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Widths and entropy numbers of the classes of periodic
functions of one and several variables in the space Bq,1

Pozharska K.V.1,2, , Romanyuk A.S.1, Romanyuk V.S.1

Exact-order estimates are obtained for the entropy numbers and several types of widths (Kol-

mogorov, linear, trigonometric and orthowidth) for the Sobolev and Nikol’skii-Besov classes of one

and several variables in the space Bq,1, 1 < q < ∞. It is shown, that in the multivariate case, in

contrast to the univariate, the obtained estimates differ in order from the corresponding estimates

in the space Lq.
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Introduction

In the paper, the exact-order estimates are obtained for the entropy numbers and several

types of widths (Kolmogorov, linear, trigonometric and orthowidth) for the Sobolev Wr
p,α and

Nikol’skii-Besov Br
p,θ classes of one and several variables in the space Bq,1, 1 < q < ∞, the

norm in which is stronger than the Lq-norm. As it was indicated in [6,8,9,21–27], a motivation

to investigate different approximation characteristics on the mentioned function classes and

their generalizations in the space Bq,1, q ∈ {1, ∞}, was the fact, that in some cases the question

on the exact-order estimates of these characteristics in the space Lq, q ∈ {1, ∞}, still remains

open. The analogical situation is observed in the Lebesque spaces Lq for 1 < q < ∞ (see [5,20]).

The paper consists of two parts.

In the first part, the main attention is focused on getting the exact-order estimates for the

Kolmogorov widths and entropy numbers of the Sobolev classes Wr
p,α of periodic functions of

one and several variables in the space Bq,1 for some relations between the parameters p and q.

As the consequences from the obtained and known before results, we get the orders for the

linear and trigonometric widths of the mentioned functional classes in the spaces Bq,1. As a

complement, we obtain the exact-order estimates of the entropy numbers and Kolmogorov

widths of the Nikol’skii classes Hr
p, 2 ≤ p ≤ ∞, of periodic multivariate functions (d ≥ 2) in

the space B∞,1. Note, that in the space L∞ for d > 2 the order of these characteristics of the

classes Hr
p, 1 ≤ p ≤ ∞, still remains unknown (see [5, Open Problems 4.2, 6.3]).
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The second part of the paper is devoted to obtaining the exact-order estimates for the or-

thowidths of the classes Br
p,θ and Wr

p,α, as well as close to them characteristics in the spaces

Bq,1, 1 < q < ∞.

The obtained results complement and generalize the known statements for the classes Wr
p,α

and Br
p,θ, that were earlier proved in the spaces Lq for 1 ≤ q ≤ ∞ and Bq,1, q ∈ {1, ∞}, in the

papers [2, 3, 6–10, 13, 21–27, 30]. Here one can find a more detailed bibliography.

1 Definitions of the functional classes and spaces Bq,1

Let R
d, d ≥ 1, be an Euclidean space with elements x = (x1, . . . , xd) and the scalar product

(x, y) = x1 y1 + · · · + xd yd. By Lp := Lp(Td), T
d = ∏

d
j=1 [0, 2π), 1 ≤ p ≤ ∞, we denote the

space of functions f (x), which are 2π-periodic in each variable and for which

‖ f‖p := ‖ f‖Lp =
(
(2π)−d

∫

Td
| f (x)|p dx

)1/p
< ∞, 1 ≤ p < ∞,

‖ f‖∞ := ‖ f‖L∞
= ess supx∈Td | f (x)| < ∞, p = ∞.

We further restrict ourself in considering only those functions f ∈ Lp, that satisfy the

condition ∫ 2π

0
f (x)dxj = 0 a.e., j = 1, . . . , d.

The respective set is denoted by L0
p.

First, we define the functional class Wr
p,α, which is investigated in the paper.

Let Fr(x, α) be a multidimensional analogue of the Bernoulli kernel, i.e. for r, α ∈ R
d, rj > 0,

j = 1, . . . , d, x ∈ T
d let

Fr(x, α) := 2d ∑
k∈Nd

d

∏
j=1

k
−rj

j cos
(

kjxj −
αjπ

2

)
.

Then by Wr
p,α, 1 ≤ p ≤ ∞, we denote the class of functions f of the form

f (x) = ϕ(·) ∗ Fr(·, α) = (2π)−d
∫

Td
ϕ(y)Fr(x − y, α)dy,

where ϕ ∈ L0
p, ‖ϕ‖p ≤ 1, and ∗ is an operation of convolution.

In what follows, we define the Nikol’skii-Besov functional classes Br
p,θ. In will be convenient

for us to use the corresponding characterisations in terms of dyadic decompositions of the

Fourier transform (see [16, Remark 2.1]).

Let Vl(t), t ∈ R, l ∈ N, denotes the de la Vallée-Poussin kernel of the form

Vl(t) := 1 + 2
l

∑
k=1

cos kt + 2
2l−1

∑
k=l+1

(
1 −

k − l

l

)
cos kt,

where for l = 1 we assume that the third term equals to zero.

We associate each vector s ∈ N
d with the polynomial

As(x) :=
d

∏
j=1

(V
2

sj (xj)− V
2

sj−1(xj))

and for f ∈ L0
p, 1 ≤ p ≤ ∞, set

As( f ) := As( f , x) := ( f ∗ As)(x).
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Then, for 1 ≤ p ≤ ∞, r ∈ R
d, rj > 0, j = 1, . . . , d, the classes Br

p,θ can be defined as follows

Br
p,θ :=

{
f : ‖ f‖Br

p,θ
:=

(
∑

s∈Nd

2(s,r)θ ‖As( f )‖θ
p

)1/θ

≤ 1

}
, 1 ≤ θ < ∞,

Br
p,∞ ≡ Hr

p :=
{

f : ‖ f‖Br
p,∞

:= sup
s∈Nd

2(s,r)‖As( f )‖p ≤ 1
}

.

