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(p,0,q,n)-Nuclear Bloch maps

Hamidou Y.S., Bougoutaia A., Belacel A.

In this paper, new developments in the theory of ideals of Bloch maps are utilized to introduce
and analyze the properties of (p, 6, q, 7)-nuclear Bloch maps from the open unit disk ID to a com-
plex Banach space X, where 1 < p,q < ccand 0 < 0,57 < 1satisfy (1—-0)/p+(1—5)/q =1
The main emphasis is placed on defining these maps, establishing their Banach space properties,
and investigating fundamental characteristics such as Pietsch domination, Bloch compactness and
Mobius invariance. Finally, we conclude the paper by presenting a Bloch reasonable crossnorm and
illustrating the isometric isomorphism between the defined space and its dual space.
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1 Introduction

The class of (p,6)-absolutely continuous maps was initially defined by U. Matter in [12]
using the interpolative construction. Following that, J.A. Lépez Molina and E.A. Sdnchez Pérez
examined the factorization properties and the trace duality of these operators across a series
of papers [10,11, 14]. On the other hand, the notion of strongly (p, f)-continuous maps was
introduced by D. Achour et. al. in [1] for scrutinizing the cohort of operators whose adjoint
mappings are (p*, 6)-absolutely continuous, aiming to analyze the duality properties of this
significant operator ideal. E. Dahia et. al. [7] introduced the concept of (p, 6, g, 17)-nuclear maps,
where 1 < p, g < oand 0 < 6, n < 1 satisfying (1—6) /p+ (1—1n)/q = 1. They also
provided some characterization properties in this context, moreover, when 6 = 1 = 0, we come
across the class of p-nuclear operators, originally introduced by J.S. Cohen in [6]. Additionally,
these maps were introduced in the context of multilinear maps in [2].

Based on the recent works of some authors investigating certain operators in the context of
Bloch maps, such as the study of (p, 0)-absolutely continuous Bloch maps in [4] and strongly
(p, 0)-continuous Bloch maps in [3], we will also delve into this study in this paper. Our main
objective is to introduce and establish the most notable properties of a notion of (p,6,q,1)-
nuclear Bloch maps on the open unit disk D into a complex Banach space X. Our paper
will be divided into several sections after the introduction. In the second section, we will
provide the most important notations and basic definitions used throughout this paper. In the
third section, we will provide the fundamental definition of zero-preserving (p, 6, g, 7)-nuclear

Bloch maps from D into X, denoted the set consisting of such maps by N, (ZZ 0.4 }7)(ID, X), and
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(p,0,q,1)-Nuclear Bloch maps 387

proved that they form a Banach space with their natural corresponding norms || - ||, 5 .

(po.411)
Furthermore, we will present the Pietsch domination theorem of these maps. In the fourth
section, we will establish some of the most important properties, such as Bloch compact-
ness, Kwapieri’s factorization theorem, and the Banach-Bloch ideal property of these maps.

B .
Also we show that the space (Npgqq (D, X); || - ”NIZGM)

mations of ID. Finally, in the fifth section, we conclude the paper by introducing a Bloch

) is invariant by Mobius transfor-

reasonable crossnorm R( ) on the tensor product space lin(I'(ID)) ®X* and demonstrat-

p.b.a.n

ing that the space (N, l; 0,0, (D, X); -l NE, ) is isometrically isomorphic to the dual space
(p.0.q.1)
(lin(T(ID)) &5 X"

(p.0.q.1)
2 Preliminaries

For Banach spaces X and Y, we denote the closed unit ball of X by Bx and £(X,Y) rep-
resents the space of all continuous linear maps from X to Y equipped with the usual norm.
When Y is the scalar field K we simplify £(X,K) as X*. Forany 1 < p < oo, p* denotes the
Holder conjugate of p givenby 1/p +1/p* = 1. Recall from [12] that a mapping T € L(X,Y)
is considered (p, 8)-absolutely continuous, where p € [1,00) and 6 € [0,1), if there exists a
constant C > 0 such that

" n AN
<Z HT xz Hl 6) < C sup <Z (’X* (xi)‘lfG HXiHG) -0 )
x*€Byx \i=1

forany n € IN and xy,...,x, € X. The infimum of such constants C is denoted by ﬂplg(T),
and the Banach space of all (p, #)-summing maps of X to Y under the norm 7,4 is denoted
by IT,4(X,Y). If = O, then (I1,9;7,9) = (I, 7p), the Banach space of all p-summing
maps. Furthermore, in [1], a mapping T € £(X,Y) is termed strongly (p, #7)-continuous, with
p,r € [1,00) and n € [0,1) satisfying 1/r + (1 —#) /p* = 1, if there exists a constant C > 0
such that

* 1-y

LT () SC@”’””Y)% sup (32 (e i 11) )

i=1 y**eBy** i=1

forany xi,...,x, € Xand any yj,...,y; € Y*. The collection of all strongly (p, #7)-continuous
maps from X into Y is denoted by D, , (X, Y), which is readily seen to be a subspace of L(X, Y.
The least C for which the inequality holds will be written as dy, ;, serving as a norm for the
space Dy, (X, Y).

Let X be a complex Banach space, a map f € H(ID, X) is termed Bloch if its Bloch semi-
norm, defined as pg(f) := sup {(1 — |z|?) ||f'(z)|| : z € D}, is finite. The space of all holomor-
phic maps from D into X satisfying this property is denoted by B(ID, X). The normalized Bloch
space B(ID, X) is the closed subspace of B(ID, X) consisting of all maps f for which f(0) = 0
under the Bloch norm pg. For simplicity, we denote 5 (ID) instead of B(ID,C). Also, H(ID, D)
will denote the set of all holomorphic functions & from D into itself for which #(0) = 0.

