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Inverse free boundary problem for degenerate parabolic
equation

Huzyk N.M.}, Brodyak O.Ya.?, Pukach P.Ya.2, Vovk M.I.2

The coefficient inverse problem for a degenerate parabolic equation is studied in a free boun-
dary domain. The degeneration of the equation is caused by time dependent function at the higher
order derivative of unknown function. It is assumed that the coefficient at the minor derivative
of the equation is a polynomial of the first order for the space variable with two unknown time
depended functions. The conditions of existence and uniqueness of the classical solution to such
inverse problem are established for the weak degeneration case at the Dirichlet boundary conditions
and the values of heat moments as overdetermination conditions.
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Introduction

Actually the considered problem includes three types of problems, namely, coefficient in-
verse problem, free boundary problem and problem with degeneration for a parabolic equa-
tion. Each of these types is studied separately in sufficient detail. Thus, in works [1,4, 8,13,24,
26,27,29-32,34, 36, 38], coefficient inverse problems for parabolic equations without degene-
rations in a domain with fixed boundaries were considered. Note that among these papers
there are coefficient inverse problems with an unknown coefficient of a parabolic equation
that depends on time only [4, 8,13,27,30, 32,34] or on a spatial variable [1, 26, 31, 36, 38] only.
The mathematical models of these problems arise in material sciences, heat transfer and trans-
port problems, groundwater pollutant source estimation in cities with large populations, in
chemical or biochemical application, where unknown coefficient is interpreted as a reaction
term (see [26,27] and bibliography there). Inverse problems for parabolic equations in a free
boundary domains are also the topics of many papers. Such problems with unknown time
dependent coefficients were studied in [5,7,11, 14, 15,23, 28, 37].

Problems for parabolic equations with degenerations arise when describing such processes
as the movement of liquids and gases in a porous medium, desalination of sea water, the
behavior of financial markets, population dynamics etc. Inverse problems for determination
of the functiona = a(t), a(t) > 0, t € [0, T], in parabolic equation

up = a(t)tPuye +b(x, Dy + c(x, )u+ f(x,t)
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were studied in [22, 35] for both cases of weak (0 < B < 1) and strong (8 > 1) degeneration,
respectively. Coefficient inverse problems for parabolic equations with degenerations were
analyzed also in [2,3,9,12,16,33,39]. Among these problems are those where the unknown
coefficients depend on time in parabolic equations with degeneration in the time variable
[3,9,12,16], and those where the unknown coefficients depend on the spatial variable in the
equation with degeneration in this variable [2,33,39]. Note that all mentioned problems were
considered in the domain with fixed boundaries. The problems of determining the coefficients
depend simultaneously on time and space variables in the parabolic equations with degenera-
tions remain unexplored today. Inverse problems of identification the time dependent coeffi-
cient in the degenerate parabolic equations were studied in [10,17,18].

In this paper, in a free boundary domain we consider the inverse problem of identification
of two time dependent functions in a minor coefficient of a parabolic equation with degenera-
tion. It is assumed that the degeneration of this equation is caused by the power function with
respect to time at the higher order derivative of unknown function in the equation. The case of
weak degeneration is investigated. The conditions of unique solvability to this problem under
the given Dirichlet boundary conditions and the values of heat moments as overdetermination
conditions are established. Note that such problems in the domain with fixed boundaries are
studied in [6,19,20] for the case of weak and strong degeneration with different boundary and
overdetermination conditions.

1 Statement of the problem and the main results

In a free boundary domain Qr = {(x,t) : 0 < x < h(t),0 < t < T}, where h = h(t) is an
unknown function, it is considered an inverse problem for simultaneous determination of the
time dependent coefficients by = by(t), by = by(t) in one-dimensional degenerate parabolic
equation

ur = tPa(t)uxx + (b1 (£)x + ba(t))ux + c(x, )u + f(x,t) (1)

with initial condition
u(x,0) = ¢(x), x € [0,h(0)], 2)

boundary conditions
u(0,8) = (), u(h(t),t) = palt), te[0,T], ©)

and overdetermination conditions

h(t)
/0 u(x, t)dx = us(t), te€][0,7], (4)
h(t)
/0 xu(x, t)dx = ug(t), t€10,T), (5)
ne
/0 x“u(x, t)dx = us(t), te€10,T]. (6)

It is known, that 2 = a(t) is a strongly positive continuous function and degeneration of
the equation (1) is caused by power function tf. It is studied the case of weak degeneration
while0 < 8 < 1.



