
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2024, 16 (2), 379–390 Карпатськi матем. публ. 2024, Т.16, №2, С.379–390

doi:10.15330/cmp.16.2.379-390

About properties and the monomiality principle of Bell-based
Apostol-Bernoulli-type polynomials

Ramı́rez W.1,2, Cesarano C.2, , Wani S.A.3, Yousuf S.4, Bedoya D.5

This article investigates the properties and monomiality principle within Bell-based Apostol-

Bernoulli-type polynomials. Beginning with the establishment of a generating function, the study

proceeds to derive explicit expressions for these polynomials, providing insight into their structural

characteristics. Summation formulae are then derived, facilitating efficient computation and ma-

nipulation. Implicit formulae are also examined, revealing underlying patterns and relationships.

Through the lens of the monomiality principle, connections between various polynomial aspects are

elucidated, uncovering hidden symmetries and algebraic properties. Moreover, connection formu-

lae are derived, enabling seamless transitions between different polynomial representations. This

analysis contributes to a comprehensive understanding of Bell-based Apostol-Bernoulli-type poly-

nomials, offering valuable insights into their mathematical nature and applications.
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1 Introduction and preliminaries

Special polynomials are distinguished by their unique properties or particular importance

across diverse mathematical domains. Well-recognized examples encompass families like Leg-

endre, Chebyshev, Hermite, Bell, and Touchard polynomials. These polynomial classes fre-

quently emerge in mathematical physics, engineering, computer science, and various scientific

fields. Special polynomials of two variables hold significant importance across mathematical

disciplines due to their versatile applications and unique properties. These polynomials, often

expressed as functions of two variables, play crucial roles in fields such as algebraic geometry,

combinatorics, and mathematical physics. They serve as fundamental tools for representing

complex surfaces, solving systems of equations, and studying intricate mathematical struc-

tures. Examples include bivariate orthogonal polynomials like Jacobi, Hermite, and Legen-

dre polynomials, which find applications in approximation theory, numerical analysis, and

probability theory. Moreover, special families of bivariate polynomials, such as Schur poly-
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nomials and symmetric functions, are central in algebraic combinatorics and representation

theory, offering insights into symmetric functions, partition theory, and symmetric group rep-

resentations. Through their rich mathematical properties and diverse applications, special

polynomials of two variables continue to contribute significantly to advancing theoretical un-

derstanding and practical problem-solving in various mathematical contexts, as evidenced in

references such as [1–3, 6, 12, 13, 17–20].

One of the significant classes of two variables, special polynomials, are Bell polynomials.

The Bell polynomials are a powerful mathematical tool for describing and analysing combina-

torial structures and algebraic relationships. Named after the renowned mathematician Eric

Temple Bell, these polynomials play a fundamental role in various areas of mathematics, in-

cluding combinatorics, number theory, and mathematical physics. Originating from the study

of exponential generating functions, Bell polynomials provide a systematic way to express

and manipulate certain polynomial sequences, making them invaluable in theoretical and ap-

plied contexts. With their ability to encode combinatorial information and generate efficient

algorithms for solving combinatorial problems, Bell polynomials have found wide-ranging

applications in fields such as probability theory, statistical mechanics, and computer science.

In this introduction, we will explore Bell polynomials’ key properties and applications, shed-

ding light on their significance in mathematical research and problem-solving. The generating

function of these polynomials in two variables (see, [9]) is represented as
∞

∑
s=0

Bs(ω, ̟)
ts

s!
= eωt+̟(et−1). (1)

Substituting ω = 0, gives Bs(0; ̟) = Bs(̟), which is known as classical Bell polynomials

(or exponential polynomials) and is given by following generating function (see, [2–5]), which

is defined as follows
∞

∑
s=0

Bs(̟)
ts

s!
= e̟(et−1). (2)

If we take ̟ = 1 in (2) we obtain Bs(1) = Bs, known as Bell numbers (see, [2–5])
∞

∑
s=0

Bs
ts

s!
= e(e

t−1).

