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Convergence sets and relative stability to perturbations of a
branched continued fraction with positive elements

Hladun V.R.1, , Bodnar D.I.2, Rusyn R.S.3

In the paper, the problems of convergence and relative stability to perturbations of a branched

continued fraction with positive elements and a fixed number of branching branches are investi-

gated. The conditions under which the sets of elements
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have been established. The obtained conditions require the boundedness or convergence of the

sequences whose members depend on the values µ
(j)
k , ν

(j)
k , j = 1, 2. If the sets of elements of the

branched continued fraction are sets Ωi(k) = (0, µk]× [νk,+∞), i(k) ∈ Ik, k = 0, 1, . . ., where µk > 0,

νk > 0, k = 0, 1, . . ., then the conditions of convergence and stability to perturbations are formulated

through the convergence of series whose terms depend on the values µk, νk. The conditions of

relative resistance to perturbations of the branched continued fraction are also established if the

partial numerators on the even floors of the fraction are perturbed by a shortage and on the odd

ones by an excess, i.e. under the condition that the relative errors of the partial numerators alternate

in sign. In all cases, we obtained estimates of the relative errors of the approximants that arise as a

result of perturbation of the elements of the branched continued fraction.
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Introduction

Continued fractions and their multidimensional generalizations, branched continued frac-

tions (BCF), are effectively used in various fields of mathematics, applied mathematics, physics

and engineering, quantum mechanics and computer science. Artificial intelligence has used

continuous fractions, particularly machine learning, to approximate objective functions and

model complex dependencies between data [18, 26–29, 31]. In cryptography, continued frac-
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tions are used in RSA-like cryptosystems [9, 20, 21, 30]. In signal and image processing, contin-

ued fractions are used for data compression, approximation and reconstruction of signals and

images, and noise detection and filtering [32]. The use of continued fractions and BCF in the

theory of functions is especially effective for constructing rational approximations of special

functions (see [1–5] and also [11–13, 16, 17, 25]).

Current problems in the analytical theory of continued and branched continued fractions

are their convergence and stability to perturbations [6, 10, 23, 24, 33]. The problems of conver-

gence of continued fractions with positive partial numerators and denominators is completely

solved by the Seidel-Stern criterion [23, 24, 33]. For BCF with positive partial denominators

and numerators equal to one, the necessary convergence conditions [6, Theorems 3.2–3.3], the

sufficient convergence conditions [6, Theorems 3.4–3.6] are obtained. At the same time, the

Theorem 3.6 in [6] is a multidimensional analogue of the sufficiency of the Seidel-Stern crite-

rion for continued fractions with positive partial denominators and numerators equal to one.

An analogue of the Seidel-Stern criterion for two-dimensional continued fractions [22] and

BCF of a special form [7, Theorem 2] is established. However, the necessary and sufficient

condition of the Seidel-Stern criterion for the BCF of the general form of the multidimensional

analogue has not been established.

Continued fractions have the property of stability – non-accumulation or limited accumula-

tion of errors arising in the process of their calculations [19]. This property provides prospects

for the applications of this mathematical tool in various fields. When studying the stability

of the BCF, the errors of the approximate fractions that arise as a result of the perturbation

of the elements of the fraction are studied [6]. This task was called the study of stability to

perturbations and is interpreted as a continuous dependence of the BCF on its elements [14].

The analysis of error estimates of continued fractions and BCF shows that they depend

not only on the errors of the elements but also on the elements themselves. Therefore, the

problems of studying the conditions on the elements under which continued and branched

continued fractions will have stability to perturbations and establishing sets of stability to per-

turbations are relevant. The problem of stability to perturbations of BCF with positive partial

denominators and numerators equal to one is completely solved. It is established that the

domain G = (0;+∞) is the domain of stability to perturbations of the mentioned BCF [6, The-

orem 3.28]. In [8, Theorem 1], some sufficient conditions for stability to perturbations of BCF

of the general form with positive elements are established. This work aims to investigate fur-

ther the convergence and stability of BCF of the general form with positive elements and to

establish new sets of convergence and stability.

