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Convergence sets and relative stability to perturbations of a
branched continued fraction with positive elements

Hladun V.R.Y™ Bodnar D.L.2, Rusyn R.S.2

In the paper, the problems of convergence and relative stability to perturbations of a branched
continued fraction with positive elements and a fixed number of branching branches are investi-
gated. The conditions under which the sets of elements

Qo= (0, x [rg” +e0), Qg = g w1 x " @1, i e, k=12,

where vél) >0,0< pt,(:) < ;4,((2), 0< v,El) < I/IEZ), k=1,2,..., are a sequence of sets of convergence

and relative stability to perturbations of the branched continued fraction

N N N
a9 aj(1) 2i(2) 2i(k)
bo+i§1bi(1)+-2 b; +"'+.Z b;

have been established. The obtained conditions require the boundedness or convergence of the
sequences whose members depend on the values y;c] ), v,El ), j = 1,2. If the sets of elements of the
branched continued fraction are sets Q2;;) = (0, pg] X [vg, +00),i(k) € I, k =0,1,..., where py > 0,
vg >0,k =0,1,..., then the conditions of convergence and stability to perturbations are formulated
through the convergence of series whose terms depend on the values ji, v,. The conditions of
relative resistance to perturbations of the branched continued fraction are also established if the
partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd
ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate
in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a
result of perturbation of the elements of the branched continued fraction.

Key words and phrases: branched continued fraction, convergence, stability to perturbations, con-
vergence set, stability set to perturbations.
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Introduction

Continued fractions and their multidimensional generalizations, branched continued frac-
tions (BCF), are effectively used in various fields of mathematics, applied mathematics, physics
and engineering, quantum mechanics and computer science. Artificial intelligence has used
continuous fractions, particularly machine learning, to approximate objective functions and
model complex dependencies between data [18,26-29, 31]. In cryptography, continued frac-
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Convergence and stability to perturbations of a branched continued fraction 17

tions are used in RSA-like cryptosystems [9,20,21,30]. In signal and image processing, contin-
ued fractions are used for data compression, approximation and reconstruction of signals and
images, and noise detection and filtering [32]. The use of continued fractions and BCF in the
theory of functions is especially effective for constructing rational approximations of special
functions (see [1-5] and also [11-13,16,17,25]).

Current problems in the analytical theory of continued and branched continued fractions
are their convergence and stability to perturbations [6, 10,23,24,33]. The problems of conver-
gence of continued fractions with positive partial numerators and denominators is completely
solved by the Seidel-Stern criterion [23, 24, 33]. For BCF with positive partial denominators
and numerators equal to one, the necessary convergence conditions [6, Theorems 3.2-3.3], the
sufficient convergence conditions [6, Theorems 3.4-3.6] are obtained. At the same time, the
Theorem 3.6 in [6] is a multidimensional analogue of the sufficiency of the Seidel-Stern crite-
rion for continued fractions with positive partial denominators and numerators equal to one.
An analogue of the Seidel-Stern criterion for two-dimensional continued fractions [22] and
BCF of a special form [7, Theorem 2] is established. However, the necessary and sufficient
condition of the Seidel-Stern criterion for the BCF of the general form of the multidimensional
analogue has not been established.

Continued fractions have the property of stability — non-accumulation or limited accumula-
tion of errors arising in the process of their calculations [19]. This property provides prospects
for the applications of this mathematical tool in various fields. When studying the stability
of the BCE, the errors of the approximate fractions that arise as a result of the perturbation
of the elements of the fraction are studied [6]. This task was called the study of stability to
perturbations and is interpreted as a continuous dependence of the BCF on its elements [14].

The analysis of error estimates of continued fractions and BCF shows that they depend
not only on the errors of the elements but also on the elements themselves. Therefore, the
problems of studying the conditions on the elements under which continued and branched
continued fractions will have stability to perturbations and establishing sets of stability to per-
turbations are relevant. The problem of stability to perturbations of BCF with positive partial
denominators and numerators equal to one is completely solved. It is established that the
domain G = (0; +00) is the domain of stability to perturbations of the mentioned BCF [6, The-
orem 3.28]. In [8, Theorem 1], some sufficient conditions for stability to perturbations of BCF
of the general form with positive elements are established. This work aims to investigate fur-
ther the convergence and stability of BCF of the general form with positive elements and to
establish new sets of convergence and stability.

