References

  1. Banerjee A., Maity S. Meromorphic function partially shares small functions or values with its linear \(c\)-shift operator. Bull. Korean Math. Soc. 2021, 58 (5), 1175–1192. doi:10.4134/bkms.b200840
  2. Banerjee A., Maity S. Further investigations on a unique range set under weight \(0\) and \(1\). Carpathian Math. Publ. 2022, 14 (2), 504–512. doi:10.15330/cmp.14.2.504-512
  3. Cao T.-B. Difference analogues of the second main theorem for meromorphic functions in several complex variables. Math. Nachr. 2014, 287 (5–6), 530–545. doi:10.1002/mana.201200234
  4. Cao T.-B., Korhonen R. A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl. 2016, 444 (2), 1114–1132. doi:10.1016/j.jmaa.2016.06.050
  5. Cao T.-B., Xu L. Logarithmic difference lemma in several complex variables and partial difference equations. Ann. Mat. Pura Appl. (4) 2020, 199 (2), 767–794. doi:10.1007/s10231-019-00899-w
  6. Chiang Y.-M., Feng S.-J. On the Nevanlinna characteristic of \(f(z +\eta)\) and difference equations in the complex plane. Ramanujan J. 2008, 16 (1), 105–129. doi:10.1007/s11139-007-9101-1
  7. Fujimoto H. On meromorphic maps into the complex projective space. J. Math. Soc. Japan 1974, 26 (2), 272–288. doi:10.2969/jmsj/02620272
  8. Halburd R.G., Korhonen R.J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 2006, 314 (2), 477–487. doi:10.1016/j.jmaa.2005.04.010
  9. Halburd R.G., Korhonen R.J. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 2006, 31 (2), 463–478.
  10. Korhonen R. A difference Picard theorem for meromorphic functions of several variables. Comput. Methods Funct. Theory 2012, 12 (1), 343–361. doi:10.1007/bf03321831
  11. Korhonen R., Li N., Tohge K. Difference analogue of Cartan’s Second Main Theorem for slowly moving periodic targets. Ann. Acad. Sci. Fenn. Math. 2016, 41 (2), 523–549. doi:10.5186/aasfm.2016.4131
  12. Liu Z.-X., Zhang Q.-C. Difference uniqueness theorems on meromorphic functions in several variables. Turk. J. Math. 2018, 42 (5), 2481–2505. doi:10.3906/mat-1712-52
  13. Majumder S., Das P. Meromorphic functions sharing three values with their shift. Ukrainian Math. J. 2024, 76 (6), 988–1004. doi:10.1007/s11253-024-02368-x (reprint of Ukrain. Mat. Zh. 2024, 76 (6), 877–889. doi:10.3842/umzh.v76i5.7502)
  14. Nevanlinna R. Some uniqueness theorems in the theory of meromorphic functions. Acta Math. 1926, 48 (3–4), 367–391. doi:10.1007/BF02565342 (in German)
  15. Ru M. Nevanlinna theory and its relation to diophantine approximation. World Sci. Publ., Singapore, 2001. doi:10.1142/12188
  16. Rubel L.A., Yang C.-C. Values shared by an entire function and its derivative. In: Buckholtz J.D., Suffridge T.J. (Eds.) Complex Analysis. Lect. Notes Math., 599. Springer, Berlin, Heidelberg, 1977. doi:10.1007/bfb0096830
  17. Shabat B.V. Distribution of values of holomorphic mappings. In: Translations of Mathematical Monographs, 61. Amer. Math. Soc., Providence, R.I., 1985.
  18. Thai D.D., Quang S.D. Second main theorem with truncated counting function in several complex variables for moving targets. Forum Math. 2008, 20 (1), 163–179. doi:10.1515/forum.2008.007
  19. Wu W., Cao T.-B. Uniqueness theorems of meromorphic functions and their differences in several complex variables. Comput. Methods Funct. Theory 2022, 22 (2), 379–399. doi:10.1007/s40315-021-00389-2