We consider the BCF

a0

(
b0 +

∞

D

k=1

N

∑
ik=1

ai(k)

bi(k)

)−1

:=
a0

b0 +
N

∑
i1=1

ai(1)

bi(1) +
N

∑
i2=1

ai(2)

bi(2)+. . .

, (1)

where N is the number of branching branches on the fraction floor,

I0 = {0}, Ik = {i(k) = (i1, i2, . . . , ik) : ip = 1, N, p = 1, k}, k = 1, 2, . . . ,

is a sequence of multiindex sets, i(0) = 0, ai(k), bi(k), i(k) ∈ Ik, k = 0, 1, . . ., are the partial

numerators and denominators of BCF, respectively. For convenience, BCF (1) is also written in
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A BCF (1) is called convergent if there is a finite limit of the sequence of its approximants.

The value of this limit is called the BCF value.

In what follows, when studying the convergence of the BCF (1), we will use the formula

for the difference of two approximants, which, taking into account the form of the studied

fraction, will be written as follows
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under the assumption that Q
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6= 0, i(k) ∈ Ik, k = 0, n, Q
(m)
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For the BCF (1) with positive elements, the formula (4) implies the fork property, which is

expressed by a system of inequalities

f (2m−1)
< f (2m+1)

< f (2n)
< f (2n−2) , m = 1, 2, . . . , n = 1, 2, . . . .

From the fork property it follows the next statement.

Proposition 1. BCF (1) with positive elements converges if and only if

lim
m→∞

| f (m+1) − f (m)| = 0.

When studying convergence and relative stability to perturbations, we will use the follow-

ing statement.
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Let {Ωi(k)}, Ωi(k) ⊂ R
2, i(k) ∈ Ik, k = 0, 1, . . ., be a sequence of element sets of BCF (1),

i.e. (ai(k), bi(k)) ∈ Ωi(k), i(k) ∈ Ik, k = 0, 1, . . . . The sequence of element sets {Ωi(k)} is called

the sequence of convergence sets of BCF (1), if the conditions (ai(k), bi(k)) ∈ Ωi(k), i(k) ∈ Ik,

k = 0, 1, . . ., ensure the convergence of this fraction.

Let âi(k), b̂i(k), i(k) ∈ Ik, k = 0, 1, . . ., be perturbations of element values ai(k), bi(k) of BCF
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is called the BCF perturbation to the fraction (1).
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Definition 1. All sets {Ωi(k)}, i(k) ∈ Ik, k = 0, 1, . . . , are called a sequence of sets of relative

stability to perturbations of BCF (1), if for each number ε > 0 there exists a number δ > 0 such

that for all (ai(k), bi(k)) ∈ Ωi(k), ai(k) 6= 0, bi(k) 6= 0, i(k) ∈ Ik, k = 0, 1, . . . , and all (âi(k), b̂i(k)) ∈

Ωi(k), i(k) ∈ Ik, k = 0, 1, . . . , such that

∣∣∣
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∣∣∣ < δ,
∣∣∣
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the inequalities |( f̂ (s) − f (s))/ f (s) | < ε, s = 0, 1, . . . , are satisfied.

For the relative error of the sth approximant of BCF (1) the following equality
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1 Convergence sets

Let sets
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Proof. From (4) it follows the formula for the difference of two approximants of the BCF (1),

which, taking into account the notations (3), (10) and setting n = 2s, m = 2s − 1, we write as
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g
(p(2s,k))
i(k)

=
ai(k)

Q
(p(2s,k))
i(k)

(
bi(k−1) +

N

∑
j=1

ai(k−1)j

Q
(p(2s,k))
i(k−1)j

)−1

=

(bi(k−1)Q
(p(2s,k))
i(k)

ai(k)
+

N

∑
j=1

Q
(p(2s,k))
i(k)

ai(k−1)j

ai(k)Q
(p(2s,k))
i(k−1)j

)−1

.