We consider the BCF

) o N ai(k) -1 - a0 .
w(bo+D L A0} =y . , M
k=1ix=1 Ji(k) bot ¥ (1)
’ h=ly 4 i ai(2)
i(1) =1 bi(2)+,_.

where N is the number of branching branches on the fraction floor,
Ip={0}, L ={ik)=(iip...,5): ip=1N, p=1k}, k=12,...,

is a sequence of multiindex sets, i(0) = 0, (k) bigk), i(k) € Iy, k = 0,1,..., are the partial
numerators and denominators of BCEF, respectively. For convenience, BCF (1) is also written in
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the form

Q

i(2)

i) N

Finite branched continued fractlons

i(2)

—1
f“”zZ—‘;, £ —ao<bo+DZ ") , s=12,...,

=11= 1 Z(k

are called approximants of (1). The values

Q& ikyel, k=0s—1 s=12..., @)

f+1=1 Q k+1)

with initial conditions QE(SS)) = bi(s), i(s) € I, s =0,1,..., are called tails of sth approximants
of BCF (1). We set

a .
go) = ik el k=Ts s=12.... (3)

A BCF (1) is called convergent if there is a finite limit of the sequence of its approximants.
The value of this limit is called the BCF value.

In what follows, when studying the convergence of the BCF (1), we will use the formula
for the difference of two approximants, which, taking into account the form of the studied
fraction, will be written as follows

N

n m m i(m+1) 1~ ik
S A M e § P rm B R @
11,10, sip41=1 Qi(m+1) k=0 Qi(k)Qi(k)

under the assumption that Q 7é 0,i(k) € I, k=0,n, Ql((r;g #0,i(k) € I, k= 0,m.
For the BCF (1) with p051tlve elements, the formula (4) implies the fork property, which is
expressed by a system of inequalities

e < O @) o f2n=2) oy =2, n=1,2,....
From the fork property it follows the next statement.

Proposition 1. BCF (1) with positive elements converges if and only if

lim |f0m+D) — fm)) = o

m—o0

When studying convergence and relative stability to perturbations, we will use the follow-
ing statement.

Proposition 2 ([6]). Letx € R", R% = {x = (x1,x2,...,%,): x; >0,i =1,n}, and let ¢ be a
nonnegative number. Then

" -1
x]- n
Z(“;Z) Sate ©)

j=1
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Let {Q}, Qi) C R?,i(k) € I, k = 0,1,..., be a sequence of element sets of BCF (1),
ie. (4, b( )) € Q itk), i(k) € I, k = 0,1,... . The sequence of element sets {{);(} is called
the sequence of convergence sets of BCF (1), if the conditions (a;(), bi)) € Qi) i(k) € I,
k =0,1,..., ensure the convergence of this fraction.

Let ?z\z-(k), E(k), i(k) € I, k = 0,1, ..., be perturbations of element values i(x), bi(ky of BCF

(1). BCF
~ © N 7. -1
ag (bo + D Z Al(k)>
i=1i=1 Dix)
is called the BCF perturbation to the fraction (1).

Let a;x), Bi(k), SSE;), ¢(®) be relative errors of elements a;(x), bik), value Q v and approxi-

~

mant () of BCF (1), respectively, i.e. i) = i) (1 + aix)), bigr) = bir (1 —i— ﬁl ), i(k) € I,

k:OJP”Jj&::Q%%1+4&)i@)elwp::Q&s 0,1,. ﬂs__f (1+4¢),

s=0,1,. under the assumption that all ;) # 0, by # O, QZ((S;) # 0. Further, let the values

ﬁl be given by the relations a;() = @) (1 + &), biky = b B (1+ ﬁl ), i(k) € I,

k =0,1,..., QE(S;) = QE(;) (1 +§S(;)), i(p) € Ip,p =0,5,5 =0,1,..., under the assumption that

all /a\i(k) 7é O, Ei(k) 7é 0, Q\Z((s’)q) 7& 0.

