References
- Culbert C. Cayley-Dickson algebras and loops. J. General.
Lie Theory and Appl. 2007, 1 (1), 1–17.
- Deckelman S., Robson B. Split-complex numbers and Dirac
bra-kets. Commun. Inf. Syst. 2014, 14 (3),
135–159. doi:10.4310/CIS.2014.v14.n3.a1
- Gantmacher F.R. The theory of matrices. Vol. I. Chelsea Publishing
Company, New York, 1959.
- Gu Y. Miraculous hypercomplex numbers. Math. System Sci.
2023, 1 (1), article 2258.
doi:10.54517/mss.v1i1.2258
- Hamilton W.R. Elements of quaternions. Longmans, Green & Co.,
London, 1866.
- Horn R.A., Jonson C.R. Matrix analysis. Second edition. Cambridge
University Press, Cambridge, 2013.
- Jacobson N. Lie Algebras. Dover Publications Inc., New York,
1962.
- Kalugnin L.A. Introduction to general algebra. Nauka, Moscow, 1973.
(in Russian)
- Kantor I.L., Solodovnikov A.S. Hypercomplex numbers: an elementary
introduction to algebras. Springer, New York, 1989.
- Korolyuk V.S., Turbin A.F. Semi-Markov processes and their
applications. Naukova dumka, Kyiv, 1976. (in Russian)
- Pratsiovytyi M., Votiakova L. Graphic and analytic
characteristics of semi-stochastic matrices. Sci. J. Nat. Pedag.
Dragomanov Univ. Ser. Phys. Math. Sci. 2002, 3,
197–214. (in Ukrainian)
- Sinkov M.V., Boyarinova Y.Y., Kalinovskyi Y.A., Postnikova T.G.,
Sinkova T.V., Fedorenko O.V. Development of the theory of
hypercomplex representation of information and its application.
Data Recording, Storage & Processing 2007, 7 (4),
28–48.
- Turbin A.F. Formulas for evaluating semi-inverse and
pseudo-inverse of a matrix. USSR Comput. Math. Math. Phys. 1974,
14 (3), 230–235. doi:10.1016/0041-5553(74)90118-9
- Vieira G., Valle M.E. A general framework for hypercomplex-valued
extreme learning machines. J. Comput. Math. Data Sci. 2022,
3, article 100032. doi:10.1016/j.jcmds.2022.100032