In a recent paper [4], the concept of (p, 0)-absolutely continuous maps was adapted to ad-
dress the (p, 8)-absolute continuity property within the framework of Bloch maps, as described
below.
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For any p € [1,00) and 6 € [0,1), we define a map f € H(ID,X) as (p, 0)-absolutely
continuous Bloch if there exists C > 0 such that forany n in N, B4,...,8,inC and z4,...,z,
in ID, the following inequality holds

1-6

@ iy (Zi)Hl%ﬁ =S (; <‘ﬁiy <1 —1\zz-yz>9 W <z1->}1_9>1pe> .

EBE(]D)

The infimum of the constants C, denoted by nllf, o- defines a seminorm on space Hllj, o(D, X) of
all p-absolutely continuous Bloch maps from D into X. Furthermore, this seminorm becomes a
norm on the subspace HE p(ID, X) consisting of all those maps f € Hff, o (D, X) sothat f(0) = 0.
Additionally, in [1], a map f € H(ID, X) is said to be strongly (p,77)-absolutely continuous
Bloch with p,r € [1,00) and 7 € [0,1) such that1/r+ (1 —5) /p* = 1, if there exists a constant
C > 0, such that
" s (1Bl Y'Y : £
Y 1Bil x5 (F (20))] < C<Z <72> ) sup <Z (e G HXZ‘H”)”>
i=1 i1 \1— |z X*€Byer \ =1
foralln € N, Bq,...,Bn € C, z1,...,zs € D and x7,...,x; € X*. The linear space of all
strongly (p, )-absolutely continuous Bloch maps from ID to X is denoted by fo/ (D, X), and
its subspace consisting of all those mappings f so that f(0) = 0 by DE y (D, X).
Now let us consider the space
lin(T(D)) ® X* :=lin({y: ®x*: z € D, x* € X*}) C B(D, X)*,

~

where v, ® x*: B(D, X) — C is the functional defined by (v, ® x*) (f) = x* (f'(z)) for all
f e B(D,X).

Each element v € lin(I'(ID)) ® X* is of the form v = Y ; Bi7z ® x] for some n € N,
Bi€C,zicDand x; € X*fori=1,...,n. Its actionis given as y(f) = L1 Bix; (f' (zi)) for
all f € B(D, X),.

We will also require some results from the paper [9] regarding the Bloch-free Banach space
over D.

For each z € ID, a Bloch atom of D is the function 7, : B (ID) — C defined by 7, (f) = f'(2)
for all f € B (ID). It is worth noting that . € B (D)* with ||7z|| = 1/ (1 — |z[?). The elements
of the linear space lin({y.: z € D}) C B (D)* are termed Bloch molecules of ID. The Bloch-
free Banach space over ID is defined as G (ID) := lin({7: z € D}) C B (D)".

The property outlined in [9], summarizes following several important properties of G (ID):

1) the mapping I': D — G (ID), defined by I'(z) = 1 for all z € ID, is holomorphic;

2) the space B(ID) is isometrically isomorphic to G(ID)* under the map A: B(D) — G(ID)*
defined as A(f)(y) = Lj_q Af' (zk) for f € B (D), where v = Y} Az, € lin(I'(ID));

3) for each function h € B (ID, D), there exists a unique operator 1 € £ (6(D),G(ID)) such
thathoT = I’ - (T o h), furthermore, HEH <1

4) for each z € D, the function f, : D — C defined by
(1= zP)w

falw) = 1—zw
belongs to B(ID) with pg () =1 = (1 — |z]?) fi(z).

, web,
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3 Definition and Banach structure

From now on, unless otherwise stated, X and Y will denote Banach complex spaces and
we will suppose that 1 < p,g < coand 0 < 6,5 < lsatisfy (1-0)/p+(1—1)/q = 1.
Following [7, Theorem 4], a map T € L(X,Y) is said to be (p, 0, g, )-nuclear if there exist
Banach spaces G, H, maps S € I1,(X, G),R € I1; (Y*, H) and a constant C > 0 such that

[y (T < €l [SE | 117 1R ) [ )
for all x € X and y* € Y*. In such case, we put

1Tl = inf{ Crp(8)! Oy (R)' 7},

taking the infimum over all S € I1,(X, G),R € I1, (Y*, H) and C > 0 such that (1) holds. We
denote by {/\/’ o -l /\/(MMJ the Banach ideal of (p, 6, g, 7)-nuclear maps.

Now, we introduce the Bloch analogue of the notion of (p, 8, g, #)-nuclear operators.

Definition 1. A map f € ‘H (ID, X) is said to be (p, 0, q, )-nuclear Bloch if there exist complex
Banach spaces G and H, a Bloch map g € HE (D,G), amap T € I1; (X*,H) and a positive
constant C such that

0
(@) (i) @I I P IT e o

for all z € D and x* € X*. The linear space of all (p,0,q,n)-nuclear Bloch maps from

D to X is denoted by N (?7,9,17,11) (D, X), and its subspace consisting of all those mappings f

so that f(0) = 0 by N(l;,g,qlq) (D, X). We denote by HfHN@em the infimum of all values

C nﬁ (8)107,(T)1", where the infimum is taken over all Bloch maps g, maps T, and constants
C admitted in inequality above.