Note, in the case 1 < p < ∞, the norm of the classes Br
p,θ can be equivalently defined in

terms of binary “blocks” of the Fourier series of the functions f ∈ L0
p.

For vectors s ∈ N
d, we set

ρ(s) := {k ∈ Z
d : 2sj−1 ≤ |kj | < 2sj , j = 1, . . . , d}

and for f ∈ L0
p we denote

δs( f ) := δs( f , x) := ∑
k∈ρ(s)

f̂ (k)ei(k,x),

where f̂ (k) =
∫

Td f (t)e−i(k,t)dt are the Fourier coefficients of the function f .

Hence, let 1 < p < ∞, r ∈ R
d, rj > 0, j = 1, . . . , d. Then we can define the norm as

follows [1, 16]

‖ f‖Br
p,θ

≍

(
∑

s∈Nd

2(s,r)θ‖δs( f )‖θ
p

)1/θ

, 1 ≤ θ < ∞,

‖ f‖Br
p,∞

≍ sup
s∈Nd

2(s,r)‖δs( f )‖p .

Here and in what follows, for positive quantities a and b, we use the notation a ≍ b, that

means that there exist positive constants C1, C2, that do not depend on one essential parameter

in the values of a, b, and such that C1a ≤ b (we write a ≪ b) and C2a ≥ b (denoted by a ≫ b).

All constants Ci, i = 1, 2, . . . , in this paper may depend only on the parameters contained in

the definition of the function class, the metric in which we estimate the approximation error,

and the dimension of the space R
d.

Concerning the defined above classes, we note the existing embeddings, that hold for all

r, α ∈ R
d, rj > 0, j = 1, . . . , d, namely

Br
p,p ⊂ Wr

p,α ⊂ Br
p,2, 1 < p ≤ 2,

Br
p,2 ⊂ Wr

p,α ⊂ Br
p,p, 2 ≤ p < ∞,

Wr
p,α ⊂ Br

p,∞ ≡ Hr
p, 1 ≤ p ≤ ∞.

In particular, for p = θ = 2 it holds

Wr
2,α ⊂ Br

2,2 ⊂ Wr
2,α.

In the following considerations, we assume that coordinates of the vector r ∈ R
d in the

defined classes are ordered such that 0 < r1 = r2 = · · · = rν < rν+1 ≤ · · · ≤ rd, and also

that γ ∈ R
d is a vector with the coordinates γj = rj/r1, j = 1, . . . , d. Besides, γ

′ ∈ R
d, where

γ′
j = γj = 1 if j = 1, . . . , ν and 1 < γ′

j < γj if j = ν + 1, . . . , d.

For a finite set N, by |N| we denote the number of its elements.
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Now we formulate a definition of the norm ‖ · ‖Bq,1
in the subspaces Bq,1, 1 ≤ q ≤ ∞, of

functions f ∈ L0
q.

For trigonometric polynomials t with respect to the multiple trigonometric system

{ei(k,x)}k∈Zd , the norm ‖t‖Bq,1
is defined by the formula

‖t‖Bq,1
:= ∑

s∈Nd

‖As(t)‖q .

Note, that the sum above contains a finite number of terms.

Similarly we define the norm ‖ f‖Bq,1
, 1 ≤ q ≤ ∞, for all functions f ∈ L0

q such that the

series ∑s∈Nd ‖As( f )‖q is convergent.

Note, that in the case 1 < q < ∞ it holds

‖ f‖Bq,1
≍ ∑

s∈Nd

‖δs( f )‖q .

For f ∈ Bq,1, 1 ≤ q ≤ ∞, the following relations hold:

‖ f‖q ≪ ‖ f‖Bq,1
, ‖ f‖B1,1

≪ ‖ f‖Bq,1
≪ ‖ f‖B∞,1

.

2 Approximation characteristics and auxiliary statements

Let X be a Banach space with the norm ‖ · ‖X. For a compact set A ⊂ X and y ∈ X, R > 0,

we put BX(y, R) := {x ∈ X : ‖x − y‖X ≤ R}, i.e. define the ball BX(y, R) in X of radius R

centered at the point y.

For k ∈ N, the quantity (see, e.g., [11])

εk(A,X) := inf

{
ε > 0 : ∃ y1, . . . , y2k

∈ X : A ⊆
2k⋃

j=1

BX(y
j, ε)

}

is called the kth entropy number of the set A in the space X.

Let Y be a normed space with the norm ‖ · ‖Y, LM(Y) be a set of subspaces of dimension at

most M in the space Y, and W be a centrally-symmetric set in Y.

The quantity

dM(W,Y) := inf
LM∈LM(Y)

sup
w∈W

inf
u∈LM

‖w − u‖Y (1)

is called the Kolmogorov M-width of the set W in the space Y.

The width dM(W,Y) was introduced in 1936 by A.N. Kolmogorov [15].

Let Y and Z be normed spaces and L(Y,Z) be a set of linear continuous mappings of Y

into Z.

The quantity

λM(W,Y) := inf
LM∈LM(Y)

Λ∈L(Y,LM)

sup
w∈W

‖w − Λw‖Y

is called the linear M-width of the set W in the space Y.

