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On constructing algebras of finite range

Votiakova L.A., Fryz 1.V.2

In the paper, a subalgebra whose elements are square matrices with real entries having the same
sum of row entries is extracted from a complete matrix algebra. Using classical methods of matrix
theory, the properties of constructed algebra are studied. This algebra is endowed with a norm that
makes it possible to construct of elements of analysis in it by means of the matrix analysis methods.
A new class of algebras of finite range is constructed, namely, an algebra of hypercomplex numbers,
which is isomorphic to the corresponding matrix algebra. Thus, the obtained results for the matri-
ces can be transferred to the elements of the isomorphic algebra of finite range, i.e. hypercomplex
numbers. This lead to defining the functions of hypercomplex variable.
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Introduction

The classic technique for constructing algebras of finite range, whose carriers are some lin-
ear spaces of finite dimension over a field with the given basis, is based on the selection of
structural constants [7], which means multiplication of the basis vectors, and so the elements
of an algebra, and it inherits some properties, for instance, the operations are associative, mul-
tiplication is distributive over addition, each operation has an identity element in the set etc.

Among all associative algebras of finite range, complete matrix algebras M,, = M,,(P) of
order n over a field P play an important role, which is similar to the role of symmetric groups in
the set of finite groups [8]. Namely, each associative algebra of finite range over a field P allows
monomorphic embedding in a complete matrix algebra over the same field, which is effectively
the same as that each finite group may be monomorphically embeddable in the corresponding
symmetric group. Thus, each algebra of finite range allows a matrix representation. Clearly,
the inverse statement is true, that is each subalgebra of a complete matrix algebra is a matrix
representation of some algebra of finite range.

On the other hand, since we do not have a list of all subalgebras of complete matrix alge-
bras even of small orders, finding such an algebra provides an opportunity to obtain an algebra
of finite range and besides we can use the matrix analysis tools for their study. These subal-
gebras can be used for construction of hypercomplex number systems, which were studied
starting from the papers of W.R. Hamilton. A good review of the development of the theory
of hypercomplex numbers and the corresponding algebras is given in [4]. The most common
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types of generalized complex numbers are quaternions, octonions (also known as Cayley num-
bers), dual numbers, split-complex numbers, biquaternions etc. (see, for example, [1,2,5,9,14]).
Specific role takes the corresponding algebras in sense of application, in particular, machine
learning, digital signal and image processing etc. (see, for example, [4, 12, 14] and references
therein).

In Section 1, a subalgebra MS" is extracted from complete matrix algebra M, (R) defined
over the field of real numbers R. The carrier of M$" is a linear matrix space each matrix of
which has the same sum of elements in its rows, i.e. it is a generalization of a semi-stochastic
matrix. The proposed method enables to construct a new hypercomplex systems. In Section 2,
we specify some properties for subalgebra MS". In Section 3, we construct isomorphic algebra
V3 to MS", which is an algebra of hypercomplex numbers and we define functions on the set of
hypercomplex numbers, and so construct the elements of analysis.

1 Algebras MS" of finite range

In this section, we will consider a subalgebra of associative complete matrix algebra M,,(R)
of order n over the field of real numbers R.

Here, we propose a generalization of the concept of a semi-stochastic matrix. A square
matrix A is said to be semi-stochastic if the sum of elements of each row equals 1, the family of
all such matrices is given by

{A e R™" .

n
a;j =1 for every i = 1,...,n}.
j=1

Semi-stochastic square matrices over the field of real numbers R were considered in [11],
specifically some their characteristics were described.
If a sum of each row of a matrix A is ¢, then ¢ will be called a characteristic of the matrix A
and will be denoted by ch A := c. In the case, when ch A = 1, the matrix A is semi-stochastic.
We will reserve M$"(IR) to denote a set of square matrices of order 7, which satisfy the

following condition: a matrix A = (a;;) =T belongs to M"(R) if and only if

n n n
D0y = Y = e = ) .
=1 j=1 j=1

It is clear that under matrix addition and scalar multiplication the set MS'(RR) is a lin-
ear space of dimension n? —n 41 over field R, besides for all «, B € R and for all matrices
A, B € MY the equality

ch(aA + BB) = ach(A) + Bch(B) (1)
holds. The set Mﬁh is closed under matrix multiplication. Indeed, if A,B &< Mﬁh, then

