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On constructing algebras of finite range

Votiakova L.A.1, Fryz I.V.2

In the paper, a subalgebra whose elements are square matrices with real entries having the same

sum of row entries is extracted from a complete matrix algebra. Using classical methods of matrix

theory, the properties of constructed algebra are studied. This algebra is endowed with a norm that

makes it possible to construct of elements of analysis in it by means of the matrix analysis methods.

A new class of algebras of finite range is constructed, namely, an algebra of hypercomplex numbers,

which is isomorphic to the corresponding matrix algebra. Thus, the obtained results for the matri-

ces can be transferred to the elements of the isomorphic algebra of finite range, i.e. hypercomplex

numbers. This lead to defining the functions of hypercomplex variable.
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Introduction

The classic technique for constructing algebras of finite range, whose carriers are some lin-

ear spaces of finite dimension over a field with the given basis, is based on the selection of

structural constants [7], which means multiplication of the basis vectors, and so the elements

of an algebra, and it inherits some properties, for instance, the operations are associative, mul-

tiplication is distributive over addition, each operation has an identity element in the set etc.

Among all associative algebras of finite range, complete matrix algebras Mn = Mn(P) of

order n over a field P play an important role, which is similar to the role of symmetric groups in

the set of finite groups [8]. Namely, each associative algebra of finite range over a field P allows

monomorphic embedding in a complete matrix algebra over the same field, which is effectively

the same as that each finite group may be monomorphically embeddable in the corresponding

symmetric group. Thus, each algebra of finite range allows a matrix representation. Clearly,

the inverse statement is true, that is each subalgebra of a complete matrix algebra is a matrix

representation of some algebra of finite range.

On the other hand, since we do not have a list of all subalgebras of complete matrix alge-

bras even of small orders, finding such an algebra provides an opportunity to obtain an algebra

of finite range and besides we can use the matrix analysis tools for their study. These subal-

gebras can be used for construction of hypercomplex number systems, which were studied

starting from the papers of W.R. Hamilton. A good review of the development of the theory

of hypercomplex numbers and the corresponding algebras is given in [4]. The most common
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types of generalized complex numbers are quaternions, octonions (also known as Cayley num-

bers), dual numbers, split-complex numbers, biquaternions etc. (see, for example, [1,2,5,9,14]).

Specific role takes the corresponding algebras in sense of application, in particular, machine

learning, digital signal and image processing etc. (see, for example, [4, 12, 14] and references

therein).

In Section 1, a subalgebra Mch
n is extracted from complete matrix algebra Mn(R) defined

over the field of real numbers R. The carrier of Mch
n is a linear matrix space each matrix of

which has the same sum of elements in its rows, i.e. it is a generalization of a semi-stochastic

matrix. The proposed method enables to construct a new hypercomplex systems. In Section 2,

we specify some properties for subalgebra Mch

2 . In Section 3, we construct isomorphic algebra

V3 to Mch
n , which is an algebra of hypercomplex numbers and we define functions on the set of

hypercomplex numbers, and so construct the elements of analysis.

1 Algebras Mch
n

of finite range

In this section, we will consider a subalgebra of associative complete matrix algebra Mn(R)

of order n over the field of real numbers R.

Here, we propose a generalization of the concept of a semi-stochastic matrix. A square

matrix A is said to be semi-stochastic if the sum of elements of each row equals 1, the family of

all such matrices is given by

{

A ∈ R
n×n :

n

∑
j=1

aij = 1 for every i = 1, . . . , n

}

.

Semi-stochastic square matrices over the field of real numbers R were considered in [11],

specifically some their characteristics were described.

If a sum of each row of a matrix A is c, then c will be called a characteristic of the matrix A

and will be denoted by ch A := c. In the case, when ch A = 1, the matrix A is semi-stochastic.

We will reserve Mch
n (R) to denote a set of square matrices of order n, which satisfy the

following condition: a matrix A =
(

aij

)

i,j=1,n
belongs to Mch

n (R) if and only if

n

∑
j=1

a1j =
n

∑
j=1

a2j = · · · =
n

∑
j=1

anj.