232 Huzyk N.M., Brodyak O.Ya., Pukach P.Ya., Vovk ML.L

Definition. A set of functions (b1, by, h,u) € (C[0, TO])2 x CH0, Tp] x C*1(Qg,) NC(Qg,),
h(t) > 0, t € [0, Ty|, that satisfy the equation (1) and conditions (2) -(6) point by point for all
t < Ty is called the local solution to the problem (1) —(6) at Ty < T and the global solution to this
problem atTy = T.

Substituting y = %, we reduce (1)—(6) to inverse problem with respect to unknowns

b1 = bi(t), by = ba(t), h = h(t), w = w(y,t), where w(y,t) = u(yh(t),t) in a domain with
fixed boundary Qr = {(y,t) : 0 <y < 1,0 < t < T}, namely

a(t)th (b1 ()R(t) + K (1))y + ba(t)

0= Gy + 0 wy + c(yh(t), t)w + f(yh(t),t), )
w(y,0) = ¢(yh(0)), vye€0,1] ®)

w0, = (1), w(L,t) = pat), £ [0,T], ©)

W) [ oty by = alt), 1€ [0,T) (10

20) [ yoly, Dy = (), 1€ 0.T], (1)

P0) [ ety Dy = ps(t), 1€ [0,7] (12)

Suppose that the following conditions hold:
(A1) a,¢,f € C([0,00) x [0,T]), ¢ € C[0,00), u; € CH[0,T), i € {1,2,3};

(A2) 0 < f1 < f(x,t) < fo, —c1 < c(x,t) < —¢o < 0,(x,t) € [0,00) X [0,T], fo,f1,co,c1 are
some positive constants, y;(t) >0, t € [0,T], i € {1,2};

(A3) ¢(x) > @9 >0, x €[0,00), uz(t) >0, t € [0, T].

Let us determine the initial position of an unknown boundary. The conditions (2), (4) and
(A1), (A3) yield the existence of an unique solution /#(0) = hy to the equation

/Oho ¢(x)dx = u3(0).

Now we can estimate the function w = w(y,t) from below. Assume that the function
w = w(y,t) achieves its minimum in Qr at the point (o, to)-
If tp = 0,0 € [0, 1], then

w(yo, to) = ¢(yoho) > min @(yho) > 0.
y€[01]

Ifyo =0o0ryg =1, € [0, T], then

- > mi — > mi
w(yo, to) Pll(fo)_tg[%,f%]ﬂl(f)>0 or  w(yo, to) Vz(fo)_tg[lollrﬁﬂz(f)>0/

respectively.
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For a point (yo, to) € (0,1) x (0, T] we have wy(yo, to) = 0, wyy(yo,to) > 0, wt(yo, to) < 0.

From the equation (7) we deduce

_ a(to)th
0 = wi(yo, to) — Wwyy(yo, to) — c(yoh(to), to)w(yo, to) — f (yoh(to), to)

< —c(yoh(to), to)w(yo, to) — f (yoh(to), to)-

It means that
f(yoh(to) to) _ fu

> 0.
—c(yoh(to), to) — 1

w(yOI tO) 2

As a result we conclude

. . : fl} _ 16
,t) > min{ m ho), min pp(t), min pa(t), 22 b = Mo >0, (y,t .
w(y,t) = m{ye[g}]fp(y o), min pua(t), min pa(t), 0>0, (yt)€Qr

Using the equation (10) and the estimation (13), we get
max p3(t)

te[0,T]

() < =251

=H; <o, te[0,T]

The function w = w(y, t) can be estimated from above in a similar way

w(y,t) < max{ max ¢(yho), max pi(t), max yz(t),@} =M; <o, (yt)€Qr

y€[0/1] te[0,T] te[0,T] Co
From (10) one can find

i t
Jmin us(t)

h(t) > M,

=Hy>0, te]0,T].

Theorem 1. Suppose that the assumptions (A1)-(A3) and conditions

(A4) ¢, f € CYO([0,2H;] x [0,T]), ¢ € C[0,ho], pua € CL[0, T};

(13)

(14)

(15)

(16)

(A5) ¢'(x) > 0 for x € [0,hg], ¢'(ho —x) — ¢'(x) > 0, (hg — x)¢'(x) — x¢'(hg —x) > 0

forx € [O, hz—o) ;
ho
(A6) 9(0) = 1 (0), (o) = a(0), 1a(0) = [ ()i
are satisfied. Then there exists the unique local solution to the problem (1)—(6).