Our next result is a reformulation for (p, 6, g, #7)-nuclear Bloch maps of Pietsch domination
theorem for (p, 0, g, 7)-nuclear maps. This is a particular case of the general characterization
of (p,0,q,n)-dominated maps [14, Theorem 2.4].

Let us remind that B (ID) represents a dual Banach space. Therefore, P (B g(]D)) and

P (B X**) denote the sets of all Borel regular probability measures y on B A(D) and v on By, re-
spectively, equipped with the weak-* topology. Given u € P (B B(D)), v € P(Bx+), p € [1,0)
and o € [0,1), let us consider the following inclusion operators
Lop/(i-0) L (1) = Lys—o) (), jeop: C (Bgypy) ) = Lo (i)
and
joo,x : C(Bx*+) = Leo(V).
We also define the map ip: ID — C(B g(D)) by
w(2)(8) = ¢'(2)
forg e B B(D) and z € D, and the isometric linear embedding 1x: X — ¢ (Bx+) given by
ix (%) () = x"(x)

for x* € Bx+ and x € X.



390 Hamidou Y.S., Bougoutaia A., Belacel A.

Theorem 1 (Pietsch domination). Given f € B (D, X), the following assertions are equivalent:

1)f€N (]D,X);

(p.f.9m)

2) there is a constant C > 0 and measures u € P (Bgp)) and v € P(Bx+) such that the
following inequality

(@)= C(/BE(D) <(1—1W \h'(z)\19> ﬂdy)

1-n

: </B (I G e )“w) q

holds for every z € ID and x* € X*;

3) there exists a constant C > 0 such that for all n € N and any sequences (z;);_, in D,
(Bi)i_1 inC and (x})_, in X* we have

1-0

Z!ﬁ!}x )| <C sup <i<wW‘/ e 9>”@>7

heB B(D) i=1
1-n
n . 1L T
< sup (3 (@O )T
X**GBX** i=1

Moreover, the infimum of the constants C > 0 in 2) and 3) is Hf”/\QB -
o401

Proof. 1) = 2) If f € NPM’? (
spaces G and H, a Blochmap g € Hg (D,G) and amap T < I1, (X*, H) such that

D, X), then there exist a constant C; > 0, complex Banach

0
[ (f@)] <G (ﬁ) g @) a1 IT ()|

forallz € ID and x* € X*. Applying [5, Theorem 1.4] to g and [8, Theorem 2.12] to T, we obtain
measures y on By, and v on By« such that

g @l < ( f

B(D)

1

}h/(z)}f’dy> :” HT(x*) H < nq(T)</BX** | (x)] dl/) q

for all (z,x*) € D x X*. Taking C = Clﬂf(g)lfeﬂq(T)lfﬂ, we get

X
VR
—_

!
*
_
=
*
*
—~
R
\_/
_H
Q
)
_*
\_/
>—l|&
QU
<
~
<|
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forallz € D and x* € X*.
Moreover HfHNB < Cand soinf {C > 0 satisfying 2) } < HfHNB

(p.0.9.1) (p.0.a1)

2) = 3) Consider the sequences (z;)/_; in D, (B;)/_; in C and (x})}_, in X*. Holder’s
inequality gives

> I8l (s <C<ﬁ/3 (18— ey I ) »”)p@du)
« (i/gw (I P )%dv)q
<<(£1,,,2m (Bl ™) )

1i—-n
L q
sup (| ()7 )] dv)

BX** X**EBX**

1-6
P

X
/\
™=

i=1

1-0
n e e\ P
/
< C sup Z(!ﬁ\w\h z)| )
hGBg(]D> i=1
1-y
e ) )
x sup [ 3 (a0 1))
X**GBX** =1

and this proves 3).

3) = 2) Define the functions R; : Bg(D) XD xR — [0,00), Ry : B+ x D x X* — [0,00),
S:B(D,X)xD xR x X* — [0 ) by

Ri(h,z, ) = |B] A= 2Ry | (z

S(frz.B,x") = |Bl[x" (f'(2))

1-6 —
|z |70 Ra(x™z ) = () ),

4

respectively.
We will apply a general Pietsch domination theorem (see [13, Theorem 4.6]), notice that Ry,
R; and S satisfy the conditions of [13, Definition 4.4], namely

(C1) foreach z € D, p € Rand x* € X*, the mappings (R1), 4 Bgmpy — [0,00) and
(R2), + * Bxws — [0, 00), defined by
(Rl)z,ﬁ (h) = R1 (h, zZ, ‘B), (RZ)Z,X* (x**) = R2 (x**,z, X*)
are continuous;
(C2) the equalities
Ry (h,z,B1B) = B1R1(h, 2, B), Ry (x™*,z,B2x") = BaRa (x™,2,x7)

S(f,z BB Bax") = P152S (f,2 B, X7)

hold forall h € BE(]D)' x** € Bx+,z€ D, B €R,x* € X*and B1, B2 € [0,1].
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We now prove that the map f is Ry-, Rp-, S-abstract (p/(1 —0), q/(1 —#))-summing.
Indeed, let n € IN, By,...,81 € C, z1,...,z4 € Dand x7,...,x; € X*. By 3), we have a
constant C > 0 such that

> |Bill (£/(=0))] < € sup (i(lﬁz ﬁw’@)\”)ﬂ)
i1 heBB(]D) i=1

1-9y 1L %’]

