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On the analytic extension of the Horn’s hypergeometric
function H,

Dmytryshyn R.">, Lutsiv I.-A.}, Dmytryshyn M.

The paper establishes new convergence domains of branched continued fraction expansions of
Horn’s hypergeometric function Hy with real and complex parameters. These domains enabled the
PC method to establish the analytical extension of analytical functions to their expansions in the
studied domains of convergence. A few examples are provided at the end to illustrate this.

Key words and phrases: branched continued fraction, Horn hypergeometric function, approxima-
tion by rational functions, convergence, analytic continuation.

1 Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

2 West Ukrainian National University, 11 Lvivska str., 46009, Ternopil, Ukraine

& Corresponding author

E-mail: dmytryshynr@hotmail.com(DmytryshynR.), lutsiv.ilona@gmail.com (LutsivI.-A.),
m.dmytryshyn@wunu.edu.ua (Dmytryshyn M.)

Introduction

The analytic theory of branched continued fractions provides a useful means for the rep-
resentation and continuation of special functions of one and several variables (see [3, 5, 6, 22—
24,30, 33]), used in mathematical physics. Many applications of branched continued fractions
were made in various areas of numerical analysis and theoretical physics, chemistry and engi-
neering [26-28,34]. This paper continues the works [4,18-20] and establishes new domains of
the analytical continuation of Horn’s hypergeometric function Hy with certain conditions on
real and complex parameters, using their representation in branched continued fractions.

Note that the Horn’s hypergeometric function Hy is defined as (see [25])

o (@)2r45(D)s 21 25
Hy(a,b;c,d;z) = —= 2~ 2z < p, |z2| < g, 1
4( ) r,sz_:() (C)r(d>s gl | 1| p | 2| q (1)
where a,b,¢c,d € C,c,d € {0,—1,-2,...}, (a)g =1, (0), = a(a+1)...(a +n—1), 4p =
(g—1)2,9#1,z=(z1,22) € C%
In the paper [4], formal expansions into branched continued fractions were constructed for
the following functions:

Hy(a,b;c,b;z)
: : )
Hy(a+1,b;c+1,b;z)
and
Hy(a,d+1;¢,d;2) Hy(a,d+1;¢,d;2) 3)
Hy(a+1,d+1;c,d+1;z)" Hyla,d+2,c,d+1;2z)
YAK 517.5
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In particular, it is proved that (2) has a formal expansion of the form

h1z1
hyzq
h3zq
1—.

1—22—

(4)

1—22—

1—22—

where

(2c—a+k—-1)(a+k)
he = , k>1. 5
i P Y Z ®)
For hy, k > 1, such that 0 < h < h for all k > 1, where h is a positive number,
c ¢ {0,—1,-2,...}, the convergence of branched continued fraction (4) to the function (2)

was investigated in domain

H,={zeC*: z ¢ [1/(4+4h),+), k=1,2}.

In this paper, Theorem 2 provides convergence criteria for complex hy, k > 1, while
Theorems 3 and 4 for negative and positive h, k > 1, respectively. Since all the studied do-
mains of convergence contain the neighborhood of the origin, the analytical extension of the
functions to these domains is established by the PC method (see [1]). Section 2 provides several
examples to illustrate this.

Some other recent studies related to the function (1) can be found in [14,29, 32, 35].

1 Branched continued fraction and analytic continuation

In this section, we establish the domains of the analytic continuation of the function (1).
Here we need the following theorem, proved in [15].

Theorem 1. Let mgy, k > 1, be real numbers such that 0 < mg; < 1 for all k > 1. Then the
following is true.

(A) The branched continued fraction
M0,120,1
— 6
mop (1 —moa)zop (©)

mo3(1 —mo2)zo3
1-—.

1 _Zl,O —

1—(1—=mpq)z11 —

1-— (1 — mO,Z)Zl,Z —

converges for |z1 ;| <1/2 and |zgx| < 1/2 forall k > 1.

(B) If f, denotes an nth approximant of (6), then |f, —1| <1 forall n > 1.

Note that various definitions of the convergence of branched continued fractions can be
found in [15,17].
Let us prove the following theorem.

Theorem 2. Let a and ¢ be complex constants such that
|hi| +Re(hy) < pg(1—¢q) forall k>1, (7)

where hy, k > 1, are defined by (5), ¢ ¢ {0, —1,—2,...}, p is a positive number, and 0 < g < 1.
Then the following is true.
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(A) The branched continued fraction (4) converges uniformly on every compact subset of the

domain
ni _ h,l
HM =Hp,g UH ’ (8)
where
1+ cos(arg(z1)) %) q arg(z1)
_ 2. 1 o\
Hyy={2€C: Jz1| < 2 Re (imegir) <30 (T ) O
and
I(1-1) 1-—1
hl _ 2.,
H _{zeC.|z1|< 7 , 22| < 5 } (10)
with

h = helt, 0<lIl<1,
?SG({’ K|}

to a function f(z) holomorphic in H%.
(B) The function f(z) is an analytic continuation of (2) in the domain (8).

