References

  1. Culbert C. Cayley-Dickson algebras and loops. J. General. Lie Theory and Appl. 2007, 1 (1), 1–17.
  2. Deckelman S., Robson B. Split-complex numbers and Dirac bra-kets. Commun. Inf. Syst. 2014, 14 (3), 135–159. doi:10.4310/CIS.2014.v14.n3.a1
  3. Gantmacher F.R. The theory of matrices. Vol. I. Chelsea Publishing Company, New York, 1959.
  4. Gu Y. Miraculous hypercomplex numbers. Math. System Sci. 2023, 1 (1), article 2258. doi:10.54517/mss.v1i1.2258
  5. Hamilton W.R. Elements of quaternions. Longmans, Green & Co., London, 1866.
  6. Horn R.A., Jonson C.R. Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013.
  7. Jacobson N. Lie Algebras. Dover Publications Inc., New York, 1962.
  8. Kalugnin L.A. Introduction to general algebra. Nauka, Moscow, 1973. (in Russian)
  9. Kantor I.L., Solodovnikov A.S. Hypercomplex numbers: an elementary introduction to algebras. Springer, New York, 1989.
  10. Korolyuk V.S., Turbin A.F. Semi-Markov processes and their applications. Naukova dumka, Kyiv, 1976. (in Russian)
  11. Pratsiovytyi M., Votiakova L. Graphic and analytic characteristics of semi-stochastic matrices. Sci. J. Nat. Pedag. Dragomanov Univ. Ser. Phys. Math. Sci. 2002, 3, 197–214. (in Ukrainian)
  12. Sinkov M.V., Boyarinova Y.Y., Kalinovskyi Y.A., Postnikova T.G., Sinkova T.V., Fedorenko O.V. Development of the theory of hypercomplex representation of information and its application. Data Recording, Storage & Processing 2007, 7 (4), 28–48.
  13. Turbin A.F. Formulas for evaluating semi-inverse and pseudo-inverse of a matrix. USSR Comput. Math. Math. Phys. 1974, 14 (3), 230–235. doi:10.1016/0041-5553(74)90118-9
  14. Vieira G., Valle M.E. A general framework for hypercomplex-valued extreme learning machines. J. Comput. Math. Data Sci. 2022, 3, article 100032. doi:10.1016/j.jcmds.2022.100032