References

  1. Arens R., Eells J. On embedding uniform and topological spaces. Pacific J. Math. 1956, 6 (3), 397–403. doi:10.2140/PJM.1956.6.397
  2. Belacel A., Bey K. Strongly Lipschitz up-Nuclear Operators. Moroccan J. Pure Appl. Anal. 2019, 5 (1), 22–30. doi:10.2478/mjpaa-2019-0002
  3. Cardassi C.S. Strictly \(p\)-integral and \(p\)-nuclear operators. In: Analyse harmonique: Groupe de travail sur les espaces de Banach invariants par translation, Exp. II. Publ. Math. Orsay, 1989.
  4. Cabrera-Padilla M.G., Jiménez-Vargas A. Lipschitz Grothendieck-integral operators. Banach J. Math. Anal. 2015, 9 (4), 34–57. doi:10.15352/bjma/09-4-3
  5. Chen D., Zheng B. Lipschitz \(p\)-integral operators and Lipschitz \(p\)-nuclear operators. Nonlinear Anal. 2012, 75, 5270–5282.
  6. Cilia R., Gutiérrez J.M. Ideals of integral and \(r\)-factorable polynomials. Bol. Soc. Mat. Mex. (3) 2008, 14 (1), 95–124.
  7. Cilia R., Gutiérrez J.M. Asplund operators and \(p\)-integral polynomials. Mediterr. J. Math. 2013, 10 (3), 1435–1459. doi:10.1007/s00009-013-0250-8
  8. Cohen J.S. Absolutely \(p\)-summing, \(p\)-nuclear operators and their conjugates. Math. Ann. 1973, 201, 177–200.
  9. Dahia E., Hamidi K. Lipschitz integral operators represented by vector measures. Appl. Gen. Topol. 2021, 22 (2), 367–383. doi:10.4995/agt.2021.15061
  10. Defant A., Floret K. Tensor norms and operator ideals. In: Nachbin L. (Ed.) Mathematics Studies, 176. North-Holland, Amsterdam, 1992.
  11. Diestel J., Jarchow H., Tonge A. Absolutely summing operators. In: Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995. doi:10.1017/CBO9780511526138
  12. Dubei M., Tymchatyn E.D., Zagorodnyuk A. Free Banach spaces and extension of Lipschitz maps. Topology 2009, 48 (2–4), 203–212. doi:10.1016/j.top.2009.11.020
  13. Hamidi K., Dahia E., Achour D., Tallab A. Two-Lipschitz operator ideals. J. Math. Anal. Appl. 2020, 491 (2), 124346. doi:10.1016/j.jmaa.2020.124346
  14. Hogbe-Nlend H., Moscatelli V.B. Nuclear and Conuclear Spaces. In: Nachbin L. (Ed.) Mathematics studies: Notas de Matemática, 52. North-Holland Publishing Company, New York, 1981.
  15. Khalil R., Yousef A. Isometries of \(p\)-nuclear operator spaces. J. Comput. Anal. Appl. 2014, 16 (2), 368–374.
  16. Miyazaki K. \((p,q)\)-Nuclear and \((p,q)\)-Integral Operators. Hiroshima Math. J. 1974, 4, 99–132.
  17. Persson A. On some properties of \(p\)-nuclear and \(p\)-integral operators. Studia Math. 1969, 33 (2), 213–222.
  18. Persson A., Pietsch A. \(p\)-nuclear and \(p\)-integral mappings in Banach spaces. Studia Math. 1969, 33 (1), 19–62. (in German)
  19. Pietsch A. Absolutely \(p\)-summing mappings in normed spaces. Studia Math. 1967, 28 (3), 333–353. (in German)
  20. Pietsch A. Operator ideals. In: Mathematische Monographien, 16. VEB, Deutscher Verlag der Wissenschaften, Berlin, 1978 (reprinted in North-Holland, Amsterdam–New York, 1980, 168–175).
  21. Ramanujan M.S., Schock E. Operator ideals and spaces ofbilinear operators. Linear Multilinear Algebra 1985, 18, 307–318. doi:10.1080/03081088508817695
  22. Ryan R. Applications of topological tensor products to infinite dimensional holomorphy. Thesis, Trinity. College Dubhn., 1980.
  23. Sánchez Pérez E.A. Product spaces generated by bilinear maps and duality. Czechoslovak Math. J. 2015, 65 (3), 801–817. doi:10.1007/s10587-015-0209-y
  24. Weaver N. Lipschitz algebras. World Scientific Publishing Co., River Edge, NJ, 2018.