Then the formula for the difference of two approximants of the BCF (1) will have the form
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.
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Q
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ν
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+
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where k = 1, 2s − 2, s = 2, 3, . . . . Moreover,

Q
(p(2s,2s−1))
i(2s−1)

= bi(2s−1) ≥ ν
(1)
2s−1 = r

(p(2s,2s−1))
2s−1 , Q

(p(2s,2s))
i(2s)

= bi(2s) ≥ ν
(1)
2s = r

(p(2s,2s))
2s ,

where s = 1, 2, . . . . Using the inequality (5), we have

N

∑
ik=1

g
(p(2s,k))
i(k)

≤
N

∑
ik=1

(
ν
(1)
k−1r

(p(2s,k))
k

µ
(2)
k

+
N

∑
j=1

Q
(p(2s,k))
i(k)

ai(k−1)j

ai(k)Q
(p(2s,k))
i(k−1)j

)−1

≤

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

,

where i(k − 1) ∈ Ik−1, k = 1, 2s, s = 1, 2, . . . .

Thus, for the difference of the approximants f (2s) and f (2s−1) of (1) the estimate

f (2s) − f (2s−1) ≤
µ
(2)
0

r
(2s)
0

2s

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

(11)

holds, where r
(2s)
0 is defined in (9) when k = 0.

Let us put n = 2s + 1, m = 2s in the formula (4), then

| f (2s+1) − f (2s)| = f (2s) − f (2s+1)
< f (2s) − f (2s−1) ≤

µ
(2)
0

r
(2s)
0

2s

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

.

Since the sequence µ
(2)
0 /r

(2s)
0 , s = 1, 2, . . ., is bounded, it follows from the estimate (11) and

Proposition 1 that the sets (7) form a sequence of convergence sets of the BCF (1), if the condi-

tion (8) is satisfied.

Corollary 1. The sets (7) are sequence of convergence sets of BCF (1), if

lim
s→+∞

2s

∑
k=1

ν
(1)
k−1r

(p(2s,k))
k

µ
(2)
k

= +∞, (12)

where the values r
(p(2s,k))
k , k = 1, 2s, s = 1, 2, . . . , are defined by (9).

Proof. We consider two cases.

1. Let the sequence ν
(1)
k−1r

(p(2s,k))
k /Nµ

(2)
k , s = 1, 2, . . . , k = 1, 2s, is bounded from below by

some number c > 0. Then (
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

≤
1

1 + c
.

Since

lim
s→+∞

1

(1 + c)2s
= 0,

the condition (8) are satisfied and, therefore, the sets (7) form a sequence of convergence sets

of BCF (1).
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2. Let

lim
s→+∞, k→+∞

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

= 0.

Then the sequence

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

, s = 1, 2, . . . , k = 1, 2s,

is bounded from above by some number C > 0, and

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

≤ 1 −
ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

≤ exp

(
−

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1)

≤ exp

(
−

ν
(1)
k−1r

(p(2s,k))
k

N(1 + C)µ
(2)
k

)
.

Thus, for the difference of two approximants of the BCF (1), the estimate

f (2s) − f (2s−1) ≤
µ
(2)
0

r
(2s)
0

exp

(
−

1

N(1 + C)

2s

∑
k=1

ν
(1)
k−1r

(p(2s,k))
k

µ
(2)
k

)

is valid, from which it follows that the condition (12) ensures the convergence of branched

continued fraction (1).

Note that Corollary 1 is a generalization of the convergence criteria of branched continued

fraction with positive partial denominators and partial numerators equal to one to the case of

BCF of the general form [6].

Corollary 2. The sets

Ωi(k) = (0, µk]× [νk ,+∞), µk > 0, νk > 0, i(k) ∈ Ik, k = 0, 1, . . . , (13)

are sequence of convergence sets of the BCF (1), if the series

∞

∑
k=1

νk−1νk

µk

is divergent.
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2 Sets of relative stability to perturbations

We will prove the following theorem.