For s ∈ N0 and κ, β > −1, the sth Jacobi polynomial P
(κ,β)
s (ω) may be defined by means of

Rodrigues’ formula (see, [11, 16])

P
(κ,β)
s (ω) = (1 − ω)−κ(1 + ω)−β (−1)s

2ss!

ds

dωs
{(1 − ω)s+κ(1 + ω)s+κ}, ω ∈ C \ {−1, 1}.

The connection between the sth monomial ωs and the sth Jacobi polynomial P
(κ,β)
s (ω) may be

written as follows (see, [11, equation (2), p. 262])

ωs = s!
s

∑
k=0

(

s + κ

s − k

)

(−1)k (1 + κ + β + 2k)

(1 + κ + β + k)s+1
P
(κ,β)
k (1 − 2ω). (3)

For s ∈ N0 and ω ∈ C, the Stirling numbers of second kind S(s, k) are defined by means of

the following expansion (see, [7, Theorem B, p. 207])

ωs =
s

∑
k=0

(

ω

k

)

k!S(s, k), (4)

so that S(s, k) = 0 if 1 6 s < k. We put S(0, 0) = 1 and S(0, k) = 0 for k > 1.
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Proposition 1. For m ∈ N, let {B
[m−1]
s (ω)}s≥0 be the sequence of generalized Bernoulli poly-

nomials of level m. Then, the following identities are satisfied (see, [10, equation (4)])

ωs =
s

∑
k=0

(

s

k

)

k!

(k + m)!
B
[m−1]
s−k (ω). (5)

The paper enhances our understanding of Bell-based Apostol-Bernoulli-type polynomials,

providing valuable insights into their mathematical structure and properties. In Section 2, the

study establishes the domain of Bell-based Apostol-Bernoulli-type polynomials and derives

connection formulae to facilitate transitions between different representations and formula-

tions of these polynomials. Additionally, explicit forms of these polynomials are derived, of-

fering a clear expression of their structure and characteristics. Section 3 scrutinizes implicit

formulae, revealing underlying patterns and relationships that contribute to a deeper under-

standing of their properties. In Section 4, the paper rigorously analyzes and explores the

monomiality principle for these polynomials. Finally, the paper concludes with a summary

in the conclusion section.

2 Bell-based Apostol-Bernoulli-type polynomials

In this section, we explore the generating function of Bell-based Apostol-Bernoulli-type

polynomials of order α and investigate their various relationships, including correlation for-

mulae, implicit summation formulae, and partial derivative formulae.

Definition 1. For any α ∈ C and s ∈ N0, the Bell-based Apostol-Bernoulli-type polynomial of

order α is defined as
∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

( t2

2λet − 2

)α
eωt+̟(et−1), |t| < | log λ|, 1α := 1. (6)

Substituting ω = 0 and ̟ = 1 in (6), let us define a Bell-based Apostol-Bernoulli-type

number of order α, as follows

∞

∑
s=0

BR
(α)
s (0, 1; λ)

ts

s!
=

( t2

2λet − 2

)α
e(e

t−1).

Remark 1. If we choose α = 0 in (6), we have to reduce Bell-based Apostol-Bernoulli-type

polynomials of order α into bivariate Bell polynomials defined in (1) as follows

∞

∑
s=0

BR
(0)
s (ω, ̟; λ)

ts

s!
= eωt+̟(et−1) =

∞

∑
s=0

Bs(ω, ̟)
ts

s!
.

Remark 2. If we choose ̟ = 0 and λ = 1 in (6), we obtain familiar generalized Bernoulli-type

polynomials R
(α)
s (ω) (see, [14])

∞

∑
s=0

BR
(α)
s (ω, 0; 1)

ts

s!
=

( t2

2et − 2

)α
eωt =

∞

∑
s=0

R
(α)
s (ω)

ts

s!
.

Remark 3. If we choose ̟ = 0, λ = 1, and α = 1 in (6) the Bell-based Apostol-Bernoulli-type

polynomials BR
(α)
s (ω, ̟; λ) reduces to usual Bernoulli-type polynomials Rs(ω) (see, [14])

∞

∑
s=0

BR
(1)
s (ω, 0; 1)

ts

s!
=

( t2

2et − 2

)

eωt =
∞

∑
s=0

Rs(ω)
ts

s!
.
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Remark 4. If we choose λ = 1, then (6) reduces to Bell-based Bernoulli-type polynomials of

order α
∞

∑
s=0

BR
(α)
s (ω, ̟; 1)

ts

s!
=

( t2

2et − 2

)α
eωt+̟(et−1) =

∞

∑
s=0

BR
(α)
s (ω, ̟)

ts

s!
.