It is clear that under matrix addition and scalar multiplication the set Mch
n (R) is a lin-

ear space of dimension n2 − n + 1 over field R, besides for all α, β ∈ R and for all matrices

A, B ∈ Mch
n the equality

ch(αA + βB) = αch(A) + βch(B) (1)

holds. The set Mch
n is closed under matrix multiplication. Indeed, if A, B ∈ Mch

n , then

AB ∈ Mch
n . Moreover,

ch(AB) = ch(A) · ch(B). (2)

According to (1) and (2), we have ch(AB − BA) = 0.

Consequently, the set Mch
n under the basic matrix operations is an algebra of range n2 − n + 1 with

the identity matrix I.
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Note that a subset M0
n, where M0

n =
{

A : A ∈ Mch
n , chA = 0

}

, is a subalgebra of algebra

Mch
n with no identity element, and a subset M1

n, where M1
n =

{

A : A ∈ Mch
n , chA = 1

}

, is a

semigroup of semi-stochastic matrices [11].

By the definition, each element of Mch
n is a matrix A in a characteristic c, which can be

represented as

A = cIn + A0, (3)

where In is the identity matrix of order n, matrix A0 has the form

A0 =











b1 a12 . . . a1n

a21 b2 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . bn











,

where b1 = −a12 − · · · − a1n, b2 = −a21 − a23 − · · · − a2n, . . . , bn = −an1 − an2 − · · · − an,n−1,

and ch(A0) = 0. Then, taking into account (3), we get |λIn − A| = |(λ − c)In − A0|. So we

have |λIn − A| = 0, when λ = c, i.e. ch(A) is an eigenvalue of A. Therefore, if the matrix A is

nonsingular, then ch(A) 6= 0.

Theorem 1. If a matrix A ∈ Mch
n is nonsingular, then A−1 ∈ Mch

n . Additionally, the equality

ch
(

A−1
)

= ch
−1(A)

holds.

Proof. Let A = (aij)i,j=1,n be a nonsingular matrix from Mch
n . Suppose that ch(A) = c and its

inverse is A−1 = (âij)i,j=1,n. Then it is clear that the entries of kth row of A−1A = In for each

k = 1, . . . , n satisfy the following conditions:

n

∑
i=1

âkiai1 = 0, . . . ,
n

∑
i=1

âkiai,k−1 = 0,
n

∑
i=1

âkiaik = 1,
n

∑
i=1

âkiai,k+1 = 0, . . . ,
n

∑
i=1

âkiain = 0.

Since ch(A) = c, which means that

n

∑
j=1

aij = c for every i = 1, . . . , n,

adding these equalities results in

c
n

∑
j=1

âij = 1.

Hence, a characteristic of the inverse matrix A−1 is

ch
(

A−1
)

=
1

c
,

because a characteristic of a nonsingular matrix is not zero. This completes the proof.

Recall that a square matrix A− is called semi-inverse [13] to a matrix A if

AA−A = A, A−AA− = A−. (4)
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A square n × n matrix ΠA is called a projection matrix or projector [10, p. 69] of a matrix A if

Π2
A = ΠA, AΠA = ΠA A = 0n,

where 0n is a zero matrix of order n. If ΠA is a projection matrix of the matrix A, then A + ΠA

is not singular [10, p. 69] and A− is semi-inverse to the matrix A [13], where

A− = (A + ΠA)
−1 − ΠA.

Note that a projector is the zero matrix for an invertible matrix. The latter equality implies

that if a matrix is invertible, then its semi-inverse matrix coincides with its inverse matrix.

Theorem 2. If A ∈ Mch
n , then ΠA, A− ∈ Mch

n . Additionally,

ch (ΠA) = 0, ch
(

A−) =
1

c
, if c 6= 0,

ch (ΠA) = 1, ch
(

A−) = 0, if c = 0.

Proof. Suppose that ΠA =
(

πij

)

i,j=1,n
is a projection matrix of the matrix A ∈ Mch

n . Then the

equality ΠA · A = 0n implies that the entries of kth row are

n

∑
i=1

n

∑
j=1

πkjaij = 0 or c
n

∑
j=1

πkj = 0 for each k = 1, . . . , n.

