where n = p™g" with p < g being primes and
n1,n2 € IN. Our work focused on exploring both the normalized Laplacian and Randi¢ spec-
trum of the cozero-divisor graph with a different parametrization. Specifically, we considered
n expressed as n = d){wd)é\’ , with ¢; and ¢ being prime numbers such that ¢; < ¢, and
M, N as positive integers. This new parametrization allowed us to derive significant insights
into the spectral properties of the cozero-divisor graph, broadening the understanding and
applicability of spectral graph theory in algebraic structures. Our findings contribute to the
ongoing research in this field and open up new avenues for further investigation.

One may generalize these results to extend the study of cozero-divisor graphs to find the
normalized Laplacian and Randi¢ spectrum for the ring Z,, where n is a product of more
than two distinct primes, i.e. n = d){wd)zd)g, n= d){wd)é\’ b3, n = d){wcbé\[ d)g) for positive integers
M, N, O and ¢4, ¢, $3 are distinct primes.

Future research could focus on further exploring the spectral properties of the cozero-
divisor graph. Specifically, the following questions may be of interest.

Question 1. What are the bounds for the smallest and largest eigenvalues of the normalized
Laplacian and Randi¢ matrices of the cozero-divisor graph forn = ¢$MpN ?

Question 2. How does the spectral radius of the cozero-divisor graph vary with different
parametrizations of n = d){\/fd)é\] ?
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Y 11i11 CTaTTi AOCAIAXYETHCSI HOpMaAi30BaHMIL AallAaciaH Ta crieKTp PaHAMYA KOHYAb-AIABHMKO-
BOro rpadpa CKiHIEHHOTO KOMyTaTUBHOTO KiabLst R 3 oamamuero 1 # 0. Hexant Z' (R) mosznauae MHO-
KMHY HEYHITapHIX i HEHYABOBMX €AeMEHTIB KiAbIIT R. KOHyAb-AIABHIMKOBIMIL rpadp KinbLsI IR, KA
nosHavaeTbest yepes [ (R), e mpoctum HeopieHTOBaHMM rpadoM i3 MHOXMHOW BepumH Z'(R), y
SIKOMY ABi pi3Hi BepIIMHM 1 Ta v 3'€AHaHI peOpOM TOAI i Amile TOAl, Ko u ¢ vAR Ta v ¢ ufR, ae
&R — ipean, IOPOAXKEHMII eAeMeHTOM & B KiAbIi JR. 30KpeMa, ormicaHO HOpMaAi30BaHMIA AallAaciaH-
CreKTp Ta crekTp Paraydaa rpadpa I'(Z,,) Arst pisHyX 3HaUeHS 1.

Kntouosi cnosa i ppasu: KOHYAb-AIABHMKOBMI Tpadp, HOpMaAi30BaHMIL AaIIAaciaH-CIIEKTP, CIIEKTP
Pananya, KiAblle HIAMX UMCEA 32 MOAYAEM 1.