AB € MS". Moreover,
ch(AB) = ch(A) - ch(B). (2)

According to (1) and (2), we have ch(AB — BA) = 0.
Consequently, the set MS" under the basic matrix operations is an algebra of range n*> — n + 1 with
the identity matrix I.
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Note that a subset M?,, where Mg = {A A€ Mﬁlh, chA = 0}, is a subalgebra of algebra
MS" with no identity element, and a subset M}, where M} = {A: A € MS",chA =1}, isa
semigroup of semi-stochastic matrices [11].

By the definition, each element of M;h is a matrix A in a characteristic ¢, which can be

represented as
A = CII’Z + AO/ (3)

where [, is the identity matrix of order n, matrix Ay has the form

bl aipp ... diu
Ao _ an bz ... Aoy )
Ayl Aup2 ... bn
where by = —ajp — - — a1y, bp = —ay —axp — - —ayy, ..., by = —ay1 — a2 — - —App_1,

and ch(Ap) = 0. Then, taking into account (3), we get |Al, — A| = |(A —¢)I, — Aog|. So we
have |AI, — A] =0, when A = ¢, i.e. ch(A) is an eigenvalue of A. Therefore, if the matrix A is
nonsingular, then ch(A) # 0.

Theorem 1. If a matrix A € MS" is nonsingular, then A~! € MS". Additionally, the equality

ch(A™!) =ch1(A)

holds.
Proof. Let A = (a;j); j—1,n be a nonsingular matrix from MS". Suppose that ch(A) = ¢ and its
inverse is A~! = (a;) =T Then it is clear that the entries of kth row of A~'A = I, for each

k =1,...,n satisfy the following conditions:

M=
>
oy
_
=
|
L
~
It

n n n
] ariaig—1 =0, Elflkiﬂik =1, Yaaiy1 =0, ..., Y dgay, =0.

Since ch(A) = ¢, which means that

n
Zai]- =c foreveryi=1,...,n,
j=1

adding these equalities results in

because a characteristic of a nonsingular matrix is not zero. This completes the proof. O

Recall that a square matrix A~ is called semi-inverse [13] to a matrix A if

AAA=A, A AA =A". (4)
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A square n x n matrix Il 4 is called a projection matrix or projector [10, p. 69] of a matrix A if
I3 =114,  Ally =T14A =0,

where 0, is a zero matrix of order n. If I 4 is a projection matrix of the matrix A, then A 4114
is not singular [10, p. 69] and A~ is semi-inverse to the matrix A [13], where

A” = (A+TI4) 1 — 14

Note that a projector is the zero matrix for an invertible matrix. The latter equality implies
that if a matrix is invertible, then its semi-inverse matrix coincides with its inverse matrix.

Theorem 2. If A € MS", then 14, A~ € MS'. Additionally,

ch (IT4) =0, ch(A):%, if ¢#0,

ch(I4) =1, ch(A7)=0, if c=0.

Proof. Suppose that [Ty = (7). j—1; is @ projection matrix of the matrix A € MS". Then the
equality IT4 - A = 0, implies that the entries of kth row are

n

n n
Zznkjai]‘ =0 or can]- =0 for each k=1,...,n
i=1j=1 j=1

n
If c #0, then ), g =0 foreach k = 1,...,n. Therefore,
j=1

ch(Il) =0, then ch(A+1II4)=c and ch(A™)=ch ((A +HA)’1—HA> = %

n
If c = 0, then } 714 can be considered to be equal to any nonzero real number. In order to
j=1
provide that the equalities (4) are satisfied, let us suppose Z nk] = 1foreachk =1,.
=1
Then
ch(A+1II4) =1, ch(A)=ch <(A FII) - HA) — 0,

which completes the proof. O

Theorem 1 and Theorem 2 imply that if the matrix A € MS" is invertible or semi-invertible,
then it generates a cyclic group with the identity element I, — II4 and its inverse matrix is
A~ = A1 (because as we mentioned above if A is nonsingular, then I, is the zero matrix).