The width λM(W,Y) was introduced in 1960 by V.M. Tikhomirov [34].
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The following approximation characteristic was introduced by R.S. Ismagilov [12]. So, let

either Y = Lq or Y = Bq,1, 1 ≤ q ≤ ∞, and F ⊂ Y be some functional class. The trigonometric

M-width of the class F in the space Y (denoted by d⊤M(F,Y)) is defined by the formula

d⊤M(F,Y) := inf
ΩM

sup
f∈F

inf
t(ΩM;x)

‖ f (·) − t(ΩM; ·)‖Y,

where

t(ΩM; x) =
M

∑
j=1

cje
i(kj,x), x ∈ R

d,

ΩM = {k1, . . . , kM} is a set of vectors kj ∈ Z
d, cj be arbitrary complex numbers, j = 1, . . . , M.

Let {ui}
M
i=1 be an orthonormal in the space L2 system of functions ui ∈ L∞, i = 1, . . . , M.

Each function f ∈ Lq, 1 ≤ q ≤ ∞, we put into the correspondence the approximation aggregate

of the form ∑
M
i=1( f , ui)ui, i.e. an orthogonal projection of the function f onto the subspace,

generated by the system of functions {ui}
M
i=1.

If F ⊂ Lq, then the quantity

d⊥M(F, Lq) := inf
{ui}

M
i=1

sup
f∈F

∥∥∥ f −
M

∑
i=1

( f , ui)ui

∥∥∥
q

is called the orthowidth (the Fourier widths) of the class F in the space Lq. The width d⊥M(F, Lq)

was introduced by V.N. Temlyakov [28]. Besides, V.N. Temlyakov [29] considered close to the

Fourier width quantity dB
M(F, Lq), which is defined by the formula

dB
M(F, Lq) := inf

G∈LM(B)q

sup
f∈F∩D(G)

‖ f − G f‖q . (2)

Here LM(B)q denotes a set of linear operators, that satisfy the following conditions:

a) the domain D(G) of these operators contains all trigonometric polynomials, and their

range is contained in a subset of the space Lq of dimension M;

b) there exists such number B ≥ 1 that for all vectors k ∈ Z
d it holds

‖Gei(k,x)‖2 ≤ B.

Note, that to LM(1)2 belong operators of an orthogonal projection into the subspaces of

dimension M of the space L2, as well as operators, defined on an orthonormal system of func-

tions by a multiplier determined by such sequence {λl}l∈N that |λl | ≤ 1 for all l ∈ N.

Let either Y = Lq or Y = Bq,1, 1 ≤ q ≤ ∞. Then the approximation characteristics (1), (2) of

the classes F ⊂ Y relate as follows:

dM(F,Y) ≤ dB
M(F,Y) ≤ d⊥M(F,Y),

dM(F,Y) ≤ λM(F,Y) ≤ d⊥M(F,Y), (3)

dM(F,Y) ≤ d⊤M(F,Y).

Note also, that the quantities (1), (2) on the Sobolev classes Wr
p,α and Nikol’skii-Besov

classes Br
p,θ in the spaces Lq, 1 ≤ q ≤ ∞, were extensively studied. For the corresponding

bibliography, we refer to the monographs [5, 20, 29, 31, 33, 35]. Concerning the results of inves-

tigation of these quantities in the spaces Bq,1, see the papers [2, 3, 13, 21–24, 30].



356 Pozharska K.V., Romanyuk A.S., Romanyuk V.S.

Let us formulate some known statements that we will use in further argumentation.

A corollary from one of the B. Carl inequalities [4] is the following statement.

Lemma A ([14, 32]). Let K be a compact set in a separable Banach space X. Assume that for a

pair of numbers (a, b), where either a > 0, b ∈ R or a = 0, b < 0, the relations

dM(K,X) ≪ M−a(log M)b, εM(K,X) ≫ M−a(log M)b

are true. Then it holds

εM(K,X) ≍ dM(K,X) ≍ M−a(log M)b.

Lemma B ([29]). Let s ∈ N
d, γ ∈ R

d, γj > 0, j = 1, . . . , d and γ
′ ∈ R

d is such that γj = γ′
j = 1

for j = 1, . . . , ν and 1 < γ′
j < γj for j = ν + 1, . . . , d. Then for α > 0 the following estimate

holds

∑
(s,γ′)≥l

2−α(s,γ) ≍ 2−αl lν−1.

Theorem A ([22]). Let d ≥ 1, 2 < p < ∞, r1 > 1/2. Then for α ∈ R
d it holds

εM(Wr
p,α, B∞,1) ≍ dM(Wr

p,α, B∞,1) ≍ M−r1(logν−1 M)r1+1/2.

Theorem B ([21]). Let d ≥ 1, 1 < p < ∞, r1 > 0. Then for α ∈ R
d it holds

εM(Wr
p,α, B1,1) ≍ dM(Wr

p,α, B1,1) ≍ M−r1(logν−1 M)r1+1/2.

Theorem C. Let d ≥ 1, 1 < q ≤ p < ∞, r1 > 0. Then for α ∈ R
d it holds

εM(Wr
p,α, Lq) ≍ dM(Wr

p,α, Lq) ≍ M−r1(logν−1 M)r1 . (4)

The history of investigation of the quantity εM(Wr
p,α, Lq) under the conditions of Theorem C

can be found in [5, Theorem 6.2.1]. The estimates of the Kolmogorov widths with corres-

ponding comments are also given in [5, Theorem 4.3.1].

Theorem D. Let d ≥ 1, 1 < q ≤ p < ∞, r1 > 0. Then for α ∈ R
d it holds

λM(Wr
p,α, Lq) ≍ d⊤M(Wr

p,α, Lq) ≍ M−r1(logν−1 M)r1 . (5)

The estimate of the linear widths λM(Wr
p,α, Lq) in (5) with corresponding comments is given

in [5, Theorem 4.5.1]. Concerning the trigonometric width d⊤M(Wr
p,α, Lq), we note that its up-

per estimate is realized by the approximation of functions from the classes Wr
p,α by their step

hyperbolic Fourier sums [5, Theorem 4.3.5]. The corresponding lower estimate is a corollary

from the estimate of the Kolmogorov width (see Theorem C).