Theorem 2. Let there exist constants α, β, 0 ≤ α < 1, 0 ≤ β < 1, α + β 6= 0, such that

|αi(k)| ≤ α, i(k) ∈ Ik, k = 0, 1, 2, . . . , (14)

|βi(k)| ≤ β, i(k) ∈ Ik, k = 0, 1, 2, . . . . (15)

If the sequence

s

∑
n=1

µ
(2)
n

r
(s)
n−1r

(s)
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

, s = 1, 2, . . . , (16)

is bounded, where

r
(s)
k = ν

(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(p2(s,k))
s

ν
(p1(s,k))
s

, (17)

k = 0, s − 1, r
(s)
s = ν

(1)
s , s = 1, 2, . . . , pj(s, k) = j + (−1)j+1(s − k − 2[(s − k)/2]), k = 0, s − 1,

s = 1, 2, . . ., j ∈ {1, 2}, then the sets (7) form a sequence of sets of relative stability to perturba-

tions of the BCF (1). Further, for s = 0, 1, 2, . . . the estimate

|ε(s)| ≤ α + (1 + α)

(
β

1 − β
+

αN

1 − α

s

∑
n=1

µ
(2)
n

r
(s)
n−1r

(s)
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1)
(18)

is valid.

Proof. From the formula (6) it follows the following estimate of the relative error of the sth

approximant of the BCF (1)

|ε(s)| ≤ |α0|+ (1 + |α0|)max{|β̃i(k)| : i(k) ∈ Ik, k = 0, s}

+ (1 + |α0|)max{|α̃i(k)| : i(k) ∈ Ik, k = 1, s}

×
s

∑
n=1

N

∑
i1,i2,...,in=1

γi(n)

n

∏
k=1

q
(s)
i(k)

, s = 0, 1, . . . .

Let us estimate the values

N

∑
ik=1

g
(s)
i(k)

, i(k − 1) ∈ Ik, k = 1, s.

For s − k = 2m + 1, m = 0, 1, 2, . . ., we have

Q
(s)
i(k)

= bi(k) +
N

∑
ik+1=1

ai(k+1)

bi(k+1) +

N

∑
ik+2=1

ai(k+2)

bi(k+2) +

N

∑
is=1

ai(k+2m+1)

bi(k+2m+1)

≥ ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(1)
k+2m+1

ν
(2)
k+2m+1

, i(k) ∈ Ik.
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Let s − k = 2m, m = 1, 2, . . . . Then

Q
(s)
i(k)

= bi(k) +
N

∑
ik+1=1

ai(k+1)

bi(k+1) +

N

∑
ik+2=1

ai(k+2)

bi(k+2) +
. . .

+

N

∑
is=1

ai(k+2m)

bi(k+2m)

≥ ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
k+2m

ν
(1)
k+2m

, i(k) ∈ Ik.

Moreover, for k = s we have Q
(s)
i(s)

= bi(s) ≥ ν
(1)
s , i(s) ∈ Is. Thus, Q

(s)
i(k)

≥ r
(s)
k , i(k) ∈ Ik, k = 0, s,

where the values r
(s)
k are defined by (17). Using the inequality (5), we obtain

N

∑
ik=1

g
(s)
i(k)

≤
N

∑
ik=1

(
ν
(1)
k−1r

(s)
k

µ
(2)
k

+
N

∑
j=1

Q
(s)
i(k)

ai(k−1)j

ai(k)Q
(s)
i(k−1)j

)−1

≤

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

,

for i(k − 1) ∈ Ik−1, k = 1, s. Since (âi(k), b̂i(k)) ∈ Ωi(k), i(k) ∈ Ik, k = 0, 1, 2, . . ., then Q̂
(s)
i(k)

≥ r
(s)
k ,

i(k) ∈ Ik, k = 0, s, and

N

∑
ik=1

ĝ
(s)
i(k)

≤

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

, i(k − 1) ∈ Ik−1, k = 1, s.

Thus,
N

∑
ik=1

q
(s)
i(k)

≤

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

, i(k − 1) ∈ Ik−1, k = 1, s. (19)

The values
N

∑
ik=1

q
(s)
i(k)

γ
(s)
i(k)

, i(k − 1) ∈ Ik−1, k = 1, s,

will be estimated taking into account the parity of the number k. If k = 2m, m = 1, 2, . . ., we

have

N

∑
i2m=1

q
(s)
i(2m)

γ
(s)
i(2m)

=
N

∑
ik=1

ai(2m)

Q
(s)
i(2m−1)

Q
(s)
i(2m)

(1 + ε
(s)
i(2m)

)
=

N

∑
ik=1

ai(2m)

Q
(s)
i(2m−1)

Q̂
(s)
i(2m)

≤
Nµ

(2)
2m

r
(s)
2m−1r

(s)
2m

.