Using Hilbert-Schmidt norm (Euclidean matrix norm) [6, p. 341], the algebra Mﬁlh is en-

dowed with the norm .
n 2
Al = <Z !ﬂz‘j\2>
ij=1

As already mentioned earlier in this article, the matrix A in characteristic ¢ can be repre-
sented by (3), consequently, its norm is

|A|l = (nc —2022ak1+2222ak1ak]> . (5)

1j#k li=1j=1
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Theorem 3. The norm (5) is generated by the scalar product.

Proof. 1t is sufficient to show that for each matrices A,B € M the parallelogram law
14+ BIJ + [|A = BIJ* = 2(]| Al|* + [|B]|) holds.
Letch(A) = a, ch(B) = b. Then

( n n n n
IA+B|* = n(a+b)>—2(a+b)Y Y (ag+bi) +2Y Y Y (an; + byi) (ax + byg),
k=1j#k k=1i=1j=1
2 (5_) n n n n
|A —B||* =n(a—0) b)Y ) (axi—bi) + Y YY" (axi — bei) (axj — by).
k=1j#k k=1i=1j=1

Consequently,

n n
|A+ B||> + |A = B||* = 2na* + 2nb* —4a)_ Y ay; —4b)_ Y by

k=1j7k k=1j7k
+4ZZZ”J<1% +4ZZZbk1bk] 22 (]lAl2+B]2).
=li=1j= =1li=1j=1

U
Theorem 3 implies that algebra MS" as a linear space is Euclidean (n? — n + 1)-space.

Theorem 4. If a function f defined on the spectrum of a matrix A € Mﬁh, in addition, it
is my times differentiable for each k = 1,...,s, where my is the multiplicity of a zero of the
minimal polynomial of the matrix and s is the number of distinct roots of the polynomial, then
f(A) € M$", in particular

ch(f(A)) = f(ch(A)). (6)

Proof. Let A; denote a zero of the minimal polynomial of the matrix A € M$" of multiplicity
my foreachk =1,...,s

Suppose that ¢y(A) = (A — A1)"™ (A — Ap)™2 ... (A — As)™s is a minimal polynomial of the
matrix A. One of the roots of the polynomial is ch(A), say A; = ch(A). By ER. Gantmacher
(see [3, p. 101-103]), f(A) is defined by

s mi—1 )
A) = Z Z le]'(A — M) i (A),
k=1 j=0
Where ()
() _1<f(7\)>]
A) = ——"F— i = 7 :
$i(4) A=A 70 g A=A,
In this case,
Ch(A_)\lln) :Ch(A) —)\1 :0, (7)

and, so foreach k = 2,...,s, we have

ch(yr(A)) =
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Hence,
s Mj—l )
cMﬂAD::m<g%2%MﬂA—Aﬂ@WAAO::O
=2 ]=

According to (7), we have

mj—l ‘
ch( alj(A—Akln)f¢1(A)> — ch(aopr(A)) = ch (f(m ¢1(A)> .

j=0
Since .
ch (Xl — Ak(A — )\kln)> =1

foreach k =2, ..., s, the equality (6) holds. O

2 Matrix algebra MS"

In this section, we describe a subalgebra MS" of 2 x 2-matrices having a constant character-
istic.
The algebra MS" is an algebraic structure with a carrier

ch a—b b .
MZ—{< . a—c>'a'b'C€]R} (8)

and usual operations of addition and multiplication. If we choose the matrices

(30 (30 () o

as a basis, then each matrix from MS" can be represented in such a way that

AZ(a_b b )I&lEo—i-bEl-i-CEz.