Definition 1. All sets {Q;(}, i(k) € I, k = 0,1,..., are called a sequence of sets of relative
stability to perturbations of BCF (1) if for each number € > 0 there exists a number § > 0 such
that for all (ai(k) b; i(k )) € Q 75 0, b 7é 0, l(k) € Ik/ k=0,1,...,and all (ﬁi(k)’bi(k)) €
Qix), i(k) e I, k=0,1,.. such that

bi(x) —

4

@j(k) _ai(k)‘ —s
i(k)

j<5 ikyel, k=01,...,
bix

the inequalities | (f*) — f))/f(5)| <'¢,5 =0,1,..., are satisfied.
For the relative error of the sth approximant of BCF (1) the following equality

(6)

holds (see [15]), where

&i(k)(l + Si?]i)), =2n+1,
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1 Convergence sets
Let sets
Qo= (0 pg"] x [ +00), Dy = i w1 x b ) i €k k=12, @)

where vél) >0,0< ylgl) < y,((z), 0< 1/,51) < 1/]52), k=1,2,...,be a sequence of element sets of
BCF (1).
In what follows, [ - | denotes an integer part of a number.

Theorem 1. The sets (7) are sequence of convergence sets of BCF (1), if

yV) (p2ok) !
lim H (1 + ) =0, (8)
s—>+oo Nl’ll(c )
where
(1) 2 (2)
(p(2sk)) _ (1) N NVk+)2 NVP(Zs,k) k=102s—_2 —23
" =V, @B 4 44y k=L2-2 =23, o
Vi1 Vg2 Vp(2sk) ©)
N I
p(n,m) =n+ (=1)""n-—m—-2[(n-—m)/2]), m=1n, n=12,.... (10)

Proof. From (4) it follows the formula for the difference of two approximants of the BCF (1),
which, taking into account the notations (3), (10) and setting n = 2s, m = 2s — 1, we write as

(26) (26-1) N 2s 25—1 (25-1) 25 (25) -1
o —=f = X H”i(k)<n Qite) HQi(k)>

il,iz,...,iZS_l k=0

ag (25—1) ag al = (p(2sk))
=2 Z Hg Hg (2k— 1 = 25 Z Hgi(k) :
QO i1,09,..ips=1 k= QO 11,i9,..,i2s=1 k=1

Using the recurrence relations (2), the values gl(( () k)), i(k) € Iy, k= 1,2s, we write in the form

-1
(p2sk) _ Fi(k) N k-1
&i(k) — A (p(2s,0)) <bi(k1)+z (2s,k))>

, 2
Qik) = Qi)

(p(25K)) (p(25K)) B
 bigenQilyy N Qify i1\ !
= o + PR

i(k) =1 80 Qi -1y,

Then the formula for the difference of two approximants of the BCF (1) will have the form

f(zs) _f(Zsfl) _ ‘2 Z H (

Q(;;{()Zs,k)) +ﬁ QE&()ZS'k))ﬂi(kfl)j -1
(p(2s)k)) '

QO 11 12 12q—1 k=1 Z(k) j:l ﬂl(k) Qi(k*l)]‘
Since p(2s,k) —k = 2[(2s — k) /2], then
(P25K)) _ Noaigyy N i) N Bi(k+2[(25—k)/2))
Qi(k) = Yi(k) + b + b- 4+ 5 Z b
irp1=1 i(k+1) irp2=1 i(k+2) ik+2[(29—k)/2]:1 i(k+2[(25—k)/2])
1 2 (2)
> My NV1(<+)1 NVI(<+)2 NVP(Zs,k) _ (p(2sk))
=k 2) (1) (1) ok !
2+, + 4+
k+1 k+2 p(2s,k)
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wherek =1,2s—2,s =2,3,... . Moreover,

Q(p(Zs,Zsfl)) —b

1 25,25—1 25,25 1 2525
i(s—1) = Vi(2s-1) 21/2(5)_1 Zréf(_l ) Qlp(2s2)) (1) _ (p(25.29))

i(25) = bifas) 2 V55 = Tag ’

wheres =1,2,... . Using the inequality (5), we have

ViZ1Tk i(k)
gt L

N N
ng(;;{()Zs,k)) < Z

( D N Q(p(zs'k))”z‘(kl)o1

ik:1 ik:1 ]/lk j:l ﬂ‘( ) l(k*ll)]
1) (p(2sk)) —
< <1+VIE—)1rkp ) ) !
_— 2 7
Ny

wherei(k —1) € [,_,k=1,25,s =1,2,....
Thus, for the difference of the approximants £(2*) and (=) of (1) the estimate

y(z) 2 V}El)lr]((p(ZS,k)) -1
f(ZS) _f(ZS—l) < 0 H <1 4 K= ) ) (11)
Ny
holds, where r(()zs) is defined in (9) when k = 0.
Let us put n = 25 + 1, m = 2s in the formula (4), then