Below we show particular examples of these polynomials.

Example 1. For α = 1 and λ = 3 we have the following polynomials:

BR
(1)
0 (ω, ̟; 3) = 0, BR

(1)
1 (ω, ̟; 3) = 0, BR

(1)
2 (ω, ̟; 3) = 6,

BR
(1)
3 (ω, ̟; 3) = 30ω + 30̟ − 45, BR

(1)
4 (ω, ̟; 3) =

(ω + ̟)2 − 3ω + 3

4
−

̟

2
.

Example 2. For α = 2 and λ = 2 we have the following polynomials:

BR
(2)
0 (ω, ̟; 2) = BR

(2)
1 (ω, ̟; 2) = BR

(2)
2 (ω, ̟; 2) = BR

(2)
3 (ω, ̟; 2) = 0,

BR
(2)
4 (ω, ̟; 2) = 6, BR

(2)
5 (ω, ̟; 2) = 30ω + 30̟ − 120.

Theorem 1. For α ∈ C and s ∈ N0, the following relation

BR
(α)
s (ω, ̟; λ) =

s

∑
k=0

(

s

k

)

R
(α)
k (ω; λ)Bs−k(̟) (7)

holds, where R
(α)
k (ω; λ) are referred to as generalized Apostol-Bernoulli-type polynomials.

Proof. By using the relation (6), we have

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

( t2

2λet − 2

)α
eωt+̟(et−1)

=
( t2

2λet − 2

)α
eωte̟(et−1) = ∑

k≥0

R
(α)
k (ω; λ)

tk

k!

∞

∑
s=0

Bs(̟)
ts

s!
.

Applying the series rearrangement, we obtain

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

∞

∑
s=0

s

∑
k=0

(

s

k

)

R
(α)
k (ω; λ)Bs−k(̟)

ts

s!
.

After simplification by using series rearrangement, we obtain the result (7).

Theorem 2. For any α ∈ C and s ∈ N0, the following relation holds true

BR
(α)
s (ω, ̟; λ) =

s

∑
k=0

(

s

k

)

BR
(α)
s (λ)Bs−k(ω, ̟). (8)

Proof. By using result (6), we obtain

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

( t2

2λet − 2

)α
eωt+̟(et−1)

=
( t2

2λet − 2

)α
eωte̟(et−1) = ∑

k≥0

R
(α)
k (λ)

tk

k!

∞

∑
s=0

Bs(ω, ̟)
ts

s!
.

After simplification by using series rearrangement, we obtain the result (8).
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Theorem 3. For any s ∈ N0 and α ∈ C, the Bell-based Apostol-Bernoulli-type polynomials of

order α satisfies the relation

BR
(α)
s (ω, ̟; λ) =

s

∑
k=0

(

s

k

)

BR
(α)
k (̟; λ)ωs−k. (9)

Proof. Using the relation (6), we get

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

( t

λet − 1

)α
eωt+̟(et−1) =

( t2

2λet − 2

)α
e̟(et−1)eωt

= ∑
k≥0

BR
(α)
k (̟; λ)

tk

k!

∞

∑
s=0

(ωt)s

s!
=

∞

∑
s=0

∑
k≥0

BR
(α)
k (̟; λ)

ωs

s!

ts+k

k!
.

After, applying series rearrangement, we obtain

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
=

∞

∑
s=0

s

∑
k=0

(

s

k

)

BR
(α)
k (̟; λ)ωs−k ts

s!
.

After simplification by using series rearrangement, we obtain the result (9).