When k = 2m + 1, m = 0, 1, 2, . . ., we obtain

N

∑
i2m+1=1

q
(s)
i(2m+1)

γ
(s)
i(2m+1)

=
N

∑
ik=1

âi(2m+1)

Q̂
(s)
i(2m)

Q̂
(s)
i(2m+1)

(1 + ε
(s)
i(2m+1)

)

=
N

∑
ik=1

âi(2m+1)

Q̂
(s)
i(2m)

Q
(s)
i(2m+1)

≤
Nµ

(2)
2m+1

r
(s)
2mr

(s)
2m+1

.

Thus,
N

∑
ik=1

q
(s)
i(k)

γ
(s)
i(k)

≤
Nµ

(2)
k

r
(s)
k−1r

(s)
k

, i(k − 1) ∈ Ik−1, k = 1, s. (20)
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Now, taking into account the inequalities (14), (15), (19), and (20), we obtain (18). Since the

sequence (16) is bounded, there exists a constant M > 0 such that

s

∑
n=1

µ
(2)
n

r
(s)
n−1r

(s)
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

≤ M, s = 1, 2, . . . ,

and

|ε(s)| ≤ α + (1 + α)(β(1 − β)−1 + α(1 − α)−1NM).

It is easy to show that for |αi(k)| ≤ α < f (ε), |βi(k)| ≤ β < f (ε), i(k) ∈ Ik, k = 0, 1, 2, . . ., where

f (ε) =
1

2

(√(
1 +

2 + ε

NM

)2

+
4ε

NM
−

2 + ε

NM
− 1

)
,

ε is an arbitrary positive constant, the inequalities |ε(s)| < ε, s = 0, 1, 2, . . ., for relative er-

rors of approximants of the BCF (1) hold, which proves the fulfillment of the conditions for

determining the sequence of sets of relative stability to perturbations of this BCF.

The following theorem gives conditions under which the sets (7) form a sequence of sets of

convergence and relative stability to perturbations of the BCF (1).

Theorem 3. Let the relative errors of the elements of the BCF (1) satisfy the conditions (14),

(15). If there exists a limit of the sequence

s

∑
n=1

µ
(2)
n

r
(p(s,n−1))
n−1 r

(p(s,n))
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(s,k))
k

Nµ
(2)
k

)−1

, s = 1, 2, . . . , (21)

where

r
(p(s,k))
k = ν

(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
p(s,k)

ν
(1)
p(s,k)

, k = 0, s − 2, s = 2, 3, . . . ,

r
(p(s,s−1))
s−1 =





ν
(1)
s , s = 2l,

ν
(1)
s−1 +

Nµ
(1)
s

ν
(2)
s

+
Nµ

(2)
s+1

ν
(1)
s+1

, s = 2l + 1,

r
(p(s,s))
s = ν

(1)
s , s = 1, 2, . . . ,

(22)

and

p(s, k) = s + (−1)s+1(s − k − 2[(s − k)/2]), k = 0, s,

then the sets (7) form a sequence of convergence sets and relative stability to perturbations of

BCF (1). Further, for s = 0, 1, 2, . . . the estimate

|ε(s)| ≤ α + (1 + α)

(
β

1 − β
+

αN

1 − α

s

∑
n=1

µ
(2)
n

r
(p(s,n−1))
n−1 r

(p(s,n))
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(s,k))
k

Nµ
(2)
k

)−1)

is valid.
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Proof. We will show that the condition (8) follows from the convergence of the sequence (21).