C a—=c¢

It is obvious that ch(A) = a. If |A| =a(a —b —c¢) # 0, then

1 a—c —b
-1 _ 1
A= |A] < —c a—b)'
otherwise if |A| = 0, then we will deal with specific subcases of this situation.
Suppose that a = 0, b 4 ¢ # 0, then each matrix from Mgh has the form

—b b
() "
and
1 c b 1 —b b
— - = . 11
Ha b+c<c b)' A (b—l—c)2< c —c) (1)
Then according to (11), we have
1 n n—1 -1
_ - = (— b "TA
L-lly=—p=—A,  A'=(-1)"'(b+0" 4
_1\n—1
(Aj”:——L—Aﬁ:l—Q——A n=12....

b+ )2 b+ o)1’y



760 Votiakova L.A., Fryz I.V.

Therefore,
1 1
n -\ _ A\ pn - 2:__ — .
A" (A7) =(AT) A _(b+c)2A b—i—cA I, — 11,4,
Thus, each matrix of the form (10) generates a cyclic group with the identity element I, — IT4
and for each natural n the matrix (A~)" is the inverse matrix of A",

Next, suppose that a = b + ¢, b + ¢ # 0, then each matrix from Mgh has the form

c b
A_<c b) (12)
and
1 b —b _ 1 c b
HA_b+c<—c c >’ A _(b+c)2<c b)' (13)
According to (13), we have
o _ 1 n __ n—1 —\n _ 1 o
I HA_—b—i—cA' A" = (b+c)" A, (A7) _7(b+c)2"+1A' n=12,....
Therefore, .
n \n N\ oan 1
A"(AT) =(A7) A _—b+cA I, —Tl,,

(AAi)n = (AiA)n = (12 — HA)n = I —Il,4.
Consequently, each matrix of the form (12) under the condition b + ¢ # 0 also generates a

cyclic group with the identity element I — IT4 and inverse matrix (A~)" of A”.
Finally,ifa = 0, b 4+ ¢ = 0, i.e. any matrix from Mgh has the form

b b
A —
(53)
then there does not exist a matrix X € M5" such that it is a solution of the equations AXA = A,

XAX = X.
Another property of elements of algebra M5" is in the following statement.

Theorem 5. Eigenvalues of a product of matrices from M§" are equal to a product of the cor-
responding eigenvalues of these factors.

Proof. Suppose that

A1:<ﬂ1—bl by >, A2:<ﬂz—bz by )

C1 a1 — (0 Co ap; — Cp
are matrices from Mgh. Then )\gl) = a, Aél) =ay — by —c; and Agz) = ay, )\52) =a,—by— 0
are eigenvalues of A1 and Aj, respectively. Since the equation |AI; — A1 A;| = 0 can be written
in the form

(A — a1a2)2 + (A — ayaz) (brag + a1bp — biby — bicy + c1ap + ajcp — c1by — c1¢c2) =0,
the eigenvalues of matrix A;A; are
A =may, Ay =ayap — byay —ayby + biby + bicoy — c1a2 — ajco + c1by + 102

= (ay — by —c1)(ap — by — 7).
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We endow algebra MS" with the norm

lal=|( . )| = vae e ar-at (14)

N—=

which is generated by the scalar product

ap—Db b a,—b b
=" ) (%58 ))-
€1 a—C 2 az —C3 (15)
= b1by+ c1co+ (a1 — by)(ax — by) + (a1 — c1)(az — c2).
By view of (14) and (15), we have
IEoll = IE1]| = IE2]| = V2, (Eo, E1) = (Eo, E2) = —1, (E1,E2) =0

for basis (9). Consequently, the algebra MS" as a linear space is a Euclidean one with the basis
vectors Ey, Eq, E; of the length V2, besides vectors Ey, E; are orthogonal, and the angles formed

2
by Ey, E1 and Ey, E; are ?ﬂ

3 Constructing an algebra of hypercomplex numbers

In this section, we consider a method for constructing a noncommutative algebra of hyper-
complex numbers of range 3 by means of the considered algebra MS" and we construct the

functions of hypercomplex variable on this algebra.
Let V3 be a linear space of dimension 3 over the field R and let &y, 1, &, be its basis, i.e.

V3 = {aéy+béy +cép: a,b,c € R}.
Let us define the operation of multiplication in V3 by the following Cayley table

.“0 z

—_
N
N

e11ep —ep —eé
e |6 —& —&
One can easily verify that V3 is an algebra of hypercomplex numbers of range 3 and the
mapping ¢ : MS" — V3, which defines by the law

A= < a=b b ) — (a,b,c) := aéy + béy + céy,

c a-—c
where ¢(Ep) = (1,0,0) = &, ¢(E1) = (0,1,0) = &1, ¢(Ez) = (0,0,1) = &, is one-to-one
correspondence. Moreover, the equalities

p(aAr + BA2) = ap(A1) + Bp(A2),  @(A142) = ¢(A1)p(A2)

hold foralla, f € Rand Ay, A, € Mgh. It means that algebras Mgh and V3 are isomorphic.