Theorem 4. For any α ∈ C and s ∈ N0, the following relation holds true

BR
(α)
s (ω + ̟, z; λ) =

s

∑
k=0

(

s

k

)

R
(α)
k (ω; λ)Bs−k(̟, z). (10)

Proof. By using the result (6), we get

∞

∑
s=0

BR
(α)
s (ω + ̟, z; λ)

ts

s!
=

( t2

2λet − 2

)α
e(ω+̟)t+z(et−1)

=
( t2

2λet − 2

)α
eωte̟t+z(et−1) = ∑

s≥0

R
(α)
k (ω; λ)

tk

k!

∞

∑
s=0

Bs(̟, z)
ts

s!
.

After simplification by using series rearrangement, we obtain the result (10).

From the identity (3) and Proposition 1, we can derive several intriguing algebraic relations

that link the polynomials BR
(α)
s (ω, ̟; λ) with other polynomial families, including Jacobi poly-

nomials, generalized Bernoulli polynomials of level m, and Genocchi polynomials.

Theorem 5. For α ∈ C, the Bell-based Apostol-Bernoulli-type polynomials of order α, are

related with the Jacobi polynomials P
(κ,β)
s (ω), by means of the following identity

BR
(α)
s (ω, ̟; λ)

=
s

∑
k=0

s

∑
j=k

(−1)j

(

s

j

)(

j + κ

j − k

)

BR
(α)
s−j(̟; λ)(s − j)!

(1 + κ + β + 2j)

(1 + κ + β + j)s−j+1
P
(κ,β)
k (1 − 2ω).

(11)
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Proof. By substituting (3) into the right-hand side of (9), we have the following result.

BR
(α)
s (ω, ̟; λ)

=
s

∑
j=0

(

s

j

)

BR
(α)
j (̟; λ)(s − j)!

s−j

∑
k=0

(

s − j + κ

s − j − k

)

(−1)k (1 + κ + β + 2k)

(1 + κ + β + k)s−j+1
P
(κ,β)
k (1 − 2ω)

=
s

∑
j=0

s−j

∑
k=0

(

s

j

)

BR
(α)
j (̟; λ)(s − j)!

(

s − j + κ

s − j − k

)

(−1)k (1 + κ + β + 2k)

(1 + κ + β + k)s−j+1
P
(κ,β)
k (1 − 2ω)

=
s

∑
k=0

s−k

∑
j=0

(

s

j

)(

n − j + κ

s − j − k

)

BR
(α)
j (̟; λ)(s − j)!(−1)j (1 + κ + β + 2j)

(1 + κ + β + j)s−j+1
P
(κ,β)
k (1 − 2ω)

=
s

∑
k=0

s

∑
j=k

(−1)j

(

s

j

)(

j + κ

j − k

)

BR
(α)
s−j(̟; λ)(s − j)!

(1 + κ + β + 2j)

(1 + κ + β + j)s−j+1
P
(κ,β)
k (1 − 2ω).

Consequently, we obtain identity (11).

Theorem 6. For α ∈ C, the Bell-based Apostol-Bernoulli-type polynomials of order α, are re-

lated to the generalized Bernoulli polynomials of level m B
[m−1]
s (ω), by means of the following

identity

BR
(α)
s (ω, ̟; λ) =

s

∑
k=0

s

∑
j=k

(

s

j

)(

j

k

)

BR
(α)
s−j(̟; λ)

k!

(k + m)!
B
[m−1]
j−k (ω). (12)

Proof. By substituting (5) into the right-hand side of (9), we get the following result

BR
(α)
s (ω, ̟; λ) =

s

∑
j=0

(

s

j

)

BR
(α)
j (̟; λ)

s−j

∑
k=0

(

s − j

k

)

k!

(k + m)!
B
[m−1]
s−j−k(ω)

=
s

∑
j=0

s−j

∑
k=0

(

s

j

)

BR
(α)
j (̟; λ)

(

s − j

k

)

k!

(k + m)!
B
[m−1]
s−j−k(ω)

=
s

∑
k=0

s−k

∑
j=0

(

s

j

)(

s − j

k

)

BR
(α)
j (̟; λ)

k!

(k + m)!
B
[m−1]
s−j−k(ω)

=
s

∑
k=0

s

∑
j=k

(

s

j

)(

j

k

)

BR
(α)
s−j(̟; λ)

k!

(k + m)!
B
[m−1]
j−k (ω).