Since r
(p(2s,k))
k = r

(p(2s−1,k))
k , k = 1, 2s − 1, s = 1, 2, . . ., then

2s

∑
n=1

µ
(2)
n

r
(p(2s,n−1))
n−1 r

(p(2s,n))
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

−
2s−1

∑
n=1

µ
(2)
n

r
(p(2s−1,n−1))
n−1 r

(p(2s−1,n))
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s−1,k))
k

Nµ
(2)
k

)−1

=
µ
(2)
2s

r
(p(2s,2s−1))
2s−1 r

(p(2s,2s))
2s

2s−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

=
µ
(2)
2s

ν
(1)
2s−1ν

(1)
2s

2s−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

.

In addition,

µ
(2)
2s

ν
(1)
2s−1ν

(1)
2s

2s−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

→ 0 as s → +∞.

Taking into account the inequalities

µ
(2)
2s

ν
(1)
2s−1ν

(1)
2s

2s−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

>
1

N

2s

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

> 0, s = 1, 2, . . . ,

and the convergence to zero of the sequence

µ
(2)
2s

ν
(1)
2s−1ν

(1)
2s

2s−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(2s,k))
k

Nµ
(2)
k

)−1

, s = 1, 2, . . . ,

we conclude that the sequence of sets (7) form a sequence of convergence sets of the BCF (1).

Let us prove that r
(s)
k > r

(p(s,k))
k , if s − k = 2m + 1, m = 0, 1, 2, . . ., and r

(s)
k = r

(p(s,k))
k , if

s − k = 2m, m = 0, 1, 2, . . ., where the values r
(s)
k , r

(p(s,k))
k are defined by (17), (22), respectively.

Let s − k = 2m + 1, m = 0, 1, 2, . . . . Then for s = 2n, n = 1, 2, . . ., we have

r
(2n)
k = ν

(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(1)
k+2m+1

ν
(2)
k+2m+1

> ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
k+2m

ν
(1)
k+2m

= ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
2n−1

ν
(1)
2n−1

= r
(p(2n,k))
k ,

and for s = 2n − 1, n = 1, 2, . . ., we obtain

r
(2n+1)
k =ν

(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(1)
k+2m+1

ν
(2)
k+2m+1

>ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
k+2m+2

ν
(1)
k+2m+2

=ν
(1)
k +

Nµ
(1)
k+1

ν
(2)
k+1

+

Nµ
(2)
k+2

ν
(1)
k+2

+
. . .

+

Nµ
(2)
2n

ν
(1)
2n

= r
(p(2n−1,k))
k .
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Let s − k = 2m, m = 0, 1, 2, . . . . Then p(s, k) = s and r
(s)
k = r

(p(s,k))
k .

From the obtained relations between the values r
(s)
k and r

(p(s,k))
k it follows that for the ele-

ments of the sequences (16), (21) the inequalities

0 <

s

∑
n=1

µ
(2)
n

r
(s)
n−1r

(s)
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

<

s

∑
n=1

µ
(2)
n

r
(p(s,n−1))
n−1 r

(p(s,n))
n

n−1

∏
k=1

(
1 +

ν
(1)
k−1r

(p(s,k))
k

Nµ
(2)
k

)−1

hold, where s = 1, 2, . . . . From the obtained inequalities, we conclude that the convergence

of the sequence (21) implies the boundedness of the sequence (16). Thus, the sets (7) form a

sequence of sets of relative stability to perturbations of BCF (1).

Directing the values µ
(1)
k → 0+, ν

(2)
k → +∞, k = 1, 2, . . . , we get the following result.

Corollary 3. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15).

If series
∞

∑
n=1

µn

νn−1νn

n−1

∏
k=1

(
1 +

νk−1νk

Nµk

)−1

converges, then the family of sets (13) form a sequence of sets of convergence and relative

stability to perturbations of the BCF (1). Further, the following estimate holds

|ε(s)| ≤ α + (1 + α)

(
β

1 − β
+

αN

1 − α

s

∑
n=1

µn

νn−1νn

n−1

∏
k=1

(
1 +

νk−1νk

Nµk

)−1)
, s = 0, 1, 2, . . . .