Xx*f:gw(;(‘x DI ) ) '

and so we find

n

xs(frzirﬁi/ 2\5 % (f (20)) |

i=1
1-6

L 1-6 =AW
<C sup <Z<|ﬁ| |z|29‘h )| ) >
hEB i=1
N
n T q
(2(‘3(** 1 ’7”x*H’7> )
i=1

By [13, Theorem 4.6], there are measures € P (B g(]D)) and v € P (Bx++) such that for all
(z,B,x*) € D xR x X* we get

S(f,z B x*) < C(/ Ry (x**,z,ﬁ)l% dy) ' (/ Ry (x**,z,x*)lp_adv> s
Bg Bx**

5(D)

It follows that

}x*(f’(2>)\§c(/A (W\h’(z)}“’)%dy)”

B(D)
(/ (l= ) )”")

2) = 1) By [5, Lemma 1.5], there exists a map k € B (ID, Lo, (1)) with p (k) = 1 such that
k' = jeooup. So, k € H§ (D, Lo (p)) with nﬁ (k) =1 and by [8, 2.4 and 2.9], we can take the
map T = leog© joox 0 tx, 0 T € Iy (X*, Ly (v)) with 77y (T) < 1. Since 2) holds, for every
z € D and x* € X* we can write



(p,9,q,1)-Nuclear Bloch maps 393

1-6

(7)) | < c< o (- (Z)Pe)r;gdy) =
" </B (b G g )”dv)qu
=iy </ oo [Ospoiiop o) ) \”dy)
Sk (/B
4:@(/8
< ] (/BX () <x**)|qdv> .

* 1=
:CWHg 21 g I 17 TG

where ¢ = I p 0k € H?(ID, Ly(u)), we conclude that f € N5

(D)
1-n

PQM)(]D’X>' O

First, we establish the fact that the introduced functions are indeed Bloch functions. For two
semi-normed spaces (X;px) and (Y;py) the inequality (X;px) < (Y;py) means that X C Y
and py(x) < px(x) forall x € X.

Proposition 1. We encounter the following inequalities:
B B . B .
D (N @ s, ) < (T, X)) < (BD, X);p5),

(p.B.a.1)
) < (DB (D, X);dE. ,7) < (B(]D,X);pg).

D, X), Theorem 1 provides us with

)@, X)i -l s

(p0.a.1)

2) (NB

(p0.am)

Proof. 1) Le’cfE/\fﬁ@q,7 (

1-6

! = sup |x* (f( B R "(z)|"° )
@l = s 1 (7 KHfIWpW(/B(D (o ™) )

1-y

1-7 * 1*'7 !
xsup< )| 1) dv)
X*GBX* X**

) 1-0
< fllys (@) 9)‘21 ”
- NPGM | |2 (1—z]?)? #

X sup sup }x ‘_’7 [l
X*GBX* X**GBX**
2 1-6
/ 1-60 -0 ’
< ”f”/\/B ‘Zyz 0 |1 (2)] dy
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for all z € D and x* € X*. Thus, according to Pietsch’s domination theorem for
(p,0)-absolutely continuous Bloch maps [4, Theorem 2.1.], we have f € I—IE,Q(]D, X) and

7'[59 )Y < |fll NE, - For the second inequality, we employ [4, Proposition 1.1], thus
! po.a.1

f € B(D,X) and p3 (f) < 8, ().

2) 1 feNE,, (D,X), according to Theorem 1, we have
< (@) < I, ( oo (= »h’<z>»1‘9)1ped;¢) ’
(. (et d)
< Ifllye, ﬁ(hgg}?@ [#(2) 01
(. () a)
N

(. G ey a)
< g, = (. () )

for all z € D and x* € X*. Therefore, according to Pietsch’s domination theorem of maps
Dg’;,q [3, Theorem 2.2], we conclude that f € wa (D, X) and qu*,q (f) < |Ifll NE,. - The

second inequality follows from [3, Proposition 2.1].

1-y
q

In the next proposition, we will be able to prove that the linear space of all (p, 0, g, 7)-nuc-
lear Bloch maps, along with its norm, forms a Banach space.

Proposition 2. The pair (./\/Z;Q o) (D, X); ||||N(g ) ) constitutes a Banach space.
pAa

Proof. If f € Nﬁf’tw(

Proposmon 1, we get f = 0. Letus estabhsh the triangle inequality. Let f; € NV, l;’; 6,01) (D, X)
for i = 1,2. For each ¢ > 0 there exist complex Banach spaces G; and H;, Bloch maps
Qi € H’7 (D, G;), bounded maps T; € I1; (X*, H;) and positive constants C; such that

D, X) and ||f]| NE, = 0, then pp (f) = 0. Therefore, according to

" (fi(2)) | < Qm i@ T () |

and
Gy (30)' 7 (T)" < Ifille, e ©
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Given (z,x*) € D x X*, we have

* / 1 / 1-0 * * —
£ (7)) | < Mg IS I R ),
where L
T, 1= =Cl'r Sy S
M; =GC; (gz) (Tz) 1 Si=Cn (gz) (Tz) ﬂff(gi)'
1 J -y T;
i =Clnb(g) 1 2)a L

Therefore, we find S; € H? (D, G;) and R; € T1, (X*, H;) for i = 1,2. From (3) we have

1/p 1/9
M; < ||f; +¢, 5 (gi) < (Ifi +e) " m(h) = (i te)
i S ”fZHN(IZ,O,q,q) p(gl) (”ﬁHN(IZ,&q,q) ) q(Th) (Hsz,/\/(’;g,qrq) )