Consequently, we obtain identity (12).

Theorem 7. For α ∈ C, the Bell-based Apostol-Bernoulli-type polynomials of order α are re-

lated to the Stirling numbers of the second kind, using the following identity

BR
(α)
s (ω, ̟; λ) =

s

∑
k=0

(

s

k

)

BR
(α)
k (̟; λ)

s

∑
k=0

(

ω

k

)

k!S(s − j, k).

Proof. After replacing (4) in the right-hand side of (9), we can proceed by applying the proof

provided in Theorem 5, with appropriate adaptations.
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3 Implicit summation formulae

This section discusses useful identities such as the implicit summation formula for the

Bell-based Apostol-Bernoulli-type polynomials of order α, which is defined in the following

theorems.

Theorem 8. For arbitrary s ∈ N0 and α1, α2 ∈ N the following relation holds true

BR
(α1+α2)
s (ω1 + ω2, ̟1 + ̟2; λ) =

s

∑
k=0

(

s

k

)

BR
(α1)
k (ω1, ̟1; λ)BR

(α2)
s−k (ω2, ̟2; λ). (13)

Proof. From the relation (6) we get

∞

∑
s=0

BR
(α1+α2)
s (ω1 + ω2, ̟1 + ̟2; λ)

ts

s!
=

t2α1 eω1t+̟1(e
t−1)

(2λet − 2)α1

t2α2 eω2t+̟2(e
t−1)

(2λet − 2)α2

= ∑
k≥0

BR
(α1)
k (ω1, ̟1; λ)

tk

k!

∞

∑
s=0

BR
(α2)
s (ω2, ̟2; λ)

ts

s!

=
∞

∑
s=0

∑
k≥0

BR
(α1)
k (ω1, ̟1; λ)BR

(α2)
s (ω2, ̟2; λ)

ts+k

s!k!
.

Using the series rearrangement technique, we obtain

∞

∑
s=0

BR
(α1+α2)
s (ω1 + ω2, ̟1 + ̟2; λ)

ts

s!
=

∞

∑
s=0

s

∑
k=0

(

s

k

)

BR
(α1)
k (ω1, ̟1; λ)BR

(α2)
s−k (ω2, ̟2; λ)

ts

s!
.

Now, equating both sides, we obtained the result (13).

Theorem 9. For any arbitrary α ∈ N and s ∈ N0, the following relation holds true

BR
(α)
s+1(ω + 1, ̟; λ)− BR

(α)
s+1(ω, ̟; λ) =

s

∑
k=0

(

s + 1

k

)

BR
(α)
k (ω, ̟; λ). (14)

Proof. Using the relation (6), we get

∞

∑
s=0

BR
(α)
s (ω + 1, ̟; λ)

ts

s!
−

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!

=
t2αe(ω+1)t+̟(et−1)

(2λet − 2)α
−

t2αeωt+̟(et−1)

(2λet − 2)α

=
t2αeωt+̟(et−1)(et − 1)

(2λet − 2)α
= ∑

k≥0
BR

(α)
k (ω, ̟; λ)

tk

k!

∞

∑
s=0

ts+1

(s + 1)!
.

Applying the series rearrangement technique implies the desired result (14)

Theorem 10. For any arbitrary α ∈ N and s, r ∈ N0, the following relation holds true

BR
(α)
s+r(ω, ̟; λ) =

s,r

∑
n,m=0

(

s

n

)(

r

m

)

(ρ − ω)n+m
BR

(α)
s+r−j−k(ω, ̟; λ). (15)
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Proof. Replacing t by t + η in expression (6), it follows that

∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

(t + η)s

s!
=

(t + η)2α

(2λet+η − 2)α
eω(t+η)+̟(et+η−1).

Substituting the first part of the exponential term from the right hand side to the left hand side

in the preceding expression, we have

e−ω(t+η)
∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

(t + η)s

s!
=

(t + η)2α

(2λet+η − 2)α
e̟(et+η−1),

which, in view of well well-known series manipulation formula

∞

∑
M=0

L(M)
(t + η)M

M!
=

∞

∑
s,r=0

L(s + r)
ts

s!