Example 1. Let relative errors of the elements of the BCF

a0

(
1 +

∞

D

k=1

N

∑
ik=1

ai(k)

1

)−1

(23)

satisfy the conditions (14). Then the sets

E0 = (0,+∞), Ei(k) = (0, kγ/N], i(k) ∈ Ik, k = 1, 2, . . . , γ < 1,

form a sequence of sets of convergence and relative stability to perturbations of the BCF (23).

Further, the following estimate holds

|ε(s)| ≤ α +
α(1 + α)

1 − α

s

∑
n=1

nγ
n−1

∏
k=1

(
1 +

1

kγ

)−1

, s = 0, 1, . . . .

Example 2. Let relative errors of the elements of the BCF (23) satisfy the conditions (14). Then

the sets

E0 = (0,+∞), Ei(2k−1) = (0, 1/N], Ei(2k) = (0, 2k/N],

where i(2k) ∈ I2k, i(2k − 1) ∈ I2k−1, k = 1, 2, . . . , form a sequence of sets of convergence and

relative stability to perturbations of the BCF (23). Further, the following estimate holds

|ε(s)| ≤ α +
α(1 + α)

1 − α

s

∑
n=1

[n/2]!

(2[(n − 1)/2] + 1)!!
, s = 0, 1, . . . .
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Let us consider the problem of relative stability to perturbations of the BCF (1) in the case

when the partial numerators ai(2k), i(2k) ∈ I2k, k = 0, 1, 2, . . ., are perturbed by a shortage,

and partial numerators ai(2k+1), i(2k + 1) ∈ I2k+1, k = 0, 1, 2, . . ., by an excess, i.e. under the

condition that the relative errors of the partial numerators have alternating signs.

Theorem 4. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),

and

αi(2k) ≤ 0, i(2k) ∈ I2k, αi(2k+1) ≥ 0, i(2k + 1) ∈ I2k+1, k = 0, 1, 2, . . . . (24)

If the sequence

s

∑
n=1

n

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

, s = 1, 2, . . . ,

is bounded, then the sets (7) form a sequence of sets of relative stability to perturbations of the

BCF (1). Further, for s = 0, 1, 2, . . ., the estimate

|ε(s)| ≤
β

1 − β
+ α

(
1 +

s

∑
n=1

n

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1)
(25)

is valid.

Proof. From (6) it follows

|ε(s)| ≤ max
{
|β̃i(k)| : i(k) ∈ Ik, k = 0, s

}

×

(
(1 + α0)

(
1 −

N

∑
i1=1

q
(s)
i(1)

)
+

s

∑
n=1

N

∑
i1,i2,...,in=1

n

∏
k=1

q
(s)
i(k)

n

∏
k=0

(1 + α̃i(k))

(
1 −

N

∑
ik+1=1

q
(s)
i(n+1)

))

+ max
{
|α̃i(k)| : i(k) ∈ Ik, k = 0, s

}(
1 +

s

∑
n=1

N

∑
i1,i2,...,in=1

n

∏
k=0

q
(s)
i(k)

n−1

∏
k=1

(1 + α̃i(k))

)
.

Taking into account the conditions (24) and the inequalities (14), (15), (19), we obtain the esti-

mate (25). Then for |αi(k)| ≤ α < f (ε), |βi(k)| ≤ β < f (ε), i(k) ∈ Ik, k = 0, 1, 2, . . ., where

f (ε) =
2 + M + ε −

√
(M − ε)2 + 4(M + 1)

2(M + 1)
,

ε is an arbitrary positive constant, M is a positive constant such that

s

∑
n=1

n

∏
k=1

(
1 +

ν
(1)
k−1r

(s)
k

Nµ
(2)
k

)−1

≤ M, s = 1, 2, . . . ,

the inequalities |ε(s)| < ε, s = 0, 1, 2, . . ., for the relative errors of the approximants of the

BCF (1), are valid, which proves the fulfillment of the conditions for determining the sequence

of sets of relative stability to perturbations of (1).
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The following result can be proved in much the same way as Theorem 3.