2 Existence of the solution to the problem (1)-(6)

Assume temporary that the functions by = by (t), by = bo(t), h = h(t) are known. Realizing

the substitution

w(y,t) =@y, t) + ¢(yho) — ¢(0) + p1(t) + y(pa(t) — pa(t) — u2(0) + p1(0)),

(17)
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the direct problem (7)—(9) is reduced to a similar one with respect to the function w = w(y, t)
with homogeneous initial and boundary conditions

a(t)th '
& — % By + (b (£)(t) +hlzt§t))y + bz(t)% +elyh(t), )+ f(yh(0) 1)
20(1)P
~ O =y (500~ (1) + B ) -
+ (k) +h}(lt§t))y ) (ho@' (yho) + a(t) = pa (£) = j12(0) + i1 (0))
+c(yh(t),£) (@(yho) = 9(0) + pn (1) +y (a(t) — (1) = p2(0) + 1 (0)) ),
for (y,t) € Qr, and
w(y,0) =0, yelo1], (19)
w(0,t) =0, w(1,t)=0, te][0,T]. (20)

The conditions of the Theorem 1 ensure the existence of the Green function G = G(y, t,7,T),
for the first boundary value problems for the equation

_a(t)th _ .
With the aid of this function we replace the problem (18)-(20) with the equivalent integro-
differential equation

O

/ / / h%a(T)Tﬁ 1
+F(Gr(1),7) = () =0 (pa(7) — (D) + Za =" (ko)

+ Sl d:z?;()T))n AL (ho@' (ho) + p2(7) — pa(T) — p2(0) + p1(0))

(21)

+c(nh(7),7) (9(11ho) — @(0) + p1.(7) + 77 (p2(7) — pa (1) — 42(0) + m(O)))) dn dt.

Consider v(y,t) = wy(y,t), p(t) = H(t). Using (17), (21), the direct problem (7)-(9) is
reduced to the system of equations with unknown functions w = w(y, t), v = v(y, t), namely
w(y,t) = @(yho) — @(0) + pr(8) +y (sa(t) — pa(t) = 42(0) + p1(0))
fl (br(T)h(T) + p(T)) 7 + ba(7)
[ [ et ; o(1,7)

(1)
/ / / h%a(T)Tﬁ 2
+ £ (D), ) = g (1) =0 (pa(7) = 1 () + Tz 59" (ko) (22)

(), ) (o) — 9(0) + 1 (2) + 1 (p2(1) = (1) = () + 1 0))) )t

= g(yho) + w*(y,t), (v,t) € Qr,
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o(y, t) =ho@'(yho) + pa(t) — pa(t) — p2(0) + 1 (0)

(1(DH(2) + p(0) 1+ ()
[ Gt 2 o(1,7)

+ f(nh(t),T) — i (1) = (pa(T) — i (1)) + h(T) <P’(17ho) (23)

+ (), ) (9lotn) = 9(0) + 1 (1) 4 1 (4a() = () — a(0) + 1 0)) )t

=hog'(yho) + 0" (v, 1), (v,t) € Qr.
Equation (22) is differentiated with respect to the spatial variable aiming to obtain the equa-
tion (23). To study the behavior of the integrals in the right-hand sides of the formulas (22),
(23), it is necessary to apply the known estimates of the Green function (see [25, p. 469])

_ )2
‘DID;G(]/, t,ﬂ,r)) < Ci(t— T)_1+22r+s exp <—C2 (yt_7’7l—) ) )

(24)
re{0,1}, s€{0,1,2}, 2r+s=1 or 2r+s=2, T<*t
Using (24), we obtain
L = / / (v t,y,T d17d7<C3/ / exp( C,— 1) (y —n)? )d;ydr, (25)
VO 6(t) — 0(7)
(y—1n)°
= < A
L= / / Gy(y, t, 7, T)dndt < C4/ / o0 —0(0) exp ( Cz 80t — 6(7) dndt,  (26)
p+1
where 6(t) = /0 oPdo = g 1 and the positive constant C3, C4 depend on the problem data.
After the substitution § = M, we get
o(t) — 6(7)

t
I §C5/ dt < Cst,

1-8
dr < Cgt 2.