If c 6= 0, then
n

∑
j=1

πkj = 0 for each k = 1, . . . , n. Therefore,

ch(ΠA) = 0, then ch(A + ΠA) = c and ch
(

A−) = ch

(

(A + ΠA)
−1−ΠA

)

=
1

c
.

If c = 0, then
n

∑
j=1

πkj can be considered to be equal to any nonzero real number. In order to

provide that the equalities (4) are satisfied, let us suppose
n

∑
j=1

πkj = 1 for each k = 1, . . . , n.

Then

ch (A + ΠA) = 1, ch
(

A−) = ch

(

(A + ΠA)
−1 − ΠA

)

= 0,

which completes the proof.

Theorem 1 and Theorem 2 imply that if the matrix A ∈ Mch
n is invertible or semi-invertible,

then it generates a cyclic group with the identity element In − ΠA and its inverse matrix is

A− = A−1 (because as we mentioned above if A is nonsingular, then ΠA is the zero matrix).

Using Hilbert-Schmidt norm (Euclidean matrix norm) [6, p. 341], the algebra Mch
n is en-

dowed with the norm

‖A‖ =

(

n

∑
i,j=1

|aij|2
)

1
2

.

As already mentioned earlier in this article, the matrix A in characteristic c can be repre-

sented by (3), consequently, its norm is

‖A‖ =

(

nc2 − 2c
n

∑
k=1

∑
j 6=k

akj + 2
n

∑
k=1

n

∑
i=1

n

∑
j=1

akiakj

)
1
2

. (5)
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Theorem 3. The norm (5) is generated by the scalar product.

Proof. It is sufficient to show that for each matrices A, B ∈ Mch
n the parallelogram law

‖A + B‖2 + ‖A − B‖2 = 2
(

‖A‖2 + ‖B‖2
)

holds.

Let ch(A) = a, ch(B) = b. Then

‖A + B‖2 (5)
= n(a + b)2 − 2(a + b)

n

∑
k=1

∑
j 6=k

(akj + bkj) + 2
n

∑
k=1

n

∑
i=1

n

∑
j=1

(aki + bki)(akj + bkj),

‖A − B‖2 (5)
= n(a − b)2 − 2(a − b)

n

∑
k=1

∑
j 6=k

(akj − bkj) +
n

∑
k=1

n

∑
i=1

n

∑
j=1

(aki − bki)(akj − bkj).

Consequently,

‖A + B‖2 + ‖A − B‖2 = 2na2 + 2nb2 − 4a
n

∑
k=1

∑
j 6=k

akj − 4b
n

∑
k=1

∑
j 6=k

bkj

+ 4
n

∑
k=1

n

∑
i=1

n

∑
j=1

akiakj + 4
n

∑
k=1

n

∑
i=1

n

∑
j=1

bkibkj
(5)
= 2

(

‖A‖2 + ‖B‖2
)

.

Theorem 3 implies that algebra Mch
n as a linear space is Euclidean (n2 − n + 1)-space.

Theorem 4. If a function f defined on the spectrum of a matrix A ∈ Mch
n , in addition, it

is mk times differentiable for each k = 1, . . . , s, where mk is the multiplicity of a zero of the

minimal polynomial of the matrix and s is the number of distinct roots of the polynomial, then

f (A) ∈ Mch
n , in particular

ch
(

f (A)
)

= f
(

ch(A)
)

. (6)

Proof. Let λk denote a zero of the minimal polynomial of the matrix A ∈ Mch
n of multiplicity

mk for each k = 1, . . . , s.

Suppose that ψ(λ) = (λ − λ1)
m1(λ − λ2)

m2 . . . (λ − λs)ms is a minimal polynomial of the

matrix A. One of the roots of the polynomial is ch(A), say λ1 = ch(A). By F.R. Gantmacher

(see [3, p. 101–103]), f (A) is defined by

f (A) =
s

∑
k=1

mj−1

∑
j=0

αkj(A − λk In)
jψk(A),

where

ψk(A) =
ψ(λ)

(λ − λk)mk
, αkj =

1

j!