Let G be a complex Banach space obtained as a direct £,-sum of G; and G, and let H be a
complex Banach space obtained as a direct £;-sum of H; and H». Let ¢ be a Bloch map from

D into G defined as g¢(z) = (81‘(2))?:1 forz € D and T be a bounded map from X* into H
given by T (x*) = (T; (x*))7_; for x* € X*. For every m € N and any sequence (z]-);ﬂ:1 inDD
we establish

18l 6y = (é Hg<z]->Hp)1/p < (f i ng-<z]->}\p)1/

i=1i=1
1/p
(ZTL’ (gi)F sup Z}h' } )
hEB (]D)]
2 1/p m 1/p
(@) se (LiEr)
i—1 heBgp) \ j=1

Consequently, the map g is Bloch p-summing with norm

1/p

2 1/p
B B (o\P < )
< s < + + 2

On the other hand, for every sequence (x;‘);”:l in X* we also have

H(T(x?))?:lHeq(H) = (}éHT(x]*)qu (ZZHT Hq>1/

j=1li=1

2 1/q
< <Z7‘cq(Ti )T sup Z}x** ‘q>
i=1

X**EBX** =1

< (;nqm)‘f)l/q wp (1)

X**GBX** ]:]

So, we can observe that the map T is g-summing with norm

2 ] 1/q 14
T =< 79 (Ti < < + —I-ZS) .
>_(; . ») < (Wils, +lallye,
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Finally, since

2
(A +A)E)] < L Sy I8 11T
2 (1-6)/p , 2 (1=m)/q
- Ix* . "y p (x* q
<y (ge) (hearr) (S imei)
§<ZC) T I I @I I o

and

2
i+ Flly,,, < (LG rE@emm
i=1

)(10)/p+(1i7)/q

4

<
- ( ”fl HN(I;);,@M) * ”fZHN(IZ,@/w) e

we deduce that f; + f» € N D, X)and || f1 + < +
it €NG oD X)and (If + follys, < lflys, +lflvs,

Let A € Cand f € ./\/peq,7
spaces G and H, a Blochmap g € Hf(]D, G) and amap T € I, (X*, H) such that

(D, X), then there exist a constant C > 0, complex Banach

" (f (2)] < Cﬁ 8" @[ 7T ()

for all (z,x*) € D x X*. Hence,

X (A ()] < CIA| ﬁ Hg’(z)ﬂ” 71T )

1

el @1 I T O

=C

We find that A1/ (1-0)¢ ¢ HB(ID G), it follows that A f € ./\/ D, X) with

(pB.am) (

1-0 — — —
1M fllys, < Cm (A 00g) ™y (T)1 7 = [A] Ol (9)' 7y (T)1 .

If A = 0, then we obtain |Mf||NB =0 = |\ Hf”NB . For A # 0, we find that
0,91
Al < Al - Therefore, liflva < (1/ A} [Aflla, . This impies that
6,4, i (po 0,91
A ||f||NB ||)\fHNB and thus ||Af||NB = |A| HfHN(Bpe Consequently, we de-

duce that (./\/ IZ 6,07 (D ) ; H [ NB,. ) isa complex normed space.

Let us show the completeness of N (00,0,1) (D, X). Consider an arbitrary Cauchy sequence

(fn) nen mNpg o) (D, X). We will prove the convergence of (f,,), o to f € NPf’M (D, X).
For every ¢ > 0 there exists an ng such that for all m,n > ng the sequence (f;), . being

Cauchy implies || fin — full N, 5 < & According to Proposition 1, we have the inequality
p.0,4.1)

08 (fm — fu) < | fm — full N{fa,o,,q,;yf Therefore, (f,),cp is @ Cauchy sequence in the Banach space
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B (DD, X). So, there is a Bloch map f with linspg (f — fu) = 0. Theorem 1 implies that there
n—

exist regular Borel probability measures i, on B (D) and vy, on By« such that for any z in

D and x* in X* we have
A 1-0

| ((fn — ) (2)) | Se(/A (ﬁ} ' }1 9>10dﬂnm>p

B(D)
1y

R
*kk * 1711 * |1 -1 1
(e ) )

On P(BE(]D)) X P(BX**) we define a subnet A, and its values form a subsequence
of the measures in P(BB(D)) X P(Bxs). For a fixed n > ny, the weak compactness of
P(BE(D)) and P (Bx:+) implies that there is a subnet (pum (&), vum () ), 4 converging to
(ftn,vn) € P(B E(D)) x P (Bx++) equipped with the weak-* topology. Thus, there exists ay € A
such that for any z € ID and x* € X* and for any « € A with a > &, we have

‘x*((fM(DC) _fn)/(Z))‘ S 5(/3( ) <m }h/(Z”le)ﬂd(}lnm(“) — ]/ln)

1 /()10 = o
! Bg<m<<1—|z|2>9 ) )

X</B (b ) dla =)+ [, (GO ) > ,

X**

and by taking limits as &« € A, we obtain

X" ((f = fu)' ()] <g</g(D) <m\h/(z)\l_9)lpgdyn)¥

1—y
L 7
wx 0 %\ (1—7 VAR
(e )
for all z € D and x* € X*. It follows that f — f, € NB

(p8.4.1) (

f e N (6,01) ( X). If n > nyp, then from the last inequality it follows || f; — fu| NE, <eg,
B . ;

hence (N (oan P X) 5 11 Ny ) is a Banach space. O

X), and therefore that

4 Properties and Mobius invariance

In the domain of complex analysis, the concept of Bloch compactness stands as a significant
result illuminating the behavior of holomorphic functions on the unit disk ID. This theorem
states that, under specific conditions, holomorphic mappings belonging to certain Bloch-type
spaces exhibit a remarkable property: compactness.