Theorem E ([3]). Let d ≥ 1, r1 > 1/2. Then it holds

εM(Hr
2, B∞,1) ≍ dM(Hr

2, B∞,1) ≍ M−r1(logν−1 M)r1+1.

Theorem F ([21]). Let d ≥ 1, 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, r1 > 0. Then it holds

εM(Br
p,θ, B1,1) ≍ dM(Br

p,θ , B1,1) ≍ M−r1(logν−1 M)r1+1−1/θ.

Theorem G. Let d ≥ 1, 1 ≤ q ≤ p ≤ ∞, (q, p) /∈ {(1, 1), (∞, ∞)}, 1 ≤ θ ≤ ∞ and

p∗ = min{2; p}. Then for r1 > 0 it holds

d⊥M(Br
p,θ, Lq) ≍ dB

M(Br
p,θ , Lq) ≍ M−r1(logν−1 M)r1+(1/p∗−1/θ)+, (6)

where a+ = max{a, 0}.
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The estimates (6) in the case 1 ≤ θ < ∞ are obtained in [17–19], and for θ = ∞, i.e. for the

classes Hr
p, in [30].

The corresponding statement for the classes Wr
p,α has the following form.

Theorem H ([30]). Let d ≥ 1, 1 ≤ q ≤ p ≤ ∞, (q, p) /∈ {(1, 1), (∞, ∞)}. Then for α ∈ R
d it

holds

d⊥M(Wr
p,α, Lq) ≍ dB

M(Wr
p,α, Lq) ≍ M−r1(logν−1 M)r1 .

3 Entropy numbers and widths

The following statement holds.

Theorem 1. Let d ≥ 2 and either r1 > 0, 1 < p ≤ 2 or r1 > 1/2, 2 < p < ∞. Then for α ∈ R
d it

holds

εM(Wr
p,α, Bp,1) ≍ dM(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+1/2. (7)

Proof. In order to use Lemma A, we first prove the upper estimate for the Kolmogorov width

dM(Wr
p,α, Bp,1) for 1 < p ≤ 2. It will be convenient for us to prove the needed estimate in

a more general case, namely for the classes Br
p,2. Here we note the embedding Wr

p,α ⊂ Br
p,2,

1 < p ≤ 2.

Hence, let f be an arbitrary function form the class Br
p,2, 1 < p ≤ 2. Let us consider its

approximation polynomial of the form

S
Q

γ
′

n
( f ) := S

Q
γ
′

n
( f , x) := ∑

(s,γ′)<n

δs( f , x),

where the number n ∈ N is choosen according to the relation M ≍ 2nnν−1.

The polynomial S
Q

γ
′

n
( f ) is called the step hyperbolic Fourier sum of the function f , and for

its number of harmonics it holds

|Qγ
′

n | =

∣∣∣∣
⋃

(s,γ′)<n

ρ(s)

∣∣∣∣ ≍ 2nnν−1.

Then, by the norm definition of the space Bp,1, we can write

‖ f − S
Q

γ
′

n
( f )‖Bp,1

=
∥∥∥ ∑
(s,γ′)≥n

δs( f )
∥∥∥

Bp,1

≍ ∑
s∈Nd

∥∥∥∥∥δs

(

∑
s′∈Nd

(s′,γ′)≥n

δs′( f )

)∥∥∥∥∥
p

≤ ∑
(s,γ′)≥n

‖δs( f )‖p =: J1.

(8)

Further, using the Cauchy-Bunyakovsky inequality and Lemma B, we get

J1 ≤

(
∑

(s,γ′)≥n

22(s,r)‖δs( f )‖2
p

)1/2(
∑

(s,γ′)≥n

2−2(s,r)

)1/2

≪ ‖ f‖Br
p,2

(

∑
(s,γ′)≥n

2−2r1(s,γ)

) 1
2

≪ 2−nr1n(ν−1)/2.

(9)



358 Pozharska K.V., Romanyuk A.S., Romanyuk V.S.

Hence, taking into account that M ≍ 2nnν−1, and the relations (8), (9), we obtain

dM(Br
p,2, Bp,1) ≪ sup

f∈Br
p,2

‖ f − S
Q

γ
′

n

( f )‖Bp,1
≪ 2−nr1n(ν−1)/2 ≍ M−r1(logν−1 M)r1+1/2. (10)

In view of the mentioned above embedding Wr
p,α ⊂ Br

p,2, 1 < p ≤ 2, (10) yields the required

estimate

dM(Wr
p,α, Bp,1) ≪ dM(Br

p,2, Bp,1) ≪ M−r1(logν−1 M)r1+1/2, 1 < p ≤ 2. (11)

Let 2 < p < ∞. Then, by the relation ‖ · ‖B∞,1
≫ ‖ · ‖Bp,1

and Theorem A, we can write

dM(Wr
p,α, Bp,1) ≪ dM(Wr

p,α, B∞,1) ≍ M−r1(logν−1 M)r1+1/2.

Concerning the lower estimate of the entropy numbers εM(Wr
p,α, Bp,1), we note that it fol-

lows from Theorem B, i.e.

εM(Wr
p,α, Bp,1) ≫ εM(Wr

p,α, B1,1) ≍ M−r1(logν−1 M)r1+1/2. (12)

To complete the proof, we use Lemma A with respect to the estimates (11), (12), and get (7).

Theorem 1 is proved.