Theorem 5. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),

and (24). If there exist a limit of the sequence

s

∑
n=1

n

∏
k=1

(
1 +

ν
(1)
k−1r

(p(s,k))
k

Nµ
(2)
l

)−1

,

then the sets (7) form a sequence of sets of convergence and relative stability to perturbations

of the BCF (1). Further, for s = 0, 1, 2, . . ., the estimate

|ε(s)| ≤
β

1 − β
+ α

(
1 +

s

∑
n=1

n

∏
k=1

(
1 +

ν
(1)
k−1r

(p(s,k))
k

Nµ
(2)
k

)−1)

is valid.

Corollary 4. Let relative errors of the elements of the BCF (1) satisfy the conditions (14), (15),

and (24). If the series
∞

∑
n=1

n

∏
k=1

(
1 +

νk−1νk

Nµk

)−1

converges, then the sets (13) form a sequence of sets of relative stability to perturbations of the

BCF (1). Further, the following estimate holds

|ε(s)| ≤
β

1 − β
+ α

(
1 +

s

∑
n=1

n

∏
k=1

(
1 +

νk−1νk

Nµk

)−1)
, s = 0, 1, 2, . . . .

Example 3. Let relative errors of the elements of the BCF (23) satisfy the conditions (14), (24).

Then the sets

E0 = (0,+∞), Ei(k) = (0, k/(2N)], k = 1, 2, . . . ,

form a sequence of sets of relative stability to perturbations of the BCF (23). Further, the

following estimate holds

|ε(s)| ≤ α +
s

∑
k=1

α

([k/2] + 1)(2k + 1 − 2[k/2])
, s = 0, 1, 2, . . . .
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Гладун В.Р., Боднар Д.I., Русин Р.С. Множини збiжностi та вiдносної стiйкостi до збурень гiл-

лястого ланцюгового дробу з додатними елементами // Карпатськi матем. публ. — 2024. — Т.16,

№1. — C. 16–31.

У роботi дослiджуються питання збiжностi та вiдносної стiйкостi до збурень гiллястого

ланцюгового дробу з додатними елементами та фiксованою кiлькiстю гiлок розгалуження.

Встановлено умови, за яких множини елементiв

Ω0 = (0, µ
(2)
0 ]× [ν

(1)
0 ,+∞), Ωi(k) = [µ

(1)
k , µ

(2)
k ]× [ν

(1)
k , ν

(2)
k ], i(k) ∈ Ik, k = 1, 2, . . . ,

де ν
(1)
0 > 0, 0 < µ

(1)
k < µ

(2)
k , 0 < ν

(1)
k < ν

(2)
k , k = 1, 2, . . ., є послiдовнiстю множин збiжностi та

вiдносної стiйкостi до збурень гiллястого ланцюгового дробу

a0

b0 +

N

∑
i1=1

ai(1)

bi(1) +

N

∑
i2=1

ai(2)

bi(2) +
. . .

+

N

∑
ik=1

ai(k)

bi(k) +
. . . .

Отриманi умови вимагають обмеженостi або збiжностi послiдовностей, члени яких залежать

вiд величин µ
(j)
k , ν

(j)
k , j = 1, 2. У випадку, якщо множинами елементiв гiллястого ланцюгового

дробу є множини Ωi(k) = (0, µk]× [νk,+∞), i(k) ∈ Ik, k = 0, 1, . . ., де µk > 0, νk > 0, k = 0, 1, . . .,

то умови збiжностi та стiйкостi до збурень формулюються через збiжнiсть рядiв, члени яких

залежать вiд величин µk, νk. Також встановлено умови вiдносної стiйкостi до збурень гiллясто-

го ланцюгового дробу, якщо частиннi чисельники на парних поверхах дробу збурюються за

недостачею, а на непарних — за надлишком, тобто за умови знакопочерговостi вiдносних по-

хибок частинних чисельникiв. В усiх випадках отримано оцiнки вiдносних похибок пiдхiдних

дробiв, якi виникають в результатi збурення елементiв гiллястого ланцюгового дробу.

Ключовi слова i фрази: гiллястий ланцюговий дрiб, збiжнiсть, стiйкiсть до збурень, множина

збiжностi, множина стiйкостi до збурень.