(

f (λ)

ψk(λ)

)(j)

λ=λk

.

In this case,

ch(A − λ1 In) = ch(A)− λ1 = 0, (7)

and, so for each k = 2, . . . , s, we have

ch
(

ψk(A)
)

= 0.
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Hence,

ch
(

f (A)
)

= ch

( s

∑
k=2

mj−1

∑
j=2

αkj(A − λk In)
jψk(A)

)

= 0.

According to (7), we have

ch

( mj−1

∑
j=0

α1j(A − λk In)
jψ1(A)

)

= ch
(

α10ψ1(A)
)

= ch

(

f (λ1)

ψ1(λ1)
ψ1(A)

)

.

Since

ch

(

1

λ 1
− λk(A − λk In)

)

= 1

for each k = 2, . . . , s, the equality (6) holds.

2 Matrix algebra M
ch

2

In this section, we describe a subalgebra Mch

2 of 2× 2-matrices having a constant character-

istic.

The algebra Mch

2 is an algebraic structure with a carrier

Mch

2 =

{(

a − b b

c a − c

)

: a, b, c ∈ R

}

(8)

and usual operations of addition and multiplication. If we choose the matrices

E0 =

(

1 0

0 1

)

, E1 =

( −1 1

0 0

)

, E3 =

(

0 0

1 −1

)

(9)

as a basis, then each matrix from Mch

2 can be represented in such a way that

A =

(

a − b b

c a − c

)

= aE0 + bE1 + cE2.

It is obvious that ch(A) = a. If |A| = a(a − b − c) 6= 0, then

A−1 =
1

|A|

(

a − c −b

−c a − b

)

,

otherwise if |A| = 0, then we will deal with specific subcases of this situation.

Suppose that a = 0, b + c 6= 0, then each matrix from Mch

2 has the form

A =

( −b b

c −c

)

(10)

and

ΠA =
1

b + c

(

c b

c b

)

, A− =
1

(b + c)2

( −b b

c −c

)

. (11)

Then according to (11), we have

I2 − ΠA = − 1

b + c
A, An = (−1)n−1(b + c)n−1 A,

(

A−)n
=

1

(b + c)2n
An =

(−1)n−1

(b + c)n+1
A, n = 1, 2, . . . .
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Therefore,

An
(

A−)n
=
(

A−)n
An =

1

(b + c)2
A2 = − 1

b + c
A = I2 − ΠA,

(

AA−)n
=
(

A−A
)n

= (I2 − ΠA)
n = I2 − ΠA.

Thus, each matrix of the form (10) generates a cyclic group with the identity element I2 − ΠA

and for each natural n the matrix (A−)n
is the inverse matrix of An.

Next, suppose that a = b + c, b + c 6= 0, then each matrix from Mch

2 has the form

A =

(

c b

c b

)

(12)

and

ΠA =
1

b + c

(

b −b

−c c

)

, A− =
1

(b + c)2

(

c b

c b

)

. (13)

According to (13), we have

I2 − ΠA =
1

b + c
A, An = (b + c)n−1 A,

(

A−)n
=

1

(b + c)2n+1
A, n = 1, 2, . . . .

Therefore,

An
(

A−)n
=
(

A−)n
An =

1

b + c
A = I2 − ΠA,

(

AA−)n
=
(

A−A
)n

= (I2 − ΠA)
n = I2 − ΠA.

Consequently, each matrix of the form (12) under the condition b + c 6= 0 also generates a

cyclic group with the identity element I2 − ΠA and inverse matrix (A−)n
of An.

Finally, if a = 0, b + c = 0, i.e. any matrix from Mch

2 has the form

A =

( −b b

−b b

)

,

then there does not exist a matrix X ∈ Mch

2 such that it is a solution of the equations AXA = A,

XAX = X.

Another property of elements of algebra Mch

2 is in the following statement.

Theorem 5. Eigenvalues of a product of matrices from Mch

2 are equal to a product of the cor-

responding eigenvalues of these factors.

