References

  1. Akalan E.,Vaš L. Classes of almost clean rings. Algebr. Represent. Theory 2013, 16 (3), 843–857. doi:10.1007/s10468-012-9334-6
  2. Bass H. \(K\)-theory and stable algebra. Publ. Math. Inst. Hautes Études Sci. 1964, 22, 5–60.
  3. Bovdi V., Zabavsky B. Elementary divisor rings with Dubrovin-Komarnytsky property. Commun. Math. Submitted, 2025. (see also arXiv:2508.17100 [math.RA] doi:10.48550/arXiv.2508.17100)
  4. Bovdi V., Zabavsky B. Reduction of matrices over simple Ore domains. Linear Multilinear Algebra 2020, 70 (4), 642–649. doi:10.1080/03081087.2020.1743632
  5. Bovdi V.A., Shchedryk V.P. Commutative Bezout domains of stable range 1.5. Linear Algebra Appl. 2019, 568, 127–134. doi:10.1016/j.laa.2018.06.012
  6. Bovdi V.A., Shchedryk V.P. Adequacy of nonsingular matrices over commutative principal ideal domains. arXiv:2209.01408 [math.RA]. doi:10.48550/arXiv.2209.01408
  7. Bowtell A.J., Cohn P.M. Bounded and invariant elements in \(2\)-firs. Math. Proc. Cambridge Philos. Soc. 1971, 69 (1), 1–12. doi:10.1017/S0305004100046375
  8. Călugăreanu G. On unit stable range matrices. Ann. Univ. Ferrara Sez. VII Sci. Mat. 2024, 70 (1), 127–140. doi:10.1007/s11565-023-00461-w
  9. Dopico F.M., Noferini V., Zaballa I. Rosenbrock’s theorem on system matrices over elementary divisor domains. Linear Algebra Appl. 2025, 710, 10–49. doi:10.1016/j.laa.2025.01.028
  10. Dubrovin N.I. The projective limit of rings with elementary divisors. Math. USSR-Sb. 1984, 47 (1), 85–90.
  11. Dubrovin N.I. On rings with elementary divisors. Izv. Vyssh. Uchebn. Zaved. Mat. 1986, 11, 14–20. (in Russian)
  12. Gatalevych A.I. On adequate and generalized adequate duo rings, and duo rings of elementary divisors. Mat. Stud. 1998, 9 (2), 115–119.
  13. Gatalevych A.I., Shchedryk V.P. On adequacy of full matrices. Mat. Stud. 2023, 59 (2), 115–122. doi:10.30970/ms.59.2.115-122
  14. Helmer O. The elementary divisor theorem for certain rings without chain condition. Bull. Amer. Math. Soc. (N.S.) 1943, 49 (4), 225–236.
  15. Kaplansky I. Elementary divisors and modules. Trans. Amer. Math. Soc. 1949, 66 (2), 464–491.
  16. Khurana D., Lam T.Y., Nielsen P.P., Šter J. Special clean elements in rings. J. Algebra Appl. 2020, 19 (11), 2050208. doi:10.1142/S0219498820502084
  17. Khurana D., Lam T.Y., Nielsen P.P., Zhou Y. Uniquely clean elements in rings. Comm. Algebra 2015, 43 (5), 1742–1751. doi:10.1080/00927872.2013.879158
  18. Lam T.Y., Dugas A.S. Quasi-duo rings and stable range descent. J. Pure Appl. Algebra 2005, 195 (3), 243–259. doi:10.1016/j.jpaa.2004.08.011
  19. McGovern W. Neat rings. J. Pure Appl. Algebra 2006, 205 (2), 243–265. doi:10.1016/j.jpaa.2005.07.012
  20. McGovern W. Bézout rings with almost stable range \(1\). J. Pure Appl. Algebra 2008, 212 (2), 340–348. doi:10.1016/j.jpaa.2007.05.026
  21. Moore M., Steger A. Some results on completability in commutative rings. Pacific J. Math. 1971, 37 (2), –460.
  22. Nicholson W.K. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 1977, 229, 269–278. doi:10.1090/S0002-9947-1977-0439876-2
  23. Shchedryk V.P. Bezout rings of stable range \(1.5\) and the decomposition of a complete linear group into the product of its subgroups. Ukrainian Math. J. 2017, 69 (1), 138–147. doi:10.1007/s11253-017-1352-4 (translation of Ukrain. Mat. Zh. 2017, 69 (1), 113–120. (in Ukrainian))
  24. Shchedryk V. Arithmetic of matrices over rings. Akademperiodyka, Kyiv, 2021.
  25. Shchedryk V.P. Some properties of primitive matrices over Bézout \(B\)-domain. Algebra Discrete Math. 2005, 4 (2), 46–57.
  26. Shchedryk V.P. Bezout rings of stable range \(1.5\). Ukrainian Math. J. 2015, 67 (6), 960–974. doi:10.1007/s11253-015-1126-9 (translation of Ukrain. Mat. Zh. 2015, 67 (6), 849–860. (in Ukrainian))
  27. Zabavsky B.V. On noncommutative rings with elementary divisors. Ukrainian Math. J. 1990, 42 (6), 748–750. doi:10.1007/BF01058928 (translation of Ukrain. Mat. Zh. 1990, 42 (6), 847–850. (in Russian))
  28. Zabavsky B. Diagonal reduction of matrices over rings. In: Mathematical Studies Monograph Series, 16. VNTL Publishers, Lviv, 2012.
  29. Zabavsky B. Conditions for stable range of an elementary divisor rings. Comm. Algebra 2017, 45 (9), 4062–4066. doi:10.1080/00927872.2016.1259418
  30. Zabavsky B. Rings of dyadic range \(1\). J. Algebra Appl. 2019, 18 (11), 1950206. doi:10.1142/S0219498819502062
  31. Zabavsky B., Gatalevych A. A commutative Bezout \(PM^*\) domain is an elementary divisor ring. Algebra Discrete Math. 2015, 19 (2), 295–301.
  32. Zabavsky B.V. Diagonal reduction of matrices over finite stable range rings. Mat. Stud. 2014, 41 (1), 101–108. doi:10.30970/ms.41.1.101-108