ηr

r!
,

becomes

e−ω(t+η)
∞

∑
s,r=0

BR
(α)
s+r(ω, ̟; λ)

ts

s!

ηr

r!
=

(t + η)2α

(2λet+η − 2)α
e̟(et+η−1). (16)

Replacing ω by ρ in the previous expression (16), it follows that

e−ρ(t+η)
∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
=

(t + η)2α

(2λet+η − 2)α
e̟(et+η−1). (17)

Comparing expressions (16) and (17), we find

e−ω(t+η)
∞

∑
s,r=0

BR
(α)
s+r(ω, ̟; λ)

ts

s!

ηr

r!
= e−ρ(t+η)

∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
.

Substituting the first part of the exponential term from the right hand side to the left hand side

in the preceding expression, we have

e(ρ−ω)(t+η)
∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
=

∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
.

Thus, the preceding expression can further be simplified as

∞

∑
n,m=0

(ρ − ω)n+m tn

n!

ηm

m!

∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
=

∞

∑
s,r=0

BR
(α)
s+r(ρ, ̟; λ)

ts

s!

ηr

r!
.

Using series rearrangement in the left hand side of the previous expression and comparing the

like exponents of t and η on both sides, assertion (15) is established.

4 Monomiality principle

The concept of monomiality traces back to 1941, with J.F. Steffenson introducing the powe-

roid notion [15], later refined by G. Dattoli [8]. The operators M̂ and D̂ serve as both mul-

tiplicative and derivative operators for a polynomial set {bs(u)}s∈N , satisfying the following

expressions

bs+1(u) = M̂{bs(u)} (18)
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and

s bs−1(u) = D̂{bs(u)}. (19)

The set {bs(u)}s∈N manipulated by these operators is termed a quasi-monomial and must

adhere to the formula

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂,

displaying a Weyl group structure. The properties of M̂ and D̂ determine the characteristics

of the quasi-monomial set {bs(u)}s∈N:

(i) bs(u) satisfies the differential equation

M̂D̂{bs(u)} = s bs(u), (20)

if M̂ and D̂ have differential realizations;

(ii) the explicit form of bs(u) is given by

bs(u) = M̂s {1}, (21)

with b0(u) = 1;

(iii) the generating relation in exponential form for bs(u) can be expressed as

etM̂{1} =
∞

∑
s=0

bs(u)
ts

s!
, |t| < ∞,

using identity (21).

The primary objective of the monomiality principle is to identify operators for multiplica-

tion and differentiation. Additionally, in the context of the monomiality principle, we estab-

lish the following outcomes to characterize the Bell-based Apostol-Bernoulli-type polynomials

BR
(α)
s (ω, ̟; λ).

Theorem 11. For α ∈ C and s ∈ N, the following multiplicative and derivative operators

BR
(α)
s+1(ω, ̟; λ) = M̂

BR
(α)
s

= ω + ̟e∂w + α(2λe∂w − 2)
(

2
2λe∂w − 2

∂w
− 2λe∂w

)

(22)

and

BR
(α)
s−1(ω, ̟; λ) = D̂

BR
(α)
s

= ∂w, (23)

respectively, hold true.

Proof. Taking the derivatives of the relation (6) with respect to t on both sides, we have

∂t

[ t2α

(2λet − 2)α
eωt+̟(et−1)

]

= ∂t

[ ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!

]

.

The preceding expression can further be simplified as

[

ω + ̟et + α(2λet − 2)
(

2
2λet − 2

t
− 2λet

)] t2αeωt+̟(et−1)

(2λet − 2)α
=

∞

∑
s=0

s BR
(α)
s (ω, ̟; λ)

ts−1

s!
.
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Inserting the left hand side of expression (6) in the left hand side of previous expression, it

follows that

[

ω + ̟et + α(2λet − 2)
(

2
2λet − 2

t
− 2λet

)] ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!

=
∞

∑
s=0

s BR
(α)
s (ω, ̟; λ)

ts−1

s!
.

(24)

Further, differentiating expression (6) with respect to w, it follows that

∂w

[( t2

2λet − 2

)α
eωt+̟(et−1)

]

= t
( t2

2λet − 2

)α
eωt+̟(et−1).