Cé/\/T /m fﬁ/Z/m

Thus, taking into account the definition of the weak degeneration, we conclude that the inte-
grals in the right-hand sides of the formulas (22), (23) tend to zero as t tends to zero.
Taking into account (13), we rewrite the equation (10) in the form

h(t) = flﬂ& t € [o,T]. (27)
oW

The equations (10)—(12) are differentiated with respect to t. Using (7)—(12) and solving the

obtained system with respect to p(t), b1 (t), ba(t), we find

p(t) =<F1(f) (412 () po (£ pa(t) — 4pg(t) — Bh(E)pa (t)pis ()
— I3 ()2 (t) s () + 3pa () ps (1))
+ Fa(8) (B2 (8 () pa (8) + Bpa (#)pas (1) — 3 () pis (1)

= 2h(t) o (t)pa(t) — K2 (£ pa (8 s (t) + 2p3 () pa (1))

+F3(4) (2h(t)pa () pa (t) — p3(1) — 2p2 () pa(t)

— WO (Dpa(t) + 2 (Hpa (1) )iz (A7),

(28)
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(1) = (Bu(8) (1 (Os(t) — 20()pea(D) + Ea(t) 2paa() — 2 (Dpua (1) -
+B(t) (h(t)m pte,(t)))A_l(f),
ba(t) = (Fu(t) (3h(E)us () — 22 (1)a(t)) + Falt) (A (£)pia (£) = Bps () o0
+F(t (2y4 m(ﬂ))A’l(t),
where
A(t) = p3(t) (2h()pa(t) — K2 (D) pa (b)) + 2pa(t) (W (D)pa () — 2pia(t))
+3ps() (13(t) — H(E)ma (1)),
Fi0) = ()~ " (o(0, 1)~ 00,8)) — k1) [ (clyht), (s, 1) + F(yh(1), )
1(t) = H3 0 v(0, , ey yt) + fly Y
Ba(t) = i(t) = a(OP (0(1,1) — palt) + ()
1
=12 (0) [ y(en(t), Dy, £) + Fh(t), 1) dy
(1) = ()~ aefn0) (o(0,0) — 2000 + 2200 )
I [ elhto) Dl ) + Fh(e),0)dy
It is easy to verify by direct integration that
4
a0 =2 [T -2ty [ v - yyoty,ndy N

+/ (1-y yrt)dy/o y(1 —y)(Zy—1>v(yIt>dy>~

Let consider the equation (23). The first term in the right hand side of this equation is
greater than zero and the second one is infinitely small at t — 0, i.e. }il’I(l) v*(y,t) = 0. It means
*>

that we can indicate a number t1, 0 < t; < T, such that

i ho ming, 1 ¢’ (yho) _
0"y )| £ ==, () €Q, (32

Then from the equation (23) one can deduce

ho min /( ho) —
o(y, ) > o] PIN —My>0, (1) €eq,, (33)

It yields
1 1
/0 (1= y)oly, Hdy > 0, /0 y(1—y)oly, dy >0, te0,h]. (34)

Two other integrals from the right-hand side of the formula (31) are represented in the
forms

1
2

[ v -9y~ 1otn 0y = [*y0 )1 - 29) (000 - 1) ~ oty )t

[ =)= 2patdy = [(1-20) (0= ol H) - yo1 -y, 1)

0
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On the next step we substitute (23) into these formulas. Note, that in these formulas the sum
of all terms, except the first, tends to zero as t — 0. So we can choose a number t;,0 < t, < T,
such that

/Ot/o1 (Gy(1 =y, t,1,7) = Gyly, t,1, 7))

(), ) = i (1) = 1 (1)~ 14(0) + S )

+c(nh(1),7) (9(ho) — 9(0) 4 p1.(T) + 1 (p2(7) — pa(7) — p2(0) + m(O)))> dndt

< homing 1y (¢’ (ho(1 —y)) — ¢'(hoy))
2 7

(y,t) € Gtzf

/Ot/o1 (1 =y)Gy(y, t,1,7) —yGy(1 =y, t,1,7)) ( (b1 (Dk(T) ;(Z()T))W il bZ(T)v(m 7)

/ / / h%a(T)T’B "
+f (D), ) = (1) =0 (e2(0) = i1 (D) + == (o)

+c(17h(7),T) (@(1ho) — @(0) + p1(T) + 17 (p2(7) — pa(T) — p2(0) + m(O)))> dndt
_ homing,) (1= )¢’ (yho) — yg' (o(1 — y)))