1 25k)) . 1
(@s+l) _ f29)] = f(29) _ fs+1) (25) _ £(2s—-1) Vf(JZ) - M
f fol=f f <f f < || 1+ .
(2) Nyl(cz)

Since the sequence ]/t(()z) / r(()zs), s = 1,2,..., is bounded, it follows from the estimate (11) and
Proposition 1 that the sets (7) form a sequence of convergence sets of the BCF (1), if the condi-
tion (8) is satisfied. O

Corollary 1. The sets (7) are sequence of convergence sets of BCF (1), if

: Vi—1"k _
A -

where the values rlgp (Zs’k)), k=1,2s,5s =1,2,..., are defined by (9).

Proof. We consider two cases.

1. Let the sequence vlgl_)lr,((p (25k)) /N y]((z), s=12,...,k = 1,25, is bounded from below by

some number ¢ > 0. Then
1/(1) r(p(Zs,k)) -1
(182

2 .

—_

+

Since
1

lim ——- =0,
s5—4-00 (1 + C)ZS
the condition (8) are satisfied and, therefore, the sets (7) form a sequence of convergence sets

of BCF (1).
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2. Let
(1) (p(2s,k))
1% r
lim Sl S S @) =0
s—+400, k—+o00 Nyk

Then the sequence

(1) _(p(2s,k))
v r
k=lk 0 s=1,2,..., k=1,2s,

2
Ny

is bounded from above by some number C > 0, and

1) _(p(2s)k)) — 1) (p(2s,k)) 1) (p(2sk)) —
(Sl S G L G
NV}EZ) - NV}EZ) NV}EZ)

1) (p(2sk) 1) (p(2sk)). ~1
SeXp <_V}E_)11’kp ? )<1+VJE_)17’kp ) ) )

NV,EZ) NV,EZ)
1) (p(2sk))
< ex ——V]E Jlrkp
= &p @ )
N(1+ C)yk

Thus, for the difference of two approximants of the BCF (1), the estimate

(2s) (2s—1) ﬂéz) 1 2s 1/151)1r]({;7(2s,k))
—_— - < . _
s exP( N0 & u? )

is valid, from which it follows that the condition (12) ensures the convergence of branched
continued fraction (1). O

Note that Corollary 1 is a generalization of the convergence criteria of branched continued
fraction with positive partial denominators and partial numerators equal to one to the case of
BCF of the general form [6].

Corollary 2. The sets
Qi) = (0, ] X [, +00), e >0, v >0, i(k)el, k=0,1,..., (13)

are sequence of convergence sets of the BCF (1), if the series

i Vi—_1Vk

=1 Mk

is divergent.
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2 Sets of relative stability to perturbations

We will prove the following theorem.

Theorem 2. Let there exist constants«, B,0 < a < 1,0 < < 1,a + B # 0, such that

| <, i(k) €L, k=0,12,..., (14)
Biw| < B, ik) e, k=012,.... (15)
If the sequence
(2) n-1 (1 (6) -1
Z & H(H k1(§)> , s=12,..., (16)
n= 17’n 1”n k=1 Nyk

is bounded, where

(1) (2) K
P =0 M My N (17)
k k L2+ O+ (k)

k+1 k+2 §

k=051, =", s =1,2,...,pj(s,k) = j+ (=1)iT (s —k —2[(s —k)/2]), k = 0,5 — 1,
s=1,2,...,j €{1,2}, then the sets (7) form a sequence of sets of relative stability to perturba-
tions of the BCF (1). Further, fors = 0,1,2, ... the estimate

-1

(2) -1 (1) ()
B aN Ve-17k
BS |<oc+(1+a)(1_ﬁ+1_ > g ()1:[ 1+ NP (18)

is valid.