In addition to the obtained above result, let us formulate a statement that concerns the

univariate case, where for 2 < p < ∞ we can weaken the restrictions on the parameter r1.

Theorem 1’. Let d = 1, r1 > 0, 1 < p < ∞. Then for α ∈ R it holds

εM(Wr1
p,α, Bp,1) ≍ dM(Wr1

p,α, Bp,1) ≍ M−r1 . (13)

Proof. The upper estimate for the width dM(Wr1
p,α, Bp,1) follows from [25, Corollary 1] as

M ≍ 2n, i.e.

dM(Wr1
p,α, Bp,1) ≪ dM(Hr1

p , Bp,1) ≪ sup
f∈H

r1
p

∥∥∥ f −
2n

∑
k=−2n

f̂ (k)eikx
∥∥∥

Bp,1

≍ 2−nr1 ≍ M−r1 . (14)

The lower estimate for the entropy numbers εM(Wr1
p,α, Bp,1) follows from Theorem C for

ν = 1 and the inequality ‖ · ‖Bp,1
≫ ‖ · ‖p, i.e.

εM(Wr1
p,α, Bp,1) ≫ εM(Wr1

p,α, Lp) ≍ M−r1 . (15)

Using Lemma A with respect to (14), (15), we get (13). Theorem 1′ is proved.

Remark 1. Comparing the estimate (4) for p = q, d ≥ 2 with (7), we see that under the con-

ditions of Theorem 1 on the parameters p and r1 the estimates of the respective characteristics

of the classes Wr
p,α differ in order by the factor log(ν−1)/2 M. In the univariate case, we have

a different situation, namely, the considered approximation characteristics of the classes Wr1
p,α

in the spaces Lp (Theorem C) and Bp,1 (Theorem 1′) coincide in order.

It is also worth noting another detail, which appeared to be specific for the Kolmogorov

width of the classes Wr
p,α in the space Bp,1 for d ≥ 2.

While getting the upper estimate for the quantity dM(Wr
p,α, Bp,1), we obtained that in the

case 1 < p ≤ 2 it is realized by a subspace of trigonometric polynomials with “numbers”

of harmonics from the step hyperbolic cross Q
γ
′

n , where the numbers n and M relate

as M ≍ 2nnν−1.
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In contrast, in the case 2 < p < ∞, we are not aware of the M-dimensional subspaces that

realize the obtained orders of the Kolmogorov widths of the classes Wr
p,α in the space Bp,1. Due

to this fact, we recall that in the space Lp the above mentioned subsets of trigonometric poly-

nomials are optimal from the point of view of orders of the Kolmogorov width dM(Wr
p,α, Lp)

for all 1 < p < ∞.

In what follows, we formulate two corollaries from Theorems 1 and 1′, which concern the

estimates of the linear and trigonometric width of the classes Wr
p,α in the space Bp,1.

Corollary 1. Let d ≥ 2, 1 < p ≤ 2, r1 > 0. Then for α ∈ R
d it holds

λM(Wr
p,α, Bp,1) ≍ d⊤M(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+1/2. (16)

Proof. The upper estimates for both of the width are obtained by an approximation of functions

f ∈ Wr
p,α by trigonometric polynomials S

Q
γ
′

n

( f ) as M ≍ 2nnν−1. The corresponding arguments

were used while proving Theorem 1.

The lower estimates in (16) follow from the estimate of the Kolmogorov width

dM(Wr
p,α, Bp,1), 1 ≤ p < 2, obtained in Theorem 1, and the relations (3). Corollary 1 is

proved.

To complement this, let us formulate one more corollary concerning the univariate case,

where it appeared possible to cover the relation 2 < p < ∞.

Corollary 1’. Let d = 1, 1 < p < ∞, r1 > 0. Then for α ∈ R it holds

λM(Wr1
p,α, Bp,1) ≍ d⊤M(Wr1

p,α, Bp,1) ≍ M−r1 . (17)

Proof. The upper estimates in (17) are realized by approximation of functions from the classes

Hr1
p by the Fourier sums of respective order and the embedding Wr1

p,α ⊂ Hr1
p (see [25, Theo-

rem 1]). The lower estimates for both of the widths follow from the estimate of the Kolmogorov

width dM(Wr1
p,α, Bp,1) obtained in (13) and the relations (3). Corollary 1′ is proved.

Remark 2. Comparing Corollaries 1 and 1′ with the corresponding statements in the space Lp

(Theorem D), we come to the conclusion that the considered in these spaces approximation

characteristics have equal orders only either in the univariate case or for ν = 1 .

Theorem 2. Let d ≥ 2, 1 < q < p < ∞ and either r1 > 0, 1 < q ≤ 2 or r1 > 1/2, 2 < q < ∞.

Then for α ∈ R
d it holds

εM(Wr
p,α, Bq,1) ≍ dM(Wr

p,α, Bq,1) ≍ M−r1(logν−1 M)r1+1/2. (18)

Proof. As in proof of Theorem 1, in order to use Lemma A, we first get the upper estimates for

the width dM(Wr
p,α, Bq,1).

For this, let us consider several cases.

a) Let 1 < q < p ≤ 2. Then, taking into account the inequality ‖ · ‖Bq,1
≪ ‖ · ‖Bp,1

and using

the corresponding estimate from Theorem 1, we can write

dM(Wr
p,α, Bq,1) ≪ dM(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+1/2. (19)

b) Let 1 < q ≤ 2 < p < ∞. In view of Wr
p,α ⊂ Wr

2,α and the estimate (19) in the case p = 2,

we have

dM(Wr
p,α, Bq,1) ≤ dM(Wr

2,α, Bq,1) ≍ M−r1(logν−1 M)r1+1/2.
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c) Let 2 < q < p < ∞. Since in this case ‖ · ‖Bq,1
≪ ‖ · ‖Bp,1

, from Theorem 1 we obtain

dM(Wr
p,α, Bq,1) ≪ dM(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+1/2.