Proof. An application of Theorem 1 (A), with mp, = [, k > 1,0 < I < 1, shows that the
branched continued fraction (4) converges for all z € H!. Theorem 1 (B) implies that the
approximants of (4) allliein |w — 1] < 1lifz € H'"!. Hence, by [2, Theorem 3], the convergence
of (4) is uniform on every compact subset of (10).

Let us prove the uniform convergence of the branched continued fraction (4) on every com-
pact subset of (9) in the same way as in [18, Theorem 2].

WesetG,S”)(z):1,n21,and,for1§k§n—1, n>?2,

1 hi 221
2770
R L W
2792 zy — hyzy
It follows that
Gin)(z)zl—zz—%, 1<k<n-1 n>2, (11)
Gy1(2)

and nth approximant of (4) we write as

h1z1
Falz) =125 — 21
© )

Let arg(z1) = ¢, n be an arbitrary natural number, and z be an arbitrary fixed point in the

(12)

domain (9). Let us prove that

Re(G]E”)(z)e’i‘P/z) > (1—¢g)cos(@/2) >c>0, 1<k<n, n>1. (13)
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From an arbitrary fixed point z, z € H,,, it follows that for its arbitrary neighborhood,
there exists 7, 0 < 0 < 71/2, such that |¢/2| < 71/2 — ¢ and, thus,

(1—g)cos(¢@/2) > (1—g)cos(¢p/2—0)=(1—g)sin(c) =c > 0.

If k = n, the first inequality in (13) is obvious. Assuming that the first inequality in (13) is true
if k =s+1 < n. Then, for k = s from (11) we obtain

hosazie”9

& e

Gs(”) (z)ez”“/)/2 — e i9/2 _ zze’i“”/2 - (14)

Using [1, Corollary 2], (7), (9), from (14) we get

‘herl ‘ + Re(hs+1)

(n) —ip/2 —ip/2
Re(Gs ' (z)e '?74) > cos(@/2) — Re(zpe '¥/7) — ‘ z
(G e)e77%) 2 cos(p/2) = Re(me ™0/ = b g I
_qeos(9/2)  pq(l—gq)  1+4cos(e)
> cos(9/2) 2 21— q)cos(9/2)  2p

= (1 —q)cos(¢/2).

Thus, Gg") (z) #O0foralln > 1and z € Hy 4, i.e. that each approximant (12) is a holomorphic
function in (9).
Now, let K be an arbitrary compact subset of (9), then there exists an open bi-disk

Qr={z€C?: |z| <R, k=1,2}

of radius R, R > 0, such that K C Qg. Then, forany n > 1 and z € Hy, ;4 Qg from (12) we get

R 1+ R+ iR = C(K),

fu(z)| <14+R+ Re(G1" (2)e9/2) (1—q) cos(¢/2)

i.e. the sequence {f,(z)} is uniformly bounded on every compact subset of H, ;.
It is easy to see that for every L such that

C(1-111-1) 14
0<L<mln{T, oh ,;,E}

the domain
Y ={zcR*: 0<z <L, k=1,2}

contained in Hy 4, in particular Y ,, C Hp 4. Using (7), for any z € Y[, Y, C Hp,, it is easy
to show that |zp| < (1 —1)/2 and |hz1| < (1 —1)/2, k > 1, i.e. the elements of (4) satisfy
Theorem 1, with mg; = I, k > 1. It shows that branched continued fraction (4) converges for
allz € Y1, Y, C Hp,. Hence, by [2, Theorem 3], the convergence of (4) is uniform on compact
subsets of (9).

The proof of (B) is analogous to the proof of Theorem 2 (B) in [2], hence, it is omitted. [

Remark 1. In Theorem 2, the set Re(zye~(/2)a18(21)) < (g/2) cos(arg(z;)/2) can also be writ-
tenaszy & [q/2,+0).

If we set 2 = 0 and replace c with ¢ — 1 in Theorem 2, we get the following result.
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Corollary 1. Let c be a complex constant satistying (7), where
2 k(2c +k—3)
hy ==, h= forall k>?2 1
Lo T et k=2 (ctk—1) T =~ (15)
c ¢ {0,—1,-2,...}, p is a positive number, and 0 < q < 1. Then the branched continued
fraction

(16)

converges uniformly on every compact subset of (8) to a function f(z) holomorphic in H%,

and f(z) is an analytic continuation of Hy(1, b; c,b; z) in the domain (8).
An application of Theorem 2 is the following theorem.
Theorem 3. Leta and c be real numbers such that —h < h; < 0 forallk > 1, where h, k > 1,

are defined by (5), h is a positive number. Then the branched continued fraction (4) converges
uniformly on every compact subset of the domain

P = {z eC?: 2 ¢ <—oo,—l(12;l)], 2 ¢ [%Jroo)} (17)

where 0 < | < 1, to function f(z) holomorphic in Py, and f(z) is an analytic continuation of
(2) in the domain (17).

