References
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation
of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\).
Mathematics 2023, 11 (21), 4487.
doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued
fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Mathematics 2021,
9 (2), 148. doi:10.3390/math9020148
- Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of
some ratios of Horn’s hypergeometric functions \(H_7\) by continued fractions. Axioms
2023, 12 (8), 738. doi:10.3390/axioms12080738
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some
branched continued fraction expansions for Horn’s hypergeometric
function \(H_4(a,b;c,d;z_1,z_2)\)
ratios. Axioms 2023, 12 (3), 299.
doi:10.3390/axioms12030299
- Antonova T., Dmytryshyn R., Sharyn S. Branched continued fraction
representations of ratios of Horn’s confluent function \(\mathrm{H}_6.\) Constr. Math. Anal.
2023, 6 (1), 22–37. doi:10.33205/cma.1243021
- Antonova T., Dmytryshyn R., Sharyn S. Generalized hypergeometric
function \({}_3F_2\) ratios and
branched continued fraction expansions. Axioms 2021,
10 (4), 310. doi:10.3390/axioms10040310
- Antonova T.M., Dmytryshyn R.I. Truncation error bounds for
branched continued fraction whose partial denominators are equal to
unity. Mat. Stud. 2020, 54 (1), 3–14.
doi:10.30970/ms.54.1.3-14
- Bilanyk I.B. A truncation error bound for some branched continued
fractions of the special form. Mat. Stud. 2019, 52
(2), 115–123. doi:10.30970/ms.52.2.115-123
- Bodnar D.I., Bilanyk I.B. Estimation of the rates of pointwise
and uniform convergence of branched continued fractions with
inequivalent variables. J. Math. Sci. 2022, 265,
423–437. doi:10.1007/s10958-022-06062-w (translation of Mat. Metody
Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in
Ukrainian))
- Bodnar D.I., Bilanyk I.B. On the convergence of branched
continued fractions of a special form in angular domains. J. Math.
Sci. 2020, 246, 188–200. doi:10.1007/s10958-020-04729-w
(translation of Mat. Metody Fiz.-Mekh. Polya 2017, 63
(3), 60–69. (in Ukrainian))
- Bodnar D.I., Bilanyk I.B. Parabolic convergence regions of
branched continued fractions of the special form. Carpathian Math.
Publ. 2021, 13 (3), 619–630.
doi:10.15330/cmp.13.3.619-630
- Bodnar D.I., Bilanyk I.B. Two-dimensional generalization of the
Thron-Jones theorem on the parabolic domains of convergence of continued
fractions. Ukranian Math. J. 2023, 74 (9),
1317–1333. doi:10.1007/s11253-023-02138-1 (translation of Ukrain. Mat.
Zh. 2022, 74 (9), 1155–1169.
doi:10.37863/umzh.v74i9.7096 (in Ukrainian))
- Bodnar D.I., Bodnar O.S., Bilanyk I.B. A truncation error bound
for branched continued fractions of the special form on subsets of
angular domains. Carpathian Math. Publ. 2023, 15
(2), 437–448. doi:10.15330/cmp.15.2.437-448
- Blümlein J., Saragnese M., Schneider C. Hypergeometric structures
in Feynman integrals. Ann. Math. Artif. Intell. 2023,
91, 591–649. doi:10.1007/s10472-023-09831-8
- Dmytryshyn R.I. Convergence of multidimensional A- and
J-fractions with independent variables. Comput. Methods Funct.
Theory 2022, 22 (2), 229–242.
doi:10.1007/s40315-021-00377-6
- Dmytryshyn R.I. Convergence of some branched continued fractions
with independent variables. Mat. Stud. 2017, 47
(2), 150–159. doi:10.15330/ms.47.2.150-159
- Dmytryshyn R., Goran V. On the analytic extension of
Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry
2024, 16 (2), 220. doi:10.3390/sym16020220
- Dmytryshyn R., Lutsiv I.-A., Bodnar O. On the domains of
convergence of the branched continued fraction expansion of ratio \(H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})\).