Proof. Suppose that

A1 =

(

a1 − b1 b1

c1 a1 − c1

)

, A2 =

(

a2 − b2 b2

c2 a2 − c2

)

are matrices from Mch

2 . Then λ
(1)
1 = a1, λ

(1)
2 = a1 − b1 − c1 and λ

(2)
1 = a2, λ

(2)
2 = a2 − b2 − c2

are eigenvalues of A1 and A2, respectively. Since the equation |λI2 − A1 A2| = 0 can be written

in the form

(λ − a1a2)
2 + (λ − a1a2)(b1a2 + a1b2 − b1b2 − b1c2 + c1a2 + a1c2 − c1b2 − c1c2) = 0,

the eigenvalues of matrix A1 A2 are

λ1 = a1a2, λ2 = a1a2 − b1a2 − a1b2 + b1b2 + b1c2 − c1a2 − a1c2 + c1b2 + c1c2

= (a1 − b1 − c1)(a2 − b2 − c2).
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We endow algebra Mch

2 with the norm

‖A‖ =

∥

∥

∥

∥

(

a − b b

c a − c

)∥

∥

∥

∥

=
√

2
(

a2 + b2 + c2 − ab − ac
)

1
2 , (14)

which is generated by the scalar product

(A1, A2) :=

((

a1 − b1 b1

c1 a1 − c1

)

,

(

a2 − b2 b2

c2 a2 − c2

))

=

= b1b2 + c1c2 + (a1 − b1)(a2 − b2) + (a1 − c1)(a2 − c2).

(15)

By view of (14) and (15), we have

‖E0‖ = ‖E1‖ = ‖E2‖ =
√

2, (E0, E1) = (E0, E2) = −1, (E1, E2) = 0

for basis (9). Consequently, the algebra Mch

2 as a linear space is a Euclidean one with the basis

vectors E0, E1, E2 of the length
√

2, besides vectors E1, E2 are orthogonal, and the angles formed

by E0, E1 and E0, E2 are
2π

3
.

3 Constructing an algebra of hypercomplex numbers

In this section, we consider a method for constructing a noncommutative algebra of hyper-

complex numbers of range 3 by means of the considered algebra Mch

2 and we construct the

functions of hypercomplex variable on this algebra.

Let V3 be a linear space of dimension 3 over the field R and let ē0, ē1, ē2 be its basis, i.e.

V3 = {aē0 + bē1 + cē2 : a, b, c ∈ R} .

Let us define the operation of multiplication in V3 by the following Cayley table

· ē0 ē1 ē2

ē0 ē0 ē1 ē2

ē1 ē1 −ē1 −ē1

ē2 ē2 −ē2 −ē2

One can easily verify that V3 is an algebra of hypercomplex numbers of range 3 and the

mapping ϕ : Mch

2 → V3, which defines by the law

A =

(

a − b b

c a − c

)

7−→ (a, b, c) := aē0 + bē1 + cē2,

where ϕ(E0) = (1, 0, 0) = ē0, ϕ(E1) = (0, 1, 0) = ē1, ϕ(E2) = (0, 0, 1) = ē2, is one-to-one

correspondence. Moreover, the equalities

ϕ(αA1 + βA2) = αϕ(A1) + βϕ(A2), ϕ(A1 A2) = ϕ(A1)ϕ(A2)

hold for all α, β ∈ R and A1, A2 ∈ Mch

2 . It means that algebras Mch

2 and V3 are isomorphic.

Consequently, the algebra Mch

2 is a matrix representation of algebra of hypercomplex num-

bers V3 in which the subset {(a, 0, 0) : a ∈ R} is a field being isomorphic to the field of real

numbers R, i.e. the field R is monomorphically embedded into this subset.
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Using such matrix representation, each hypercomplex number v = aē0 + bē1 + cē2 or its

coordinate representation (a, b, c) are associated with the following characteristics:

– characteristic of a hypercomplex number (i.e. its real part) chv = a;

– determinant of a hypercomplex number detv = a(a − b − c);

– norm of a hypercomplex number, which is defined by ‖v‖ :=
√

2
(

a2 + b2 + c2 − ab− ac
)

1
2 .