Concerning the lower estimate for the entropy numbers εM(Wr
p,α, Bq,1), we note that it fol-

lows as a corollary from Theorem B, i.e.

εM(Wr
p,α, Bq,1) ≫ εM(Wr

p,α, B1,1) ≍ M−r1(logν−1 M)r1+1/2. (20)

Hence, using Lemma A with respect to the estimates (19), (20), we get (18). Theorem 2 is

proved.

Further we complement the obtained result by considering the univariate case, where for

2 < q < ∞ it appeared possible to weaken the restrictions on the parameter r1.

Theorem 2’. Let d = 1, 1 < q < p < ∞, r1 > 0. Then for α ∈ R it holds

εM(Wr1
p,α, Bq,1) ≍ dM(Wr1

p,α, Bq,1) ≍ M−r1 . (21)

Proof. The upper estimate of the width dM(Wr1
p,α, Bq,1) follows from Theorem 1′ , i.e.

dM(Wr1
p,α, Bq,1) ≪ dM(Wr1

p,α, Bp,1) ≍ M−r1 . (22)

The lower estimate in (21) for the entropy numbers εM(Wr1
p,α, Bq,1) follows from Theorem B

and the relation ‖ · ‖Bq,1
≫ ‖ · ‖B1,1

, i.e.

εM(Wr1
p,α, Bq,1) ≫ εM(Wr1

p,α, B1,1) ≍ M−r1 . (23)

Using Lemma A to (22) and (23), we get (21). Theorem 2′ is proved.

Remark 3. In the case q = 1, the relations (18) and (21) are obtained in [21] (see Theorem B).

Remark 4. Comparing the results of Theorems 2, 2 ′ and C under the respective values of the

parameter r1, we see that the considered approximation characteristics of the classes Wr
p,α in

the spaces Bq,1 and Lq for ν 6= 1 differ in order.

Corollary 2. Let d ≥ 2, 1 < q < p < ∞, q ≤ 2, r1 > 0. Then for α ∈ R
d it holds

λM(Wr
p,α, Bq,1) ≍ d⊤M(Wr

p,α, Bq,1) ≍ M−r1(logν−1 M)r1+1/2. (24)

Proof. The upper estimates for both of the width are proved using Corollary 1. Let us consider

two cases.

a) Let 1 < q < p ≤ 2. Then, taking into account the inequality ‖ · ‖Bq,1
≪ ‖ · ‖Bp,1

and the

estimate (16) for the linear width, we obtain

λM(Wr
p,α, Bq,1) ≪ λM(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+
1
2 . (25)

The same estimate, by (16), holds also for the trigonometric width, i.e.

d⊤M(Wr
p,α, Bq,1) ≪ d⊤M(Wr

p,α, Bp,1) ≍ M−r1(logν−1 M)r1+
1
2 . (26)

b) Let 1 < q ≤ 2 < p < ∞. Taking into account that in this case Wr
p,α ⊂ Wr

2,α and

the estimates (25) and (26) for p = 2, we get the required estimates for the corresponding

quantities from above.

The lower estimates in (24) follow from the estimate dM(Wr
p,α, B1,1) of the Kolmogorov

width (see Theorem B) and the relations (3). Corollary 2 is proved.
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Let us formulate a corollary for the univariate case, that covers also the case q > 2.

Corollary 2’. Let d = 1, 1 < q < p < ∞, r1 > 0. Then for α ∈ R it holds

λM(Wr1
p,α, Bq,1) ≍ d⊤M(Wr1

p,α, Bq,1) ≍ M−r1. (27)

Proof. The upper estimate in (27) follow from (17) and the relation ‖ · ‖Bq,1
≪ ‖ · ‖Bp,1

. The

corresponding lower estimates are the corollaries from the estimate of the Kolmogorov width

dM(Wr1
p,α, B1,1) (Theorem B) and the relations (3). Corollary 2′ is proved.

Remark 5. Comparing the estimates (24) and (27) with the result of Theorem D, we see that

the corresponding approximation characteristics of the classes Wr
p,α have equal orders in the

spaces Bq,1 and Lq only either in the univariate case or for ν = 1 .

To conclude this part of the paper, let us prove the statement that concerns the Nikol’skii

classes Hr
p and that extends the result of Theorem E from the classes Hr

2 into the classes

Hr
p, 2 < p < ∞.

The following statement holds.

Theorem 3. Let d ≥ 1, r1 > 1/2. Then for 2 ≤ p ≤ ∞ it holds

εM(Hr
p, B∞,1) ≍ dM(Hr

p, B∞,1) ≍ M−r1(logν−1 M)r1+1. (28)

Note, that for the case p = ∞ the relations (28) were obtained in [22], and for p = 2, as it

was already mentioned, in Theorem E.

Proof. In view of Hr
p ⊂ Hr

2, 2 < p < ∞, using the result of Theorem E, we can write the upper

estimate for the Kolmogorov width dM(Hr
p, B∞,1), namely

dM(Hr
p, B∞,1) ≤ dM(Hr

2, B∞,1) ≍ M−r1(logν−1 M)r1+1. (29)

The lower estimate of the entropy numbers εM(Hr
p, B∞,1) is a corollary from [30, Theo-

rem 2.2] (see the remark), where it was proved that

εM(Hr
∞, B1,1) ≫ M−r1(logν−1 M)r1+1. (30)

Hence, since Hr
p ⊃ Hr

∞ and ‖ · ‖B∞,1
≫ ‖ · ‖B1,1

, according to (30) we have

εM(Hr
p, B∞,1) ≫ εM(Hr

∞, B1,1) ≍ M−r1(logν−1 M)r1+1. (31)

To conclude the proof of Theorem 3, we use Lemma A to (29) and (31) and get (28).