Res. Math. 2023, 31 (2), 19–26. doi:10.15421/242311
- Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M., Cesarano C. On some
domains of convergence of branched continued fraction expansions of the
ratios of Horn hypergeometric functions \(H_4.\) Ukr. Math. J. 2024, 76 (4), 559–565.
doi:10.1007/s11253-024-02338-3
(translation of Ukrain. Mat. Zh. 2024, 76 (4), 502–508. doi:10.3842/umzh.v74i4.7877 (in Ukrainian))
- Dmytryshyn R.I., Lutsiv I.-A.V. Three- and four-term recurrence
relations for Horn’s hypergeometric function \(H_4.\) Res. Math. 2022,
30 (1), 21–29. doi:10.15421/242203
- Dmytryshyn R.I. On some of convergence domains of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2019, 11 (1), 54–58.
doi:10.15330/cmp.11.1.54-58
- Dmytryshyn R.I. On the expansion of some functions in a
two-dimensional g-fraction with independent variables. J. Math.
Sci. 2012, 181 (3), 320–327.
doi:10.1007/s10958-012-0687-5
- Dmytryshyn R.I., Sharyn S.V. Approximation of functions of
several variables by multidimensional S-fractions with independent
variables. Carpathian Math. Publ. 2021, 13 (3),
592–607. doi:10.15330/cmp.13.3.592-607
- Dmytryshyn R.I. Two-dimensional generalization of the Rutishauser
qd-algorithm. J. Math. Sci. 2015, 208 (3),
301–309. doi:10.1007/s10958-015-2447-9
- Horn J. Hypergeometrische Funktionen zweier Veränderlichen.
Math. Ann. 1931, 105, 381–407. doi:10.1007/BF01455825
- Kaliuzhnyi-Verbovetskyi D., Pivovarchik V. Recovering the shape
of a quantum caterpillar tree by two spectra. Mech. Math. Methods
2023, 5 (1), 14–24.
doi:10.31650/2618-0650-2023-5-1-14-24
- Kaminsky A.A., Selivanov M.F. On the application of branched
operator continued fractions for a boundary problem of linear
viscoelasticity. Int. Appl. Mech. 2006, 42,
115–126. doi:10.1007/s10778-006-0066-3
- Komatsu T. Asymmetric circular graph with Hosoya index and
negative continued fractions. Carpathian Math. Publ. 2021,
13 (1), 608–618. doi:10.15330/cmp.13.3.608-618
- Korkmaz-Duzgun D. A new type multivariable multiple
hypergeometric functions. Turkish J. Math. Comput. Sci. 2021,
13 (2), 359–372. doi:10.47000/tjmcs.954676
- Lima H. Multiple orthogonal polynomials associated with branched
continued fractions for ratios of hypergeometric series. Adv. Appl.
Math. 2023, 147, 102505.
doi:10.1016/j.aam.2023.102505
- Manziy O., Hladun V., Ventyk L. The algorithms of constructing
the continued fractions for any rations of the hypergeometric Gaussian
functions. Math. Model. Comput. 2017, 4 (1),
48–58. doi:10.23939/mmc2017.01.048
- Parmar R.K., Choi J., Saravanan S. Extended Exton’s triple and
Horn’s double hypergeometric functions and associated bounding
inequalities. Symmetry 2023, 15 (6), 1132.
doi:10.3390/sym15061132
- Petreolle M., Sokal A.D. Lattice paths and branched continued
fractions II. Multivariate Lah polynomials and Lah symmetric
functions. Eur. J. Combin. 2021, 92, 103235.
doi:10.1016/j.ejc.2020.103235
- Wang R., Qian J. On branched continued fractions rational
interpolation over pyramid-typed grids. Numer. Algor. 2010,
54, 47–72. doi:10.1007/s11075-009-9322-z
- Younis J., Jain S., Agarwal P., Momani S. Certain integral
representations involving hypergeometric functions in two
variables. Math. Morav. 2022, 26 (1), 27–36.
doi:10.5937/MatMor2201027Y