Let us define a semi-inverse (inverse) element in V3. If a 6= 0 and a 6= b+ c, then there exists

an element v−1 ∈ V3 such that vv−1 = v−1v = ē0. Namely, if v = (a, b, c), then

v−1 = (a, b, c)−1 =
1

detv
(a − b − c,−b,−c).

For a hypercomplex number v, there exists a semi-inverse v−, which has the form

v− = (a, b, c)− =















1

(b + c)2
(0, b, c), if a = 0, b + c 6= 0,

1

a2
(a, b, c), if a − b − c = 0, b + c 6= 0.

Note that the hypercomplex numbers of the form v = (0, b,−b) are zero divisors.

According to isomorphism of algebras V3 and Mch

2 and Theorem 4, a one-to-one correspon-

dence of V3 onto itself (hypercomplex functions) may be constructed.

Let f be a real function with a domain D( f ) and it is differentiable in its domain.

Theorem 6. To a function f : D( f ) → R, there corresponds a mapping f̄ of V3 onto itself,

which is defined on the set of hypercomplex numbers

D( f̄ ) = {(a, b, c) : a, a − b − c ∈ D( f )} ,

and the function f̄ is defined by

f̄
(

(a, b, c)
)

=
(

f (a),
b

b + c

(

f (a) − f (a − b − c)
)

,
c

b + c

(

f (a) − f (a − b − c)
)

)

, (16)

if b + c 6= 0; and by

f̄
(

(a, b,−b)
)

=
(

f (a), b f ′(a),−b f ′(a)
)

, (17)

if b + c = 0.

Proof. Suppose that (a, b, c) is a hypercomplex number such that a, a − b − c ∈ D( f ) and

b + c 6= 0. Then its matrix representation in algebra Mch

2 is the matrix

A =

(

a − b b

c a − c

)

,

which has different eigenvalues λ1 = a, λ2 = a − b − c. Therefore according to Theorem 4, we

get

f (A) =
f (λ1)

λ1 − λ2
(A − λ2 I2) +

f (λ2)

λ2 − λ1
(A − λ1 I2)

=
1

b + c

(

c f (a) + b f (a − b − c) b f (a) − b f (a − b − c)

c f (a) − c f (a − b − c) b f (a) + c f (a − b − c)

)

.
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Note that the latter matrix is a representation of hypercomplex number (16).

If b + c = 0, i.e. the hypercomplex number has the form (a, b,−b), then its matrix represen-

tation in algebra Mch

2 is the matrix

A =

(

a − b b

−b a + b

)

,

which has multiple eigenvalue λ = a. Therefore according to Theorem 4, we get

f (A) = f (a)I2 + f ′(a)(A − aI2) =

(

f (a) − b f ′(a) b f ′(a)

−b f ′(a) f (a) + b f ′(a)

)

.

The obtained matrix is a representation of hypercomplex number (17).

For example,
√

(3, 2,−1)
(16)
=
(√

3, 2
√

3 − 2
√

2,−
√

3 +
√

2
)

,

√

(3, 2,−2)
(17)
=

(√
3,

1√
3

,− 1√
3

)

.

By Theorem 6, the basic elementary hypercomplex functions (functions on V3) can be de-

fined in such a way

ev = e(a,b,c) =











(

ea,
b

b + c

(

ea − ea−b−c
)

,
c

b + c

(

ea − ea−b−c
)

)

, if b + c 6= 0,

(ea, bea,−bea) , if b + c = 0;

cos v = cos(a, b, c)

=











(

cos a,
b

b + c

(

cos a − cos(a, b, c)
)

,
c

b + c

(

cos a − cos(a, b, c)
)

)

, if b + c 6= 0,

(cos a,−b sin a, b sin a) , if b + c = 0;

sin v = sin(a, b, c)

=











(

sin a,
b

b + c

(

sin a − sin(a, b, c)
)

,
c

b + c

(

sin a − sin(a, b, c)
)

)

, if b + c 6= 0,

(sin a, b cos a,−b cos a) , if b + c = 0.