Proof. From the formula (6) it follows the following estimate of the relative error of the sth
approximant of the BCF (1)

)] < o] + (1 + |ao| Jmax{|Bir| : i(k) € L, k = 0,5}
+ (1 + [aol) max{|&;)| : i(k) € Ir, k=1,s}

N n
(s) _
xY Y 'yi(n)Hqi(k), s=0,1,....
n=1 il,iz,...,in:1 k=1
Let us estimate the values
Zgl ~1)el, k=15

Fors—k=2m+1,m=0,1,2,..., we have

Ai(k+1) N Aj(k+2) iai(kJerJrl)
b

i bigern) T 50 Diger2) 2 Bigeramn)

1 2 1
a  Nul o Np, Nl

B




24 Hladun V.R., Bodnar D.I,, Rusyn R.S.

Lets—k=2m,m=1,2,.... Then

N N N
(s) Ai(k+1) Aj(k+2 Aj(k+2m)
Qipy = bigy + T
i(k) ®) ik+Zl::1 bi(k+1) + irpo=1 bz(k+2) ; +2m)
(1) (2) (2)
e Npypr N N om i(k) €1
L R ( R (VI &
k+1 k+2 k+2m

Moreover, for k = s we have Qf(ss)) = bi5) > 1/5(1), i(s) € I;. Thus, QE(SIE) > r,((s), i(k) € I, k=0,s,
where the values r}gs) are defined by (17). Using the inequality (5), we obtain

(1) (s (s) . N = (1) (s)\ —
i < Z (Vk ) % Qi(k)”l(k—1)1> 1§ <1+Vk_)1rk5)> 1,
lk:1

2
=1 Vk j= 1ﬂi(k)Q§(s;2,1)]- NV()

for Z(k — 1) € Ik—llk = H Since (ﬁz(k) b( )) S Q i(k ) (k) € Ik, k=0,1,2,..., then QZ((S]Z) > 1’1((5),
i(k) € I, k=0,s,and

k
Thus,
N 1/(1) T’(S) -1
)y ‘75(5;3) < (1 + k_l(f) ) , ik=1)€e Ly, k=15 (19)
The values

(5 (o)
Z ql(k)lyz(k)r (k - 1) c Ik 1, k = 1, S,
=1

will be estimated taking into account the parity of the number k. If k = 2m, m = 1,2,

., we
have

Z 17 = ﬁ’: %i(2m) _ % Gw)  __Npg,

i( Zm m , (s) (s) (s) . (s) Al) = (s)  (s)°
i2m=1 =1 Qi(Zm—l)Qi(Zm)(l + 8z‘(zm)> =1 Qiom—1)im)  T2m—1"2m
Whenk =2m+1,m=20,1,2,..., we obtain

N 5
(s) Ai(2m+1)
Z ‘71 2m+1 Tiem+1) = Z ~G) A0 B
iomy1=1 =1 Qz‘(2m)Q (2m+1)(1 T g (2m+1)>
_ % ﬁi(ZmH) < Nyén2+1
Iy A(s) (s) = (s)(s)
=1 Qi Lamr1)  T2m 2mr1
Thus,
N (2)
(s) () — N , _
‘Z 5w Yin < k(s), i(k—1) €Ly, k=1,5s. (20)
=1 Te1Tk



Convergence and stability to perturbations of a branched continued fraction 25

Now, taking into account the inequalities (14), (15), (19), and (20), we obtain (18). Since the
sequence (16) is bounded, there exists a constant M > 0 such that

2 ne1 NENONE.
<1+ "‘“‘) <M, s=1,2,...,

and
e <a+ (1+a)(B(1—B) " +a(l—a) 'NM).

It is easy to show that for |a;)| < a < f(e), |Bix)| < B < f(e),i(k) € Iy, k=0,1,2,..., where

1 24e\2  4e 2+
f<€):§<\/<1+ ) BT N _1>’

¢ is an arbitrary positive constant, the inequalities ]e(s)] <e¢gs=01,2,... for relative er-
rors of approximants of the BCF (1) hold, which proves the fulfillment of the conditions for
determining the sequence of sets of relative stability to perturbations of this BCF. O

The following theorem gives conditions under which the sets (7) form a sequence of sets of
convergence and relative stability to perturbations of the BCF (1).