Consequently, the algebra MS" is a matrix representation of algebra of hypercomplex num-
bers V3 in which the subset {(4,0,0) : 2 € R} is a field being isomorphic to the field of real
numbers R, i.e. the field R is monomorphically embedded into this subset.
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Using such matrix representation, each hypercomplex number v = aey + beé; 4 cé; or its
coordinate representation (a,b, ¢) are associated with the following characteristics:

— characteristic of a hypercomplex number (i.e. its real part) chv = a;
— determinant of a hypercomplex number detv = a(a — b — ¢);

1
— norm of a hypercomplex number, which is defined by ||v|| :=v/2(a? + b + ¢ —ab — ac) 2.

Let us define a semi-inverse (inverse) element in V3. If 2 # 0 and a # b + ¢, then there exists
an element v—! € V3 such that vv~! = v~lv = &. Namely, if v = (g, b, c), then

v i= (a,b,c)’1 =——@a—b—c,—b —c).

For a hypercomplex number v, there exists a semi-inverse v~, which has the form

1 .
72(0,19,0), ifa=0,b+c#0,
v = (ab,c)” = (1b+c)
a—z(a,b,c), ifa—b—c=0,b+c#0.

Note that the hypercomplex numbers of the form v = (0, b, —b) are zero divisors.

According to isomorphism of algebras V3 and M$" and Theorem 4, a one-to-one correspon-
dence of V3 onto itself (hypercomplex functions) may be constructed.

Let f be a real function with a domain D(f) and it is differentiable in its domain.

Theorem 6. To a function f : D(f) — R, there corresponds a mapping f of V3 onto itself,
which is defined on the set of hypercomplex numbers

D(f)={(a,b,c): a,a—b—ce€ D(f)},
and the function f is defined by

F@b,0)) = (f@), 5 (@) = fla— b)), 75
if b+ ¢ # 0; and by

(f@) = fla=b=c))),  (16)

f((a,b,—b)) = (f(a),bf'(a), —bf'(a)), (17)
ifb+c=0.

Proof. Suppose that (a,b,c) is a hypercomplex number such that a, a — b —c¢ € D(f) and
b+ ¢ # 0. Then its matrix representation in algebra MS" is the matrix

A:<a—b b >,
c a—c

which has different eigenvalues Ay = 4, A, = a — b — c. Therefore according to Theorem 4, we
get

fa) = LA (4 - nom) + L824 - )

B (Cf(a)+bf(a—b—6) bf(ﬂ)—bf(a—b—6)>_

b+c
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Note that the latter matrix is a representation of hypercomplex number (16).
If b+ ¢ = 0, i.e. the hypercomplex number has the form (a, b, —b), then its matrix represen-
tation in algebra MS" is the matrix
a—b b
A= < —b a+b > ’

which has multiple eigenvalue A = a. Therefore according to Theorem 4, we get

f@)-bfa) (@)
A) = f(a)l "(a)(A —aly) = .
f(A) = fla) 2+ f'(a)( 2) ( —bf'(a)  f(a) +bf'(a) >

The obtained matrix is a representation of hypercomplex number (17). O

For example,

(3,2-1) 2 (V32v3-2v2-V3+V2),
17) 1 1 )
3/ 2/ —2) = \/gl =y T =
2% (Va7
By Theorem 6, the basic elementary hypercomplex functions (functions on V3) can be de-
fined in such a way

o plabe) _ (ea' el G e”’”)) if b+ c #0,
(ea’bea, _bea)/ if b—|—c — 0/

cosv = cos(a,b,c)

(Cosa,bLH(cosa —cos(a,b,c)), (cosa —Cos(a,b,c))>, if b+c#0,

c
b+c
(cosa, —bsina,bsina), ifb+c=0;

sinv = sin(a, b, ¢)

<sina, biﬂ(sina —sin(a, b,¢)), (sina — sin(a,b,c))), if b+c+#0,

c

b+c
(sina,bcosa, —bcosa), if b+c=0.