For all (a, b, c) ∈ V3, which satisfy the conditions a > −1, a − b − c > −1, the following

function is defined

ln(e0 + v) = ln((1 + a, b, c))

=















(

ln(1 + a),
b

b + c
ln

1 + a

1 + a − b − c
,

c

b + c
ln

1 + a

1 + a − b − c

)

, if b + c 6= 0,
(

ln(1 + a),
b

1 + a
,− b

1 + a

)

, if b + c = 0.

Since function f (λ) = λn is defined on R for each n ∈ N, for every (a, b, c) ∈ V3 we can

define the following function

(a, b, c)n =











(

an,
b

b + c

(

an − (a − b − c)n
)

,
c

b + c

(

an − (a − b − c)n
)

)

, if b + c 6= 0,

(

an, nban−1,−nban−1
)

, if b + c = 0.

(18)
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Algebra of hypercomplex numbers V3 is endowed with the norm

‖(a, b, c)‖ =
√

2
(

a2 + b2 + c2 − ab − ac
)

1
2 .

Therefore, the concept of convergence of sequences and series can be defined on this algebra

in a natural way, besides it is clear that the series

∞

∑
n=1

vn =
∞

∑
n=1

(an, bn, cn)

is convergent if and only if the series
∞

∑
n=1

an,
∞

∑
n=1

bn,
∞

∑
n=1

cn are convergent.

Theorem 7. If a real function f (λ) is given by a convergent power series on an interval, that is

f (λ) =
∞

∑
n=1

anλn,

and a, a − b − c belongs to the interval of convergence, then the series of hyperpercomplex

numbers
∞

∑
n=1

an(a, b, c)n is convergent and its sum is f̄
(

(a, b, c)
)

.

Proof. According to (18) and Theorem 6, we have

∞

∑
n=1

an(a, b, c)n =
∞

∑
n=1

an

(

an,
b

b + c

(

an − (a − b − c)n
)

,
c

b + c

(

an − (a − b − c)n
)

)

=

( ∞

∑
n=1

anan,
b

b + c

( ∞

∑
n=1

anan −
∞

∑
n=1

an(a − b − c)n

)

,
c

b + c

( ∞

∑
n=1

anan −
∞

∑
n=1

an(a − b − c)n

))

=

(

f (a),
b

b + c

(

f (a) − f (a − b − c)
)

,
c

b + c

(

f (a) − f (a − b − c)
)

)

= f̄
(

(a, b, c)
)

,

if b + c 6= 0; and

∞

∑
n=1

an(a, b,−b)n =
∞

∑
n=1

an

(

an, nban−1,−nban−1
)

=

( ∞

∑
n=1

anan, b
∞

∑
n=1

nanan−1,−b
∞

∑
n=1

nanan−1

)

=
(

f (a), b f ′ (a),−b f ′(a)
)

= f̄
(

(a, b, c)
)

,

if b + c = 0.
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Вотякова Л.А., Фриз I.В. Про побудову алгебр скiнченного рангу // Карпатськi матем. публ. —
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В роботi з повної матричної алгебри видiляється пiдалгебра, елементами якої є квадра-

тнi матрицi з дiйсними елементами, сума рядкiв яких є однаковою. За допомогою класичних

методiв теорiї матриць дослiджуються властивостi побудованої матричної алгебри. Ця алге-

бра надiляється нормою, що дає можливiсть будувати елементи аналiзу в нiй, використовую-

чи методи матричного аналiзу. Будується новий клас алгебр скiнченного рангу, а саме алге-

бра гiперкомплексних чисел, яка є iзоморфною вiдповiднiй матричнiй алгебрi. Таким чином,

одержанi для матриць результати переносяться на елементи iзоморфної алгебри скiнченного

рангу, тобто на гiперкомплекснi числа. Це дозволило побудувати функцiї гiперкомплексної

змiнної.

Ключовi слова i фрази: алгебра скiнченного рангу, гiперкомплексне число, власний проє-

ктор, матрична норма, функцiя гiперкомплексної змiнної.