Inserting left part of expression (6), it follows the identity expression

∂w

[ ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!

]

= t
∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!
. (25)

Further replacing s with s + 1 in the right hand side of expression (24), we find

[

ω + ̟et + α(2λet − 2)
(

2
2λet − 2

t
− 2λet

)] ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

s!

=
∞

∑
s=0

(s + 1) BR
(α)
s+1(ω, ̟; λ)

ts

(s + 1) s!
.

Therefore, in view of (18) and identity expression (25) in the resultant equation, the asser-

tion (22) is proved.

The expression (25) can further be written as

∂w

[ ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

tn

n!

]

=
∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts+1

s!
.

On substituting s with s − 1 in the right hand side of above equation, we find

∂w

[ ∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

tn

n!

]

=
∞

∑
s=0

BR
(α)
s (ω, ̟; λ)

ts

(s − 1)!
.

Thus, in view of expression (19), the assertion (23) follows.

Next, we find the differential equation satisfied by these polynomials.

Theorem 12. The Bell-based Apostol-Bernoulli-type polynomials of order α BR
(α)
s (ω, ̟; λ)

satisfy the succeeding differential equation

[

ω ∂w + ̟e∂w ∂w + α(2λe∂w − 2)
(

2
2λe∂w − 2

∂w
− 2λe∂w

)

∂w − s
]

BR
(α)
s (ω, ̟; λ) = 0. (26)

Proof. Inserting expression (22) and (23) in expression (20), we obtain assertion (26).
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5 Conclusion

This article has thoroughly investigated the properties and monomiality principle inherent

in Bell-based Apostol-Bernoulli-type polynomials. Commencing with the establishment of a

generating function, the study progressed to derive explicit expressions for these polynomi-

als, shedding light on their structural characteristics. The derivation of summation formulae

further enhanced the efficiency of computation and manipulation. Additionally, the exami-

nation of implicit formulae unveiled underlying patterns and relationships, providing deeper

insights into the nature of these polynomials. Through the application of the monomiality

principle, connections between various aspects of the polynomials were elucidated, reveal-

ing hidden symmetries and algebraic properties. Furthermore, the derivation of connection

formulae facilitated seamless transitions between different polynomial representations, con-

tributing significantly to our comprehensive understanding of Bell-based Apostol-Bernoulli-

type polynomials and their mathematical applications.

Therefore, this study has made significant strides in unravelling the intricacies of Bell-based

Apostol-Bernoulli-type polynomials. By systematically exploring their properties, employing

the monomiality principle, and deriving essential formulae, this research has provided valu-

able insights into these polynomials’ mathematical nature and applications. The findings pre-

sented herein offer a foundation for further investigations into these polynomials’ theoretical

and practical aspects, potentially opening avenues for advancements in various mathematical

disciplines. Overall, this study contributes to the broader body of knowledge surrounding

polynomial theory and its applications.
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У цiй статтi дослiджуються властивостi та принцип мономiальностi полiномiв типу Апосто-

ла-Бернуллi на основi Белла. Починаючи з встановлення твiрної функцiї, дослiдження про-

довжується до отримання явних виразiв для цих полiномiв, що дає змогу зрозумiти їхнi стру-

ктурнi характеристики. Потiм виводяться формули пiдсумовування, що полегшує ефективнi

обчислення та манiпуляцiї. Неявнi формули також перевiряються, виявляючи базовi законо-

мiрностi та зв’язки. Через призму принципу мономiальностi з’ясовуються зв’язки мiж рiзни-

ми полiномiальними аспектами, вiдкриваючи прихованi симетрiї та алгебраїчнi властивостi.

Крiм того, отримано формули зв’язку, що забезпечує неперервний перехiд мiж рiзними пред-

ставленнями полiномiв. Цей аналiз сприяє всебiчному розумiнню полiномiв типу Апостола-

Бернуллi на основi Белла, пропонуючи цiнну iнформацiю про їх математичну природу та за-

стосування.

Ключовi слова i фрази: спецiальний полiном, принцип мономiальностi, операцiйний зв’язок,

симетрична тотожнiсть, формула пiдсумовування.