Let us recall that the Bloch range of a function f € H(ID, X), denoted by rangy(f), is the set

{(1-|z*)f'(z) € X:z € D}.

A map f € H(ID, X) is called (weakly) compact Bloch if rang,(f) is a (weakly) compact set
in X, respectively.
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Corollary 1 (Bloch compactness). If X is a reflexive complex Banach space, then every function

fe N (]D, X) is a compact Bloch map.

(p8.4.1)
Proof. Let f € N, (5,9,17,17)(11)’ X). Then, by Proposition 1, f € HE o(ID, X). Consequently, f is a

compact Bloch map according to [4, Proposition 4.2]. O
The next result states Kwapieni’s factorization theorem for the space N (00a1)"
Theorem 2 (Kwapien’s factorization). A map f € B(ID, X) belongs to N (r6.41)! ( X) if and

only if there exist a Banach space Z, a closed subspace Y C Z, amap h € Hp, (D, Z) with
W(D)CYandamapT € Dy, (Y, X) such that f' =T ol

Proof. Necessity. Let f € N (0,0.0.1) (]D,X). According to Pietsch’s factorization theorem
(see [4, Theorem 3.1]), there exists a map h € B(ID, L, a-g)(4)) such thath = I, 1) K,
where k' = jo oup with k € B(D, () and pp (k) = 1. By [5 Lemma 1.5], we have that
ke HE,Q(ID, ls) and pg (k) = 1. Moreover, h € H?’g (D,L,/(1-¢)(#)) and 7'(5”,9 (h) <1.
Consider the linear subspace Y = lin (' (D)) C L,/1—¢) (#) and the map T € L(Y, X)
defined by T (' (z)) = f'(z) for all z € ID. By Theorem 1, we have
IT* ()| = sup {|T*(x") (' (2))| : z € D, | (2) ]| <1}
= sup {|x* (T ( (z)))|:zeD, |l (z)]] <1}
=sup {|x* (f' (2))|:zeD,||K(2)| <1},
where the Pietsch domination theorem (see [4, Theorem 2.1]) gives us

Pl (</B,§<D> <m>h’<z>f‘9)1%w>¥>,

1-y

T ()| < C</B (1 ) ”x*”gﬁ dv) L

for all x* € X*. Thus T* € Iy, (X*,Y*). According to [1, Remark 3.3], T € Dy, (Y, X) with
dg+y (T) < C, thus npg (h)dg, (T) < C.

Sufficiency. Let us assume that there is a Banach space Z, a closed subspace Y C Z, a map
h e HB o(D,Z) with i/ (ID) C Y and amap T € Dy (Y, X) such that f* = T oh’. We find
fe N (6,01) (ID, X) by employing the domination theorem for & and the domination theorem
for T*, where T* is a (g, 17)-summing map and C = inf {ﬂ;lag,e(h)dq*,v(T) :ff =Tol}. O

So we find

The concept of a Banach normalized Bloch ideal on ID was initially presented in [9, Defini-

tion 5.11]. Now, we show that (./\/ B

(r,01) ( ,X) 514l NE, ) exhibits the same property. Let us
recall that for any complex Banach space X the inequality

1-6 —0 1-6
7 n L T T
sup(zrx w) Ssup(z<|x*<xi>|1-9nxiu ) (Zuxznw) @)

" 1-0
holds forevery 1 < p < 00,0 <6 < 1, (x;)_; in X such that < Y Hx1|]L9> ' <.
i=1
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Proposition 3. The space (N B 9 ( X) ;5 |-l NE ) forms a Banach normalized Bloch
P oy '7 (p.8.9.1)
ideal.

Proof. The space (N, 2;379 o) (D, X); |-l NE,. ) is Banach space according to Proposition 2,

where pg (f) < ”fH/\/{;@ holds forall f € NPQM (D, X).

According to [9, Proposmon 53], if g € B(ID) and x € X, then pg(g-x) = p5(g) ||x]|.
Assume ¢ # 0 and x # 0. By (4) and Holder’s inequality, for all (8;);_; in C, (z;);_; in D and
(x7)[_, in X*, the following inequalities

- Il (5020 = ps(@lll 1184 pBg(g))l@-)x;“(ﬁ)'
SR 5 e () )
<os )11 ( L |p (55) @ 1’79)1”9

—_

-1

a1y
1v> q

(f

T (W) (x})

P 1-6
- 1 1-0\ 10 7
< ou@llll sup (3 (16— W ™))
heBgpy \i=l i
1-y
L
p (Ll () ) |
X**EBX** i=1
/ 1-0 LG %
< ps(s) | sup (z(wwvz(z )
hEBg(D) i=1
d - LT
sup (L (1w 1))
X**EBX** i=1

hold, where Jx represents the canonical injection of X into X™*. As per Theorem 1, we ascertain

thatg-x € NMM (D, X) with Hg-xHN&W < p5(g) [|x] - Since

p5 (8) Xl =ps(g-x) < llg-xllys, .