= 2 7 (y/ t) € Gtr
As a result we obtain
1 homing 1) (¢’ (ho(1 —y)) — ¢’ (hoy) _
[ 901 = )2y )0ty 1y > 000 (002 9) ), e, @

hop min — "(yho)—1y @' (ho(1 — .
/01(1—y)(1—2y)v(y,t)dy2 o minyo,y ((1 y)fp(g 0)—y9' (1 =) (1) €0, (6)

So the condition (A5) of the Theorem 1 and (34), (35), (36) guarantee that

A(t) >Np>0, te [O, t()], (37)

where t) = min {t1,t,} .
On the other hand, using (32) in the equation (23), we conclude

ho min "(yh
v(y,t) < hpmax q)/(yho) + 0 [01] ¢ (vho)

0] D) = M;, (y; t) € Gto' (38)

Thus, the inverse problem (7)—(12) is reduced to the equivalent system of equations (22),
(23), (27)—~(30). We understand the term “equivalence” in the following sense: if a set of func-
tions (b1, by, h, w) is a local solution to the problem (7)—(12), then (w, v, h, p, by, by) is the con-
tinuous solution to the system (22), (23), (27)—(30) in Gfo’ and, contrary, if (w,v,h, p,b1,by) €
(C (Gto) )2 x (C[o, to])4, h(t) > 0,t € [0,tg], is a solution to the system of equations (22), (23),
(27)—(30), then (b, by, h, v) is the local solution to the problem (7)—(12).

The first part of this statement follows from the way of obtaining of (22), (23), (27)—~30). Let
us show that the contrary statement is true. Assume that (w,v,h, p, b1, b) is the continuous
solution to the system of equations (22), (23), (27)—(30). The condition (A4) of the Theorem 1
allows us to differentiate the equation (22) with respect to space variable. Using the uniqueness
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properties of the solutions to the system of Voltera integral equations of the second kind it is
easy to see that v(y,t) = wy(y,t). This means that w € C*>! (Qy,) N CY (Q;,) is a solution to
the problem (7)—(9).

Multiplying the equations (28)—(30) by pa(t), h(t)pa(t) — us(t), ua2(t) — u1(t), respectively,
and adding them, we find

p(t)pua(t) 4 bi(t) (R(E)pa(t) — ua(t)) + ba(t) (p2(t) — p1(t)) = Fi(t).

From the other hand, differentiating (27) with respect to t, we obtain

W (£)pa(t) 4 by (t) (R(E)p2 () — u3(t)) + ba(t) (p2(t) — pa(t))
a(t)th
= p3(t) — %(wy(lrf) —wy(0,1)) —h(t) /01 (c(yh(t), t)w(y,t) + f(yh(t), t))dy.

Subtract these equalities. Taking into account the definition of function F;(f) and the fact
o(y, t) = wy(y, t) we conclude (I’ (t) — p(t)) u2(t) =0, t € [0, to].
According to the condition (A2), we have ux(t) > 0,t € [0, T], so h'(t) = p(t), t € [0, to].

Multiplying the equations (28), (29), (30) by ()2 (t), h? (t) 2 (t) — 2ua(t), ua(t)h(t) — uz(t),
respectively, and adding them, we get

p(Oh(E)p2 () + by (t) (B2 (£) 2 (t) — 2ua(t)) + ba () (2 ()h(t) — ua(t)) = Fa(t).

Using the definition of F,(t) and (7)—(9), it is represented it in the form

200(0) (1200 [ oty )y = n(0) ) = ) = 20080 [ oty )ty — 120 [l )y,

where
2000 (120) [ o, Dy ) =~ (120 [ oty 00 — )

Consider z(t) = hz(t) fol yw(y,t)dy — ug(t). Then we have z'(t) = —2b1(t)z(t). Therefore
z(t) = z(0)e 2 Jyb(MdT gince z(0) = 0 according to the compatibility conditions, so z(t) = 0,
that is the condition (11) is fulfilled.

Let us multiply the equations (28), (29) and (30) by h?(t)ua(t), >(t)ua(t) — 3us(t) and
W2 (t)ua () — 2u4(t), respectively. Repeating the above procedure, we deduce that the condition
(12) is fulfilled. It means that the equivalence of the inverse problem (7)—(12) and the system
of equations (22), (23), (27)—(30) is proved.