Proof. 1f b < 0 for all k > 1, then the condition (7) holds forall p > 0 and 0 < g < 1. Let K be
an arbitrary compact set contained in (17). Then K C H’;’,lq C Py, for some p sufficiently small

and g sufficiently close to 1, whose H% is the domain (8). Theorem 3 is, thus, an immediate
consequence of Theorem 2. O

Corollary 2. Let c be a real number such that —h < h; < 0 for allk > 1, where hy, k > 1, are
defined by (15), h is a positive number. Then the branched continued fraction (16) converges
uniformly on every compact subset of (17) to a function f(z) holomorphic in Py, and f(z) is
an analytic continuation of Hy(1,b; ¢, b; z) in the domain (17).

The following result can be proved in much the same way as Theorem 2.

Theorem 4. Let a and c be real numbers such that0 < h; < h for allk > 1, where hi, k > 1,
are defined by (5), h is a positive number. Then the following is true.

(A) The branched continued fraction (4) converges uniformly on every compact subset of the
domain

Ch,l = {Z eC?: 1 & |:8ih, +OO), zy & |:1T_l, +00)}, (18)

where 0 < | < 1, to function f(z) holomorphic in Cy, .

(B) The function f(z) is an analytic continuation of (2) in the domain (18).

Corollary 3. Let c be a real number such that0 < hy < h for allk > 1, where hy, k > 1, are
defined by (15), h is a positive number. Then the branched continued fraction (16) converges
uniformly on every compact subset of (18) to a function f(z) holomorphic in Cj,;, and f(z) is
an analytic continuation of Hy(1, b; c,b; z) in the domain (18).

Remark 2. Results similar to Theorems 2 -4 can be obtained for the expansions of the functions
(3) constructed in paper [4].
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2 Examples
As an example, by Corollary 3 we get
(1 —z2)* —4z1) Y2 = Hy(1,b;1,b;2) = ! o , (19
1-— Zy — Z1
1-— Zy — Z1
1-— Zy —

1—.

where the branched continued fraction converges and represents a single-valued branch of the
analytic function on the left side of (19) in the domain (18) with h = 2.
One more example, by Corollary 3 we obtain

2 ya
alfctanlizZl = 2/—z1Hy(1,0;3/2,b; z)
)
2\/—21

4 7
3
1—2p— T (20)
1-— Zy — 15 4k2
1—2z— ——Z1
. 4k2—1

1— .

where the branched continued fraction converges and represents a single-valued branch of the
analytic function of on the left side of (20) in the domain (18) with h = 4/3.

3 Conclusions

We consider the representation and extension of the analytic functions by special families
of functions — branched continued fractions. The main results are new domains of analytical
continuation for the Horn’s hypergeometric function Hy with certain conditions on real and
complex parameters, which were established using their branched continued fraction repre-
sentations. Further investigations can be continued in various directions. First, we can extend
the domains of convergence of the branched continued fraction expansions with real and com-
plex coefficients in their elements using parabolic domains of convergence [11,12] and angular
domains of convergence [9,10]. Other research directions are the truncation errors analysis
and the computational stability of the branched continued fraction expansions. Here, we can
use the results of papers [7,8,13,16,21,31].
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Y cTaTTi AOCAiAXKEHO HOBi 06AACTi 30KHOCTI TAASICTMX AQHITIOTOBUX APOGOBMX PO3BMHEHB Ti-
nepreoMeTpudHoi pyHkuii ['opHa Hy 3 AifICHMMM Ta KOMIIAEKCHMMM ITapaMeTpaMi. 3a AOIIOMOTOIO
PC MeTOAy BCTaHOBAEHO aHAAITUYHI PO3IIMPEHHST AeSIKMX (PYHKIIIN Y AOCAiAXeHi obAaacTi 36ikHO-
CTi. AASI iAfOCTpamii IIbOro HaIIpMKiHIIL HaBeAEHO KiAbKa IIPMKAAAIB.

Kntouosi cniosa i ppasi: TIAASICTVI AQHIFOTOBMI Apib, rimepreoMerpudHa dpyHKIis ['opHa, ampo-
KCHUMalIisl pallioHaABHUMI (PYHKIISIMIY, 361KHICTh, aHAAITUUHE IPOAOBXEHHSI.