For all (a,b,c) € V3, which satisfy the conditions a > —1, a —b —c¢ > —1, the following

function is defined

In(eg +v) =In((1+4,b,¢))

b 1+a c 1+a )
B <ln(1+a)’b+cln1+a—b—c’b—|—cn1+a—b—c>’ if bt+c#0,
o b b .
<ln(1+ﬂ),m,—1+a>, 1fb+C—O

Since function f(A) = A" is defined on R for each n € N, for every (a,b,c) € V3 we can
define the following function

(a,b,c)" = <an’b+c(”n —(a=b—c)"), g ("~ (ﬂ—b—c)")>, if b4c#£0,

(a",nba" "1, —nba"" 1), ifb+c=0.

(18)
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Algebra of hypercomplex numbers V3 is endowed with the norm

N\)—l

[(a,b,0)|| = V2(a*+b* +c* —ab — ac)?.

Therefore, the concept of convergence of sequences and series can be defined on this algebra
in a natural way, besides it is clear that the series

oo oo

Zvn = Z (an/ by, Cn)

n=1 n=1
o o [e e}
is convergent if and only if the series ) a,, ). b,, Y. ¢, are convergent.
n=1 n=1 n=1

Theorem 7. If a real function f(\) is given by a convergent power series on an interval, that is

A) = ian)\",
n=1

and a, a — b — c belongs to the interval of convergence, then the series of hyperpercomplex

[ee] -
numbers Y a,(a,b,c)" is convergent and its sum is f((a, b, c)) .
n=1

Proof. According to (18) and Theorem 6, we have

ZﬂnﬂbC Zm,( ,Lc(a”—(a—b—C)”),bi (”n—(“—b—c)n)>

(St G- B v iz (B - Bte-2-)
= (F@) e (100) = fla— =), (70 — fla—b=0)) ) = F((@b,0))

if b+ c # 0; and

Zan a,b,—b)" Zan <a nba™ 1, —nba"" 1)

n=1

I
VR

(o] (o] (o]
Zana", b Z naya" ', —b Z nana”1>
n=1

n=1 n=1
(f(a),bf'(a), —bf'(a)) = f((a,b,c)),
ifb+c=0. 0
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B pobori 3 moBHOI MaTpWYIHOI aATebpy BUAIASETLCS IipaATebpa, eneMeHTaMI SIKOi € KBaApa-
THi MaTpHIIi 3 AIVICHMMM eAeMeHTaMM, CyMa PSIAKIB SIKMX € OAHAKOBOIO. 3a AOIIOMOTO0 KAACHIHMX
METOAIB Teopii MaTpMIIb AOCAIAXYIOTHCS BAACTMBOCTI OOy AOBAHOI MaTpu4HOI arre6pu. Ls aare-
6pa HaAiASIETHCS HOPMOIO, IIIO AA€ MOXXAMBICTD OYAyBaTV eAeMEeHTH aHaAi3y B Hili, BUKOPWCTOBYIO-
UM METOAM MaTPIIHOIO aHaAily. ByAyeThcst HOBMIT KAac aaredp CKiHUEHHOTO paHIy, a caMe aAre-
6pa TimepKOMITAEKCHIX UMCeA, sSIKa € i30MOPHOIO BiATIOBiAHIN MaTpuyHili arrebpi. Takum umHOM,
OAepKaHi AASI MaTPUIIb Pe3yAbTaTH IIEPEHOCSIThCS Ha eAeMEeHTH i30MOP(pHOI aATebpy cCKiHYeHHOro
panry, TO6TO Ha rinepkomiaekcHi uncaa. Lle A03BoAMAO O6YAyBaTH (PYHKIII IilepKOMIIAEKCHOL
3MiHHOI.

Koiouosi cnosa i ppasu: anrebpa CKiHUEHHOTO paHTy, TilepKOMIIAEKCHE UMCAO, BAACHMIA IPOE-
KTOp, MaTpudHa HOpMa, PYHKIIis rinepKOMIIAeKCHOI 3MiHHOI.