The system of equations (22), (23), (27)—(30) can be rewritten as the following operator
equation

w = Pw, (39)

where w = (w, v, h, p, by, by) and the operator P = (P, P, P53, Py, P5, Ps) is defined by the right-
hand sides of the equations (22), (23), (27)-(30).
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We present the conditions (13), (15), (33), (38) in the form
M M _
70 S w(]/, t) S Ml + 707 MZ S U(y, t) S M3r (]// t) S Qtol
where the numbers M, My, M>, M5 are defined above.
Therefore from the equations (27)—(30) we conclude
2
H:M<pw<&%() 2H;, te |0t (40)
2 = Ml N % > 3w >~ MO — 1/ k0],
C9(1+M0+M1—|—M3) _
< =
|P4w| = Ao mll’l}lz( ) My, (]// t) < Qtol (41)
[0,T]
Co(1+Mo+M +M —
|Psw| < 10 OAO M) _ g, (y,1) € Qy, (42)
Cn(1+Mo+M +M —
Pyeo] < S Y ) =My (1) €Ty (43)
where the constants Cy, Cyg, Cy7 are defined by the problem data.
Estimations of Pyw, P,w are the next:
Piw > min @(yho) + min |w*(y,t)|, (v,t) € Qy,
yelo1] (1) €Qy,
Piw < max @(yho) + max |w*(y,t)|, (v,t) € Qy,
yel0] (W) €Qs,
Pyw > min ho@'(yho) + min |0*(y,1)|, (y,t) € Q,,
yel01] 2 t)EQf
Pyw < max ho@'(yho) + max |0 (y,t)|, (y,t) € Q.
ye[o ] (y t)EQfO
Let us consider
wi(y, )| < max |y (ua(t) = () = p2(0) + ua(0)) |
(y't)thO
2MsH; + M4)17 + Mg
# maxlin® g0+ | 1[Gty (BRI
Wa(t)Th
+ max h — i (7) — n(uh(T) — i (7)) + 2 "(nh
i flh(),7) = (D) =0 (p2(7) = (7)) + = 5= (ko)
+c(nh(7), T)(so(nho) —@(0) + (1) + 17 (p2(7) — pa (7) — p2(0) + Vl(O)))> ’dndf
< Ciat,
0" (y,1)] < max [ua(t) = pa(£) = p2(0) + pa (0)
tE[O to
(2MsH; + My)y + M
/ / y,t n,T < > H 4)17 6M3
2
!/ / /! hza T T‘B 1!
b max |Frh(r), ) - i (x) ~ 0 (o(x) - i (1) + DD gy
(WrT)thO (T)

(), ) ((110) = 9(0) + s (1) + 1 12(7) = 1 (4) = 12(0) + 12 0) ) ) e

1-p
<Cist+Cutz .
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We fix the number T, 0 < T; < tg, as follows

1 . 16 _h
Ci2To < = min @(yho),  Ci3To+CuuT 2 < = max ¢ (yho).
2 yelo]] 2 yelo1]
As a result, we get
Mo cPwsM+ 0, Mi<Pw<Ms (1) €0y, (44)
We consider the operator equation (39) on a convex closed set
— \\2 4+ M M
N = {(wlvzh/plblle) € (C (QTO)) X (C[O, TO]) : 70 < 'a)(y, ) < Ml —+ 70,
MZ S U(]// t) S M3/ HZ S h(t) S 2Hl/
P(B)] < My, [b1(8)] < M, [ba(t)] < M }

in the Banach space B = (C(@TO))2 x (C[o, TO])4. The estimates (40)—(43), (44) guarantee that
the operator P maps the set N into itself. The compactness of the operator P on the set N is
based on the Arzela-Ascoli theorem and can be proved as in [21, p. 27]. Applying the Schauder
tixed point theorem, we state that there exists the solution to the system of equations (22), (23),
(27)-(30) in QTD and therefore to inverse problem (7)—(12) in QTo'

3 Uniqueness of the solution to the problem (1)-(6)

To prove the uniqueness of the solution to inverse problem (7)—(12) we assume that the
system of equations (22), (23), (27)-(30) has two solutions (w;, v;, hj, pi, b1, bai), i = 1,2, in
Qr,- Denote w(x, t) = wi(x,t) —wa(x,t), v(x,t) = vi(x,t) —va2(x,t), h(t) = hi(t) — ha(t),
p(t) = pa(t) — pa(t), ba(t) = b (t) — bia(t), ba(t) = ba1(t) — bo(t). Using (22), (23), (27)-(30),
we find