Theorem 3. Let the relative errors of the elements of the BCF (1) satisty the conditions (14),
(15). If there exists a limit of the sequence

(1) (p(sk)) ~*

i P‘(Z) ﬁ( Vi-1Tk
L 1+7> , s=12,..., (1)
a1 P PEn=D)pem) o Nu?
where
() (2) 2)
(k) _ 0 N Niby, NIysk) 553 s—23
k - k (2) + (1) + + (1) 4 - 4 4 - 4 4 4
1% 1% v
k+1 k-+2 (s,k)
W s=2 22
r(p(lsfs_l) — Vs(l)’ i\[ (1) ,NV(2> ( )
T Vit ey s=241

and

p(s,k) =s+ (=1 (s—k—2[(s—k)/2]), k=0,s,

then the sets (7) form a sequence of convergence sets and relative stability to perturbations of
BCF (1). Further, fors = 0,1,2, ... the estimate

(1)

(2) n—1 (p(sk)) 1
(s) B aN ¢ 2 Vi—1"x
|€ |§a+(1+a)(1—ﬁ+1—rx2 } , 1T+ N‘ul(<2)

is valid.
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Proof. We will show that the condition (8) follows from the convergence of the sequence (21).
Since r]((p(zs’k)) = r]((p(zs_l’k)), k=1,2s—1,s=1,2,..., then

s . 1) (p(2sk)). ~1
i e rf (1 + v )>
= ri;i(%s,n—l))r’(ip(Zs,n)) Pl NH}({Z)
o . 1) (p(2s—1k)) ~1
_ 221 e I‘[l <1 + ™ )>
= rig;i(%sfl,nfl))rr(lp(Zsfl,n)) Pl NH]((Z)
B 1) (p(2sk)). 1 _ 1) (p(2sk) ~!
_ P‘g) Zhl <1+ Vlgjlrkp s )> _ Vé?) 215_[1 <1+V]E)1rkp 5,k) )
g LU Se) S B g

In addition,

L 1)

2 _ (1) (p(2sk)) !
% (1
VosqVps™ k=1

0 as s — +oo.
—) -
Ny

Taking into account the inequalities

(2)  25-1 (1) (p(2sk)) ~1 2 1) (p(2sk)). ~1
Has (1 i Vi—1"k ) - 1 (1 N Vi1Tx ) 0 s—12
1 (1) [ NH,((Z) Ng NH;((Z)

Vas—1Y2s™ k=1
and the convergence to zero of the sequence

2) 2 (1) (p2sk)| !
Vés) i Vi—1Tk _
1+ ———— , s=1,2,...,
(1 @) L Nu@
Vas—1Vas k=1 Mk
we conclude that the sequence of sets (7) form a sequence of convergence sets of the BCF (1).
Let us prove that r,(f) > r]((p(s’k)), ifs—k=2m+1,m=20,1,2,..., and r,(f) = r]((p(s’k)), if

s—k=2m,m=0,1,2,..., where the values r,((s), r](f (s/k)) are defined by (17), (22), respectively.

Lets—k=2m+1,m=20,1,2,.... Thenfors =2n,n =1,2,..., we have
(1) (2 (1
A2 @) Ny NVk+)2 N‘uk+)2m+1
Y A A R
+ + +2m+
(1) (2 (2
m , Nwmy N P‘k+)2 N P‘k+)2m
>V + 2 0 e Ty
Vi1 + Vit T Vitom
(1) (2 2
_ V}gn N P(‘k)ﬂ N ;L(lk)+)2 Ni(l%n)l _ r}({p(Zn,k))
5 . : ,
Vit + Vi T Von-1
and fors =2n—1,n=1,2,..., we obtain
(1) (2 (1
J2nt1) _ (1) Ny iy NP‘H)z N‘uk+)2m+1
¢ ‘ VIEZ)l + Vlgi)z 4 VIEZ)z 1
+ +2m+
(1) (2 (2
Sy 4 M Niiy Nt i
‘ Vli)l + V}Si)z o+ Vlgr)z +2
(1) (2 2
—,M 4 N Nﬂka Nué,} _ (p2n=1k))
k s+ 0 4+ 4+ @) k ’
k+1 k+2 2n
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Lets —k = 2m,m=0,1,2,.... Then p(s,k) = s and ") = r"**)),

From the obtained relations between the values r}gs) and r]((p (s/k)) it follows that for the ele-
ments of the sequences (16), (21) the inequalities

-1 (p(sk)) 1

s 2 n-1 (1) _.(s) s (2) n—-1 (1)

Hn ( VieZ1Tk ) M ( Ve Tk )

0< —_— 1+ < 1+ ————
ng:l r,(f,)lr;(qs) g N;t,(f) Z Pl ’"71))1' H N;/l,(( )

hold, where s = 1,2,.... From the obtained inequalities, we conclude that the convergence
of the sequence (21) implies the boundedness of the sequence (16). Thus, the sets (7) form a
sequence of sets of relative stability to perturbations of BCF (1). O

Directing the values ylgl) — 0+, 1/152) — 400,k =1,2,..., we get the following result.
Corollary 3. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15).