(pB.q.1)
it follows that Hg-xHNB ZPB (&) llx[l-

Consider f € NPf’M (ID, X), Te L(X,Y). Let g: D — D be a holomorphic map with
¢(0) = 0. It is immediate that

(Tofog) =To(fog) =Tog -(f 0g).
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Forall (B;);_; inC, (z;)j_; inID and (y; ) in Y*, the following inequalities

¥[8l (T o) @) = LIl [ GOT( )]
<] (Z(\ﬁ 15 (s g @) >1”9)79y;£** ($ i) "
< T, (é'mr TR e @l s WQ)%>T
x e (E I i )1@>q”
<1 fl,,,, ;’(i mrl_&%FfwwmuamW*)&)T

< sup (Z(w<%ﬂlﬂmu)”)

y**EBy** =1

hold, derived from (4) and Holder’s inequality.

/
The Pick-Schwarz Lemma states that 8" (2)] 5 < for all zin ID. So, we get
—lg(@)|"  1-|7]
Y. 1Billy (Tofog)'(z)]
i=1
1-9
/ 1-6 ﬁ !
< ||| Hf”NB P Z ‘,Bz’ \Z ‘2 0 }(hog) (Zi”
g i=1
1y
n L q
sup (Z(!y** vl v 17)
**GBy** i=1
p 1-6
n , 1-0 16 p
< ”TH Hf”,/\/’B P Z ‘:3 ’ ‘Z ‘2 0 }k }
g i=1
1y
n q
sup (Z yz 1 ’7”% ” )
**GBy** i=1
Note that pg (ho g) < pp (). Therefore, To fog € NPQM (D, X) with

[ofo < ||
H f g”,/\/—(Bp/qu”]) H ” ”f”_/\/(l;ﬂ/q/,?)
O]

The Mobius group of D, denoted as Aut(ID), comprises all biholomorphic bijections from
D onto itself.
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Recall that a linear space A(DD, X) C B(D, X), equipped with a seminorm p 4, is Mobius-
invariant if:

(i) thereis C > 0 such that pp(f) < Cp4(f) forall f € A(D, X),
(ii) fo¢p e A(D,X) with ps(f o¢) = pa(f) forall p € Aut(ID) and f € A(D, X).

The invariance of (p, 0, q, 17)-nuclear Bloch maps under Mobius transformations over ID can
now be derived.

Proposition 4 (Mobius invariance). Space (N B

) is Mébius-invariant.
(p0.a.1)

Proof. Let us show the conditions of above definition.
(i) Proposition 1 yields (/\/’lzeql7 (D, X); ”'”NB ) < (B(ID, X); pB)-

(ii) A review of the proof of Proposition 3 reveals that fo¢ € N (0, M)(]D’ X) with
|fo 4)”NBG, o= HfHN(Bpg if f € /\/peq}7 (D,X) and ¢ € Aut(D). Moreover, from this

< o . O
n If 4)”1\/([:7,9,@,'1)

we also deduce that || f|| NE, = [(fop)op™| s

5 Crossnorms and duality

We are now ready to study the duality of the space of (p, 6, g, 77)-nuclear Bloch maps from
D into a complex Banach space X.

Recall that a norm « on lin(T'(ID)) ® X is a Bloch reasonable crossnorm if the following condi-
tions hold:

(1) a(yz@x*) < |7z ||]x*|| forall z € D and x* € X*,

(2) for every g € B(ID) and x** € X**, the linear functional ¢ ® x** : lin(T'(ID)) ® X* — C
given by

(§®x™)(7: @ x") = g (2)x™ (x7)
is bounded on lin(T' (D)) ®, X* with ||g @ x**|| < pg(g) [|x**]|.

Definition 2. Let X be a complex Banach space. We define R?peq y) Oon lin(T(D)) ® X* as
follows

R?p,g,q,q)(v)zinf{ sup (Z(MHWVI e 9>Le>¥

hEBg(]D) i=1
" g 1-y
1 q
sop (L (i 1)) }
X**EBX** =

where the infimum is taken over all representations of -y in the form v = Y[ | Bi7z; ® x; for

all (z;)!_yinD, (B;)i_; in C and (x})}_, in X*.
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B
Theorem 3. Defined above R (n6,0)

Proof. Using the same techniques as those employed in [4, Theorem 5.2] and the inequality (4),
we can prove that R?p 6,q,y) 1S @ NOTM ON lin(T(D)) ® X*.
(1) Givenz € D and x* € X*, we get

is a Bloch reasonable crossnorm on lin(I'(D)) ® X*.

,R’?p,@,q,;y) (7z ®x%)
1 ﬁ 1% 1 1%7
1-6 - Kk * 1-y
< s (o @) )" s () )
hEBE(]D) Z x**eBX**

= ! 0 1 o (Bl

X
= - — x| = = |7z |2*] -
(1 1212) (1 \zyz) <71 1—|z]2 vl flx ]l

(2) Forany g € B(ID) and x** € X**, an application of Hahn-Banach theorem and Holder
inequality yields

n n
[(g@x™) ()] = Z (8®x™) (75 @x7) | = | }_Big’ (i) x™ (xf)
i=1 i=1
< / ok * $ok 2 ’:3 ‘
< Z;!ﬁi\ 18" ()| |x™ ()] < ps(8) ™| 21—7”2 [
1= Z
n
DI LB G0 ()]
Hx**HZ\ﬁ} ,Z B 3 1 G T g )
" 2\
= os(0) 111 { 1 (18] =i A4 (20l )
i— (1—1z?)
1y
n 9 q
x <Z (I GO 1x1) )
=1
1 : %
g 1 1-6\ *
< p5(g) [x**|| sup (Z(L& WW(ZZ ‘ ) >
hEBB(]D) i=1 i
/)
n q
X sup (Z(|x** G ) ) ,
X**EBX** i=1
where for each i = 1,..., 1 we have taken a functional x}* € Bx« such that [x}* (x})| = [|x]].
Passing to the infimum over all the representations of y, we obtain
(g ™) (1)] < ps(@) I I RE 4, ().
Hence g x* € (In(T(D)) @5 X*)" and [lg ® x| < pa(g) [lx* | O
(pB.4.17)