_ /Ot /01 G(y,t,1,7) ( (b1 (Dh1 (7) + pa(0)) 77 + ban (1) (1, 7)

(™)
_(((bn(f)hl +(Pl)hfz)()77)+b21 ))h(T) (45)
) ) 4 DO g, <Dy

o= [ [ cy<y,t,n,r>( (0 O LoDy,

_<((bu() +(m)];f2)();7)+b21 0)h() 46)
) ) OO e, <0,
"= wl(y,t;;% b e €0 )
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pmz—(&w@%wmwmm—ﬁwwﬂmwmmmm

— ()2 (t)ps(t) + 3us(t)us(t))
+ Far (8) (15 () ua (£) pa (t) + 3z () pis () — Bpa () s (t)

— 20y ()p2(H)pa(t) — B ()2 () s (t) + 2p3(t)pal(t))
+ Fa1 (£) (2h1 () pa () pa (t) — w3 (t) — 2p2(t) pa(t)

— 15 () (F)pa () + 2#1(f)ﬂ4(t))> yz(t)ij((;))Az(t)

(aywwz s (£) — 43 () — 3 (B)pea (1) s (1)
%w<><>+wx><m 4
+ Fua(y,t) (472 (pa(D)pa(t) = Sh(D)pa(Dps (1) = 1 (D2 (t)pia (1))
+E(y, t) (B3 (1) ( )+3Pl2(f)ﬂ5(f) Bu1(t)us(t)
zmmx><> (0 (B (£) + 203(D)pa (1))
+ Fa(y,t) (W (O (Dpa(t) = 2h(t) > pa(B)pa(t) = B2 (2 (s (1))
T By, £) (2 (B2 () s () — 2002 (1) aa() + 2901 () ua (0)
— hg () (t )Vz(t) u3(t))
1
+ Faly,0) (20p(Ops(t) = FOmOpa(t) ) ps, te 0T
mmz—(awﬂ%mmuwammmu»+5wﬂwuw—%mmu»
A*(8)
+BWNM@M@—M@OKWﬁEj
<F1 y, 1) (W () ua(t) — 2 () palt)) (49)
+ Fia(y, ) (H3(t) ) 2h(t)ug(t))
+ By, t)(2u4 1(Ou1(t)) — Fxay, )R (Hpa (1)
T By, ) (m () )+%ﬂ”h0m@>§%v te (0,7,
by(t) = — (Fll(t) (B (t)ps (t) — 215 () pa(t)) + For (t) (M (£)ps(t) — Bus(t))
+Pmaxmuu>—huo%a»)5§§%§5
(a (v, 1) (3 (s (1) — 202 (1) ua(1)) (50)

+ Fio(y, t) (Bh(t) s ( ) 212 () ua(t))
+E(y, t) (W (H)us(t) — 3us(t)) + Fo(y, t)H* () us(t)
)( )

+ F3(y, £) (2ua(t) — 1 (t)pa(t)) — F32(yrf)h(t)ﬂa(t)> MO [0, To).
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We use the following notations in the formulas (48)—(50):

Ai(t) = pa(t) (2hi () pa(t) — B (O)pa (b)) + 2pa(t) (W7 (D) pr (t) — 24 (t))
+3us(t) (ua(t) — hi(t)p(t)), i=1,2,

(’(’)i(l, f) — vi(O, f))
aft) [ (elym(e) ity ) + F (i), 0) ey, =12,
Exi(t) = (1) —a(t)f (v, 1) — pa(t) + pua (1))
1
—h%(t)/ y(c(yi(t) ywily, ) + F(yhi(t), 1) )y, i=1,2,

_ L 2ms(t)
F5(t) = tﬁh <Uz hf(t) >
—13(t) / 2(c(yhi(t), ywi(y, ) +f(yhi(t),t)>dy, i=1,2,
A (1) = pa(t) (2m(B)pa(t) - h2< Hpa(t >) + 202 (£ pa (£)pia (£) — 3h(E) o (£)pis (1)

~ a B
() = 21(2)15?(2) (01(1,) = 01(0,)) = G2 (0(0,6) =0 (0,1)
1

o

+ f(ym(t),t) = f(yha(t), t))fiy,
a(h) (y(£)o(1, ) + h(t)oa(y, 1))
1
— (O =1®) [ (Fm).e) + el e), e, b) )dy