Let us comment on the obtained result.

A statement, that corresponds to Theorem 3 in the space L∞, is known only for two dimen-

sions: d = 1 and d = 2 . For convenience, let us recall these estimates.

Let d = 1. Then the following relations hold

εM(Hr1
p , L∞) ≍ dM(Hr1

p , L∞) ≍ M−r1 , 2 ≤ p ≤ ∞, r1 >
1

2
,

that are obtained by using Lemma A to the upper estimate of the Kolmogorov width

dM(Hr1
p , L∞) (see [31, Chapter 1, Theorem 4.1]) and the corresponding lower estimate of the

entropy numbers εM(Hr1
∞ , L1) [30, Theorem 2.2].
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For r = (r1, r1), r1 > 1/2, 2 ≤ p ≤ ∞, it is known that

εM(Hr
p, L∞) ≍ dM(Hr

p, L∞) ≍ M−r1(log M)r1+1. (32)

The history of obtaining these estimates can be found in [5, Theorems 4.3.14, 6.3.4].

Hence, comparing (28) with (32), we see that for the dimensions d = 1 and d = 2 the cor-

responding approximation characteristics of the classes Hr
p in the spaces L∞ and B∞,1 coincide

in order.

Remark 6. A statement, analogical to Theorem 3, for the classes Wr
p,α, 2 ≤ p < ∞, is known and

was proved for p = 2 in [3], and for 2 < p < ∞ in [22]. We recalled this result in Theorem A.

4 Orthowidth and a close to it approximation characteristics

As it was already mentioned in Introduction, in this part of the paper we investigate or-

thowidths of the Nikol’skii-Besov classes Br
p,θ and Sobolev classes Wr

p,α, as well as close to them

approximation characteristics, in the space Bq,1 for some relations between the parameters p

and q.

Theorem 4. Let d ≥ 1, 1 < p < ∞, 1 ≤ θ ≤ ∞. Then for r1 > 0 it holds

d⊥M(Br
p,θ, Bp,1) ≍ dB

M(Br
p,θ , Bp,1) ≍ M−r1(logν−1 M)r1+1−1/θ. (33)

Proof. According to (3), it is sufficient to obtain the upper estimate in (33) for the orthowidth

d⊥M(Br
p,θ , Bp,1) and the lower estimate for the quantity dB

M(Br
p,θ, Bp,1). Let us first consider the

case d ≥ 2.

Let the numbers M and n relate as M ≍ 2nnν−1. For a function f ∈ Br
p,θ, we consider

the approximation polynomial S
Q

γ
′

n

( f ), which, as indicated above, for M ≍ 2nnν−1 contains a

number of harmonics of order M.

Using similar arguments as in (8), we get that
∥∥∥ f − ∑

(s,γ ′)<n

δs( f )
∥∥∥

Bp,1

≪ ∑
(s,γ ′)≥n

‖δs( f )‖p =: J2. (34)

To further estimate the quantity J2, let us consider two cases.

a) Let 1 ≤ θ < ∞. Then, by the Holder’s inequality with the power θ (and its corresponding

modification for the case θ = 1), using Lemma B, for 1/θ + 1/θ ′ = 1 we get

J2 ≤

(
∑

(s,γ ′)≥n

2(s,r)θ‖δs( f )‖θ
p

)1/θ(
∑

(s,γ ′)≥n

2−(s,r)θ′
)1/θ′

≪ ‖ f‖Br
p,θ

(
∑

(s,γ ′)≥n

2−(s,γ)r1θ′
)1/θ′

≪ 2−nr1n(ν−1)(1−1/θ).

b) Let θ = ∞. Then, by the fact that for f ∈ Br
p,∞ it holds ‖δs( f )‖p ≪ 2−(s,r), s ∈ N

d, and

again using Lemma B, we obtain

J2 ≪ ∑
(s,γ ′)≥n

2−(s,r) ≪ 2−nr1nν−1. (35)
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Further, combining (34), (35) and taking into account that M ≍ 2nnν−1, we get the upper

estimate for the orthowidth d⊥M(Br
p,θ , Bp,1), i.e.

d⊥M(Br
p,θ, Bp,1) ≪ M−r1(logν−1 M)r1+1−1/θ. (36)

Let further d = 1. Then the upper estimate of the orthowidth d⊥M(Br1
p,θ , Bp,1) is obtained by

approximating the functions f ∈ Br1
p,θ by their partial Fourier sums [25, Theorem 1]. It takes

the form

d⊥M(Br1
p,θ, Bp,1) ≪ sup

f∈B
r1
p,θ

∥∥∥ f (x) −
M

∑
k=−M

f̂ (k)eikx
∥∥∥

Bp,1

≍ M−r1 .

To conclude the proof, let us note that the lower estimate for the quantity dB
M(Br

p,θ, Bp,1) for

d ≥ 1 follows from Theorem F and the relations

dB
M(Br

p,θ, Bp,1) ≫ dB
M(Br

p,θ, B1,1) ≥ dM(Br
p,θ , B1,1) ≍ M−r1(logν−1 M)r1+1−1/θ. (37)

Hence, combining (36), (37), we derive (33). Theorem 4 is proved.

Further, applying the obtained in Theorem 4 result, let us get the estimates of the corre-

sponding characteristics for the Sobolev classes Wr
p,α.

