References
- Banerjee A., Maity S. Meromorphic function partially shares small
functions or values with its linear \(c\)-shift operator. Bull. Korean Math.
Soc. 2021, 58 (5), 1175–1192.
doi:10.4134/bkms.b200840
- Banerjee A., Maity S. Further investigations on a unique range
set under weight \(0\) and \(1\). Carpathian Math. Publ. 2022,
14 (2), 504–512. doi:10.15330/cmp.14.2.504-512
- Cao T.-B. Difference analogues of the second main theorem for
meromorphic functions in several complex variables. Math. Nachr.
2014, 287 (5–6), 530–545.
doi:10.1002/mana.201200234
- Cao T.-B., Korhonen R. A new version of the second main theorem
for meromorphic mappings intersecting hyperplanes in several complex
variables. J. Math. Anal. Appl. 2016, 444 (2),
1114–1132. doi:10.1016/j.jmaa.2016.06.050
- Cao T.-B., Xu L. Logarithmic difference lemma in several complex
variables and partial difference equations. Ann. Mat. Pura Appl.
(4) 2020, 199 (2), 767–794.
doi:10.1007/s10231-019-00899-w
- Chiang Y.-M., Feng S.-J. On the Nevanlinna characteristic of
\(f(z +\eta)\) and difference equations
in the complex plane. Ramanujan J. 2008, 16 (1),
105–129. doi:10.1007/s11139-007-9101-1
- Fujimoto H. On meromorphic maps into the complex projective
space. J. Math. Soc. Japan 1974, 26 (2), 272–288.
doi:10.2969/jmsj/02620272
- Halburd R.G., Korhonen R.J. Difference analogue of the lemma on
the logarithmic derivative with applications to difference
equations. J. Math. Anal. Appl. 2006, 314 (2),
477–487. doi:10.1016/j.jmaa.2005.04.010
- Halburd R.G., Korhonen R.J. Nevanlinna theory for the difference
operator. Ann. Acad. Sci. Fenn. Math. 2006, 31
(2), 463–478.
- Korhonen R. A difference Picard theorem for meromorphic functions
of several variables. Comput. Methods Funct. Theory 2012,
12 (1), 343–361. doi:10.1007/bf03321831
- Korhonen R., Li N., Tohge K. Difference analogue of Cartan’s
Second Main Theorem for slowly moving periodic targets. Ann. Acad.
Sci. Fenn. Math. 2016, 41 (2), 523–549.
doi:10.5186/aasfm.2016.4131
- Liu Z.-X., Zhang Q.-C. Difference uniqueness theorems on
meromorphic functions in several variables. Turk. J. Math. 2018,
42 (5), 2481–2505. doi:10.3906/mat-1712-52
- Majumder S., Das P. Meromorphic functions sharing three values
with their shift. Ukrainian Math. J. 2024, 76 (6),
988–1004. doi:10.1007/s11253-024-02368-x (reprint of Ukrain. Mat. Zh.
2024, 76 (6), 877–889. doi:10.3842/umzh.v76i5.7502)
- Nevanlinna R. Some uniqueness theorems in the theory of
meromorphic functions. Acta Math. 1926, 48 (3–4),
367–391. doi:10.1007/BF02565342 (in German)
- Ru M. Nevanlinna theory and its relation to diophantine
approximation. World Sci. Publ., Singapore, 2001. doi:10.1142/12188
- Rubel L.A., Yang C.-C. Values shared by an entire function and
its derivative. In: Buckholtz J.D., Suffridge T.J. (Eds.) Complex
Analysis. Lect. Notes Math., 599. Springer, Berlin,
Heidelberg, 1977. doi:10.1007/bfb0096830
- Shabat B.V. Distribution of values of holomorphic mappings. In:
Translations of Mathematical Monographs, 61. Amer.
Math. Soc., Providence, R.I., 1985.
- Thai D.D., Quang S.D. Second main theorem with truncated counting
function in several complex variables for moving targets. Forum
Math. 2008, 20 (1), 163–179.
doi:10.1515/forum.2008.007
- Wu W., Cao T.-B. Uniqueness theorems of meromorphic functions and
their differences in several complex variables. Comput. Methods
Funct. Theory 2022, 22 (2), 379–399.
doi:10.1007/s40315-021-00389-2