References
- Akalan E.,Vaš L. Classes of almost clean rings. Algebr.
Represent. Theory 2013, 16 (3), 843–857. doi:10.1007/s10468-012-9334-6
- Bass H. \(K\)-theory and stable
algebra. Publ. Math. Inst. Hautes Études Sci. 1964,
22, 5–60.
- Bovdi V., Zabavsky B. Elementary divisor rings with
Dubrovin-Komarnytsky property. Commun. Math. Submitted, 2025. (see
also arXiv:2508.17100 [math.RA] doi:10.48550/arXiv.2508.17100)
- Bovdi V., Zabavsky B. Reduction of matrices over simple Ore
domains. Linear Multilinear Algebra 2020, 70 (4),
642–649. doi:10.1080/03081087.2020.1743632
- Bovdi V.A., Shchedryk V.P. Commutative Bezout domains of stable
range 1.5. Linear Algebra Appl. 2019, 568,
127–134. doi:10.1016/j.laa.2018.06.012
- Bovdi V.A., Shchedryk V.P. Adequacy of nonsingular matrices over
commutative principal ideal domains. arXiv:2209.01408 [math.RA].
doi:10.48550/arXiv.2209.01408
- Bowtell A.J., Cohn P.M. Bounded and invariant elements in \(2\)-firs. Math. Proc. Cambridge
Philos. Soc. 1971, 69 (1), 1–12.
doi:10.1017/S0305004100046375
- Călugăreanu G. On unit stable range matrices. Ann. Univ.
Ferrara Sez. VII Sci. Mat. 2024, 70 (1), 127–140.
doi:10.1007/s11565-023-00461-w
- Dopico F.M., Noferini V., Zaballa I. Rosenbrock’s theorem on
system matrices over elementary divisor domains. Linear Algebra
Appl. 2025, 710, 10–49.
doi:10.1016/j.laa.2025.01.028
- Dubrovin N.I. The projective limit of rings with elementary
divisors. Math. USSR-Sb. 1984, 47 (1), 85–90.
- Dubrovin N.I. On rings with elementary divisors. Izv. Vyssh.
Uchebn. Zaved. Mat. 1986, 11, 14–20. (in Russian)
- Gatalevych A.I. On adequate and generalized adequate duo rings,
and duo rings of elementary divisors. Mat. Stud. 1998,
9 (2), 115–119.
- Gatalevych A.I., Shchedryk V.P. On adequacy of full
matrices. Mat. Stud. 2023, 59 (2), 115–122. doi:10.30970/ms.59.2.115-122
- Helmer O. The elementary divisor theorem for certain rings
without chain condition. Bull. Amer. Math. Soc. (N.S.) 1943,
49 (4), 225–236.
- Kaplansky I. Elementary divisors and modules. Trans. Amer.
Math. Soc. 1949, 66 (2), 464–491.
- Khurana D., Lam T.Y., Nielsen P.P., Šter J. Special clean
elements in rings. J. Algebra Appl. 2020, 19 (11),
2050208. doi:10.1142/S0219498820502084
- Khurana D., Lam T.Y., Nielsen P.P., Zhou Y. Uniquely clean
elements in rings. Comm. Algebra 2015, 43 (5),
1742–1751. doi:10.1080/00927872.2013.879158
- Lam T.Y., Dugas A.S. Quasi-duo rings and stable range
descent. J. Pure Appl. Algebra 2005, 195 (3),
243–259. doi:10.1016/j.jpaa.2004.08.011
- McGovern W. Neat rings. J. Pure Appl. Algebra 2006,
205 (2), 243–265. doi:10.1016/j.jpaa.2005.07.012
- McGovern W. Bézout rings with almost stable range \(1\). J. Pure Appl. Algebra 2008,
212 (2), 340–348. doi:10.1016/j.jpaa.2007.05.026
- Moore M., Steger A. Some results on completability in commutative
rings. Pacific J. Math. 1971, 37 (2), –460.
- Nicholson W.K. Lifting idempotents and exchange rings.
Trans. Amer. Math. Soc. 1977, 229, 269–278. doi:10.1090/S0002-9947-1977-0439876-2
- Shchedryk V.P. Bezout rings of stable range \(1.5\) and the decomposition of a complete
linear group into the product of its subgroups. Ukrainian Math. J.
2017, 69 (1), 138–147. doi:10.1007/s11253-017-1352-4
(translation of Ukrain. Mat. Zh. 2017, 69 (1), 113–120.
(in Ukrainian))
- Shchedryk V. Arithmetic of matrices over rings. Akademperiodyka,
Kyiv, 2021.
- Shchedryk V.P. Some properties of primitive matrices over Bézout
\(B\)-domain. Algebra Discrete
Math. 2005, 4 (2), 46–57.
- Shchedryk V.P. Bezout rings of stable range \(1.5\). Ukrainian Math. J. 2015,
67 (6), 960–974. doi:10.1007/s11253-015-1126-9
(translation of Ukrain. Mat. Zh. 2015, 67 (6), 849–860.
(in Ukrainian))
- Zabavsky B.V. On noncommutative rings with elementary
divisors. Ukrainian Math. J. 1990, 42 (6),
748–750. doi:10.1007/BF01058928 (translation of Ukrain. Mat. Zh. 1990,
42 (6), 847–850. (in Russian))
- Zabavsky B. Diagonal reduction of matrices over rings. In:
Mathematical Studies Monograph Series, 16. VNTL Publishers, Lviv,
2012.
- Zabavsky B. Conditions for stable range of an elementary divisor
rings. Comm. Algebra 2017, 45 (9), 4062–4066.
doi:10.1080/00927872.2016.1259418
- Zabavsky B. Rings of dyadic range \(1\). J. Algebra Appl. 2019,
18 (11), 1950206. doi:10.1142/S0219498819502062
- Zabavsky B., Gatalevych A. A commutative Bezout \(PM^*\) domain is an elementary divisor
ring. Algebra Discrete Math. 2015, 19 (2),
295–301.
- Zabavsky B.V. Diagonal reduction of matrices over finite stable
range rings. Mat. Stud. 2014, 41 (1), 101–108.
doi:10.30970/ms.41.1.101-108