We are now ready to investigate the duality of the space of (p, 6, g, 7)-nuclear Bloch maps
from ID into a complex Banach space X.
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Theorem 4 (Duality). The space (N, B

p.b.q91
lin(T(D))&®._»  X*).
(lin(T(D)) RE, )

(D, X); Il Nfe,q,q) is isometrically isomorphic to

Proof. It is easy to see that the map

) = (lin(F(D))®, 5 X",
(p.0.q.1)

(Np()qq( ) H ”N;?Gq;
defined by
A(f)(rz@x*) =x*(f(2)), fewnN QM(]D,X),ZEID, x* e X*,

is linear and injective. Fix f € N 9 o D X). Fory = YLy Ay, @ x} € lin(T'(D)) ® X*, an
application of Theorem 1 gives

Ml < i»m 2 (f (21))]

1-6
n / - o\ 7
<fllyz,, ., Sup )3 (‘ﬁ’____TET?_}h i) )
€Bgpy \i=1
1-y
L AN
X sup (Z(|x**<x1>| ")) ) .
X**EBX** i=1

Taking the infimun over all the representation of y, we get

AP < Iz, RE (),

and therefore ||A(f)|| < |If]| NE, - In order to establish the reverse inequality and the surjec-
X*)". Define Fy: D — X by

tivity of A, let ¢ € (lin(T(ID)) & 5
(p.0.4.1)

X*(Fp(z)) = (v2®x"), zeD, x* X"

A look at the proof of [5, Proposition 2.4] shows that F; € H (D, X) and Fy = f(;> for a
convenient map f € g(lD X) with pg (fp) < ||#]]-
To prove that f, € N, 0‘7’7( X),letn € N, B; € Cand z; € Dfori =1,...,n. For each

ie{l,...,n}, wecan take a functional x{ € X* with [|x7|| = 1 so that x} (f(z ) £ (z)]-
Obviously, the function T: C" — C deflned by

T(tl,. . .,tn) = Xn:tiﬁiﬂfé(zi) (i’l,. . .,fn) € Cn,
i=1

isin (C", |- o) and | T = ELy [Bi] | (22)]-
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For any (t1,...,t,) € C" with [[(t1,...,tn) ]| < 1, we get
n
|T(t1,...,tn)| = ‘(){)(thﬁﬁz,@xf)‘
< 101 RE ) ( 3o i1 0 55

i=1

and therefore

1-6

Y- 16l (F(z00)] < gl sup (f(m\T\h’ i 9))
i=1 €Bgp) \i=1

LN T
x sup | (e G )T )
X**EBX** =1

po M(]D’X) and Hf¢HN59M < ¢l
Now, forany v = ¥iLy iy ® x; € hn( (D )) ® X*, we have

M:

Therefore, according to Theorem 1, it follows that f, € N,

Zﬁz (fy(2)) Zﬁmzl@w (iﬁm@ﬂff):qb(v),

~

and so A (fy) = ¢ onlin(I'(ID))® X*. Hence

B
R(pﬁrm)

o llas, < 1A Uo)l-
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Y Wil cTaTTi BUKOPMCTAHO HOBi pe3yAbTaTH Teopii iaearis BirobpaskeHb Baoxa AAsT BBeAeHHS
Ta aHaAi3y BAacTuBocTelt (p, 6,4, 17)-siaepHUX BiAOOpakeHb BAoXa 3 BIAKPUTOrO OAVHIIHOTO AVCKA
D y xomnaekcHmit 6aHaxiB mpoctip X, aAe 1 < p,g < cota0 < 6,57 < 1 3aA0BOABHSIIOTH YMOBY
(1-0)/p+ (1—17)/q =1. OcHOBHY yBary IpMAiA€HO O3HAUEHHIO LIVX BiAOOpaXkeHb, BCTAHOBAEH-
HIO IXHIX BAACTMBOCTeN K 6aHAaXOBMX IIPOCTOPIB i AOCAiAKEHHIO (pyHAAMEHTAABHMX XapaKTepy-
CTHUK, TaKMX SIK AOMiHyBaHHS IliTua, koMmakTHicTh baoxa Ta iHBapiaHTHICTS Mebiyca. Hampukintii
CTaTTi IpeACTaBACHO BiAIIOBIAHY Kpoc-HOpMYy Baoxa Ta ImpoiarocTpoBaHO i3oMeTpUYHIIA i30MOp-
di3M Mix BU3HAUEHMM IIPOCTOPOM i JIOTO CIIPSIKEHMM IIPOCTOPOM.

Koouosi cniosa i ¢ppasu: omepaTop CyMyBaHHS, BEKTOPHO3HauHe BipobpaxkeHHs baoxa, komma-
KTHe Biao6paxeHHs baoxa, aomiHyBaHHs: [liTua, dpakTopmsarist KsameHst.