Theorem 5. Let r1 > 0 and either 1 < p < ∞ for d = 1 or 1 < p ≤ 2 for d ≥ 2. Then for α ∈ R
d

it holds

d⊥M(Wr
p,α, Bp,1) ≍ dB

M(Wr
p,α, Bp,1) ≍ M−r1(logν−1 M)r1+1/2. (38)

Proof. The upper estimates for both of the characteristics are corollaries from Theorem 4.

So, for d = 1, putting ν = 1, θ = ∞ in (33), for 1 < p < ∞ we get

dB
M(Wr1

p,α, Bp,1) ≤ d⊥M(Wr1
p,α, Bp,1) ≪ d⊥M(Hr1

p , Bp,1) ≍ M−r1 . (39)

In the case d ≥ 2 and 1 < p ≤ 2, we take into account that Wr
p,α ⊂ Br

p,2 and use the estimate

(33) for θ = 2. We obtain d⊥M(Wr
p,α, Bp,1) ≪ d⊥M(Br

p,2, Bp,1) ≍ M−r1(logν−1 M)r1+1/2.

The lower estimate for the quantity dB
M(Wr

p,α, Bp,1) for d ≥ 1 follows from Theorem B, in

view of

dB
M(Wr

p,α, Bp,1) ≫ dM(Wr
p,α, B1,1) ≍ M−r1(logν−1 M)r1+1/2. (40)

Combining (39), (40), we obtain (38). Theorem 5 is proved.

Remark 7. Comparing the results of Theorems 4 and 5 with the corresponding statements in

the space Lp (Theorems G and H), we conclude the following.

In the multivariate case (d ≥ 2), in contrast to the univariate, considered approximation

characteristics of both of the classes Wr
p,α and Br

p,θ differ in order in the spaces Lp and Bp,1

(except the values ν = 1, θ = 1).

Theorem 6. Let d ≥ 1, 1 < q < p ≤ ∞, 1 ≤ θ ≤ ∞. Then for r1 > 0 it holds

d⊥M(Br
p,θ , Bq,1) ≍ dB

M(Br
p,θ , Bq,1) ≍ M−r1(logν−1 M)r1+1−1/θ. (41)

Note, that for q = 1 the order of the corresponding quantities is obtained in [24].
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Proof. The upper estimates for both of the approximation characteristics for p 6= ∞ follow from

Theorem 4 and the relation ‖ · ‖Bq,1
≪ ‖ · ‖Bp,1

. In the case p = ∞, the corresponding estimates

are corollaries from the proven one for p < ∞ and the embedding Br
∞,θ ⊂ Br

p,θ.

The respective lower estimates in (41) follow from Theorem F and the relations

d⊥M(Br
p,θ, Bq,1) ≥ dB

M(Br
p,θ , Bq,1) ≫ dB

M(Br
p,θ , B1,1) ≥ dM(Br

p,θ, B1,1) ≍ M−r1(logν−1 M)r1+1−1/θ.

Theorem 6 is proved.

A corresponding to Theorem 6 statement for the classes Wr
p,α has the following form.

Theorem 7. Let r1 > 0 and either 1 < q < p < ∞ for d = 1 or 1 < q < p < ∞, q ≤ 2 for d ≥ 2.

Then for α ∈ R
d it holds

d⊥M(Wr
p,α, Bq,1) ≍ dB

M(Wr
p,α, Bq,1) ≍ M−r1(logν−1 M)r1+1/2. (42)

Proof. The upper estimates in (42) follow from Theorem 5. So, in the case d = 1, we get

dB
M(Wr1

p,α, Bq,1) ≤ d⊥M(Wr1
p,α, Bq,1) ≪ d⊥M(Wr1

p,α, Bp,1) ≍ M−r1 .

If d ≥ 2, then taking into account that Wr
p,α ⊂ Wr

q,α and using the estimates (38), we obtain

the relations dB
M(Wr

p,α, Bq,1) ≤ d⊥M(Wr
p,α, Bq,1) ≤ d⊥M(Wr

q,α, Bq,1) ≍ M−r1(logν−1 M)r1+1/2.

The lower estimate of the quantity dB
M(Wr

p,α, Bq,1) follows from Theorem B, i.e. the relations

dB
M(Wr

p,α, Bq,1) ≫ dB
M(Wr

p,α, B1,1) ≥ dM(Wr
p,α, B1,1) ≍ M−r1(logν−1 M)r1+1/2 hold. Theorem 7

is proved.

Remark 8. Comparing the results of Theorems 6, 7 with he corresponding statements in the

space Lp (see Theorems G, H), we see that in the multivariate case (d ≥ 2) the considered

approximation characteristics in the spaces Lp and Bp,1 differ in order.
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Пожарська К.В., Романюк А.С., Романюк В.С. Поперечники i ентропiйнi числа класiв перiодичних

функцiй однiєї та багатьох змiнних у просторi Bq,1 // Карпатськi матем. публ. — 2024. — Т.16,

№2. — C. 351–366.

Одержано точнi за порядком оцiнки ентропiйних чисел i низки поперечникiв (колмого-

ровський, лiнiйний, тригонометричний та ортопоперечник) класiв Соболєва та Нiкольського-

Бєсова перiодичних функцiй однiєї та багатьох змiнних у просторi Bq,1, 1 < q < ∞. Виявлено,

що у багатовимiрному випадку, на противагу одновимiрному, встановленi оцiнки вiдрiзняю-

ться за порядком вiд вiдповiдних оцiнок у Lq-просторi.

Ключовi слова i фрази: клас Соболєва, клас Нiкольського-Бєсова, ентропiйне число, попере-

чник.