If series
i Hn 'ﬁ <1 . Vk—1Vk>
n=1Yn-1Vn j Ny

-1

converges, then the family of sets (13) form a sequence of sets of convergence and relative
stability to perturbations of the BCF (1). Further, the following estimate holds

-1

B S e Y Vk—1Vk
< K1k =
|| a+(1+a)<1_5+1_ Z:: || 1+ N , s=0,1,2,

Example 1. Let relative errors of the elements of the BCF

-1
ag (1 + D Z ) (23)
satisfy the conditions (14). Then the sets
Ey = (0, +c0), Eix) = (0, k/N], i(k)eL, k=12,..., y<l1,

form a sequence of sets of convergence and relative stability to perturbations of the BCF (23).
Further, the following estimate holds

s -1
€0 <ot (11_+; Z 7H<1+k7) L s=0,1,....

n:

Example 2. Let relative errors of the elements of the BCF (23) satisfy the conditions (14). Then
the sets
Eo = (0,4), Ejx—1)=(0, 1/N],  Ejpr) = (0, 2k/N],

where i(2k) € Iy, i(2k —1) € Ix_1,k =1,2,..., form a sequence of sets of convergence and
relative stability to perturbations of the BCF (23). Further, the following estimate holds

_I_oc(l—l—a) XS: [n/2]!

(2[(n—1)/2] _|_1)”' s=0,1,....
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Let us consider the problem of relative stability to perturbations of the BCF (1) in the case
when the partial numerators a;y), i(2k) € I, k = 0,1,2,..., are perturbed by a shortage,
and partial numerators a; 1), i(2k+1) € Ixy1, k =0,1,2,..., by an excess, i.e. under the
condition that the relative errors of the partial numerators have alternating signs.

Theorem 4. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),
and

ajoky <0, i(2k) € Iy, @jor1) 20, i(2k+1) € Iy, k=0,1,2,.... (24)

If the sequence

is bounded, then the sets (7) form a sequence of sets of relative stability to perturbations of the
BCF (1). Further, fors = 0,1,2, ..., the estimate

-1

y )
|£(S)|§% <1+21‘[<1+ U ) ) (25)

n=1k=1 NP‘k

is valid.
Proof. From (6) it follows

|e(5)| < max{|[§i ci(k) € Iy, k= ﬁ}

<1+rxo <1_Z‘71 >+i i ﬁq&%ﬁ(lﬂL“ <1_ Z qzn+1>>

n=1 il,iz,...,inzl k=1 k=0 lk+1 1

+max{|5¢i(k)|:i(k)EIk,k:O,s}<1+ZS: Z Hq Ij T+ &0 )

n=11iq,ip,...,in=1k=

Taking into account the conditions (24) and the inequalities (14), (15), (19), we obtain the esti-
mate (25). Then for |a;| < « < f(¢), |Bigo| < B < f(e), i(k) € Iy k= 0,1,2,..., where

2+M+e—\/(M—s)2+4(M+1)
fle) = 2(M+1) ’

¢ is an arbitrary positive constant, M is a positive constant such that

s FOMONS.
ZH( k1(§)> <M, s=12,...,

1k=1 Ny

the inequalities |£(S)| <e¢s =0,12,..., for the relative errors of the approximants of the
BCEF (1), are valid, which proves the fulfillment of the conditions for determining the sequence
of sets of relative stability to perturbations of (1). O
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The following result can be proved in much the same way as Theorem 3.

Theorem 5. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),
and (24). If there exist a limit of the sequence

(1) Pk 7
n v LT
n=1k=1 N ,‘l/lZ
then the sets (7) form a sequence of sets of convergence and relative stability to perturbations
of the BCF (1). Further, fors = 0,1,2, ..., the estimate

1) (p(sk)) ~t

)] S% (1+Zﬁ<1+1’k 17k ) >

n=1k=1 Ny,(()
is valid.