1

—n3(t) [ (C(yhl(f)z Hw(y,t) + <C(J/h1(f)z t) — C(J/hz(f)/f)>wz(]//f)

0

J
—~
~
N—
Il
|

+ f(yha(t),t) — f (yhz(t)rt)>dy~

Applying the Lagrange mean value theorem and condition (A4) of the Theorem 1 we
deduce

P ) t) — £ (oha®),6) = yn(t) [ Fo(y0a(t) + o (t) = (), )do. 6D
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The analogous equality holds also for the functions ¢ (yh(t), t). Moreover, the formulas
HE(E) = 13 (8) = h(t) (ha (£) + P (1)), (52)

B3 (t) = B3(t) = h(£) (K () + ha (Do (t) + B3(1)) (53)

are fulfilled. Substituting (47)—(53) into (45), (46), we obtain the linear system of homoge-
neous integral Volterra equations of the second kind with respect to the functions w = w(y, ),

v="uo(y,t):

w(y,t) = /Ot (K11 (t, T)w(y, T) + Kiz(t, 7)oy, 7)) dt, te [0, T,

o(y,t) = /Ot (Ka1 (t, T)w(y, T) + Koo (t, T)w(y, 7)) dt, te€ [0, T

Taking into account (25)—(26) we conclude that the kernels of this system possess integrable
singularities. It means that the system has only trivial solution

w(y,t) =0, o(yt)=0, (yt)€ GTo' (54)

Substituting (54) into (47)-(50), we get h(t) = 0, p(t) = 0, b1(t) =0, ba(t) =0, t € [0, Tp].
It completes the proof of the Theorem 1.

4 Conclusions

There is studied the coefficient inverse problem for degenerate parabolic equation in a
free boundary domain. It is known that the minor coefficient of this equation is the first
order polynomial with respect to space variable with two time-dependent functions in it.
The Dirichlet boundary conditions and the values of heat moments as overdetermination
conditions are given. The case of weak degeneration is investigated. Using the apparatus
of Green’s functions for the heat equation and Schauder fixed point theorem the existence of
the local solution to the stated problem is established. The proof of the uniqueness of the lo-
cal solution to this problem is based on the properties of the solutions to the homogeneous
integral equations with integrable kernels.

Note that the system of equations (22), (23), (27)-(30), obtained in the paper, can serve the
base for application of some numerical methods for construction the approximate solutions to
the considered problem.

Results of this paper can be used in research of inverse problems of identification the
younger coefficients in parabolic equation which depend on both space and time variables.
They also can be used in investigation such problems for the multidimensional degenerate
parabolic equations, for the case of strong degeneration or for the case, when two parts of
boundary are unknown.
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B obaacTi 3 BiABHOIO MeXel0 AOCAIAXKYEThCS ObepHEHa 3apava AASI MapabOAIYHOTO PiBHSHHS
3 BUPOAKEHHSIM. BIMpOAKeHHS piBHSHHS CIpUUMHEHe 3aAeXHOIO BiA dacy dpyHKIieo Ipu cTap-
IIil1 TIOXiAHIV HeBiaoMol dyHkii. [Tpunyckaemo, Mo KoedillieHT mepes MOAOAIION ITOXiAHOIO B
PiBHSIHHI € MHOTOYAEHOM IEePIIIOro CTereHs 3a IPOCTOPOBOKO 3MIHHOIO 3 ABOMa HEBIAOMMMI 3aAe-
KHVMM BiA 9acy pyHKIIisIMM. YMOBM iCHyBaHHSI Ta €AMHOCTi KAQCMYHOTO pO3B’SI3KY BKa3aHOI 3aAadi
BCTAaHOBAEHO AASI BUTTAAKY CA26KOTO BMPOAKEHHSI IPY 3aAaHMX KpaloBux yMoBax Aipixae Ta 3Ha-
UeHHSX TeIIAOBMX MOMEHTIB y SIKOCTi yMOB IlepeBU3HAYeHHSI.

Kntouosi cnoea i ppasu: xoedpirtieHTHA 0ObepHeHa 3apada, 3apada 3 BIABHOIO MeXero, cAabke CTe-
TIleHeBe BUPOAKEHHSI, TapaboAiuHe PiBHSHHS, MOAOAIIMIT KoedpillieHT.