Corollary 4. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),
and (24). If the series

L Vi—_1Vk
(1+ )

Ny

converges, then the sets (13) form a sequence of sets of relative stability to perturbations of the
BCF (1). Further, the following estimate holds

-1
e < L +oc<1+ YT <1+V" 1”") ) s=0,12,....
1-p n=1k=1 Ny
Example 3. Let relative errors of the elements of the BCF (23) satisfy the conditions (14), (24).
Then the sets
Eo = (0,+), Ej=(0,k/(2N)], k=12,...,

form a sequence of sets of relative stability to perturbations of the BCF (23). Further, the
following estimate holds

S

(s) a -
E |SOH—,;([k/2]—{—1)(2k+1—2[k/2])' s=0,1,2,....
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I'naays B.P., Boanap AL, Pycun P.C. MHoowcunu 36iscHocmi ma i0HocHOI cmitikocmi do 30ypeHb 2i-
JISICMO020 NAHY10208020 0pody 3 dodamHumu enemedmamy // Kapmarceki MaTeM. my6a. — 2024. — T.16,
Nel. —C. 16-31.

Y poboTi AOCAIAXYIOTBCSI IMTaHHS 361HOCTI Ta BiAHOCHOI CTilfKOCTi A0 36ypeHb TiAASICTOTO
AQHITIOTOBOTO APOOY 3 AOAATHMMM eAeMeHTaMM Ta (pikcOBaHOI KiABKICTIO TIAOK pO3rasy XeHHsI.
BcrarnoBaeHO yMOBH, 3a SIKMX MHOXXWHI €A€MEHTIB

Qo= (0,157] x g, +00), Qg = 1) < V), i) e, k=12,...,

Ae 1/(()1) >0,0< pt,(cl) < pt,(f), 0< 1/,51) < VIEZ), k =1,2,..., ¢ HOCAIAOBHICTIO MHOXMH 361XKHOCTI Ta

BiAHOCHOI CTilfKOCTi A0 36ypeHb IiAASICTOrO AQHIFOTOBOTO APOOY

e oy e
by + ;= bigy +

g i ai1)
bo + ;1= biy +

2

1=

=1 1

OtpumaHi yMOBM BMMararTh 0OMeXeHOCTi a60 361KHOCTi TIOCAIAOBHOCTEN, YAEHM SKMX 3areXaTbh
BiA BEAVUMH ;4]((] ), I/IEJ ), j = 1,2. Y Bumaaxy, sSIKIIIO MHOXXIVHAMM €A€MEeHTIB IiAASICTOTO AaHIFOTOBOTO
Apoby € MHOXMHM () = (0, pg] % [vg, +00),i(k) € I, k=0,1,...,8e up >0, v, >0,k=0,1,...,
TO YMOBU 361KHOCTI Ta CTiIKOCTi A0 36ypeHb POPMYAIOIOTECS Uepe3 301KHICTb PSIAIB, YASHN SIKIX
3aAeXaTb BiA BEAWUMH Jik, Vk. TaKoX BCTAHOBAEHO yMOBM BiAHOCHOI CTilfKOCTi AO 36y peHb TiAASCTO-
IO AQHIIIOTOBOTO APOGY, SIKIIIO YaCTMHHI UMCEABHNMKM Ha MApHMX IOBepXax Apoby 30ypIOIOThCS 3a
HeAOCTavelo, a Ha HellapHMX — 3a HAAAMIIIKOM, TOOTO 3a YMOBM 3HAKOIIOUEProBOCTi BiAHOCHMX IIO-
XMOOK UaCTVHHMX UMCEeABHMKIB. B ycix BUITaaKax OTpMMaHO OLIHKM BiAHOCHVX MOXMOOK ITiAXiAHVIX
ApOOiB, SIKi BUHMKAIOTh B Pe3yAbTATi 36y PEeHHS eAeMeHTiB TiAASICTOrO AQHIFOTOBOTO APOOY.

Kntouosi cnosa i ppasis: TIAASICTVI AQHIIOTOBUIL APi6, 361KHICTB, CTiVIKICT AO 30ypeHb, MHOKIMHA
361>XKHOCTi, MHOXMHA CTilIKOCTi A0 306ypeHb.



