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In this paper, new developments in the theory of ideals of Bloch maps are utilized to introduce

and analyze the properties of (p, θ, q, η)-nuclear Bloch maps from the open unit disk D to a com-

plex Banach space X, where 1 ≤ p, q < ∞ and 0 ≤ θ, η < 1 satisfy (1 − θ) /p + (1 − η) /q = 1.

The main emphasis is placed on defining these maps, establishing their Banach space properties,

and investigating fundamental characteristics such as Pietsch domination, Bloch compactness and

Möbius invariance. Finally, we conclude the paper by presenting a Bloch reasonable crossnorm and

illustrating the isometric isomorphism between the defined space and its dual space.
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1 Introduction

The class of (p, θ)-absolutely continuous maps was initially defined by U. Matter in [12]

using the interpolative construction. Following that, J.A. López Molina and E.A. Sánchez Pérez

examined the factorization properties and the trace duality of these operators across a series

of papers [10, 11, 14]. On the other hand, the notion of strongly (p, θ)-continuous maps was

introduced by D. Achour et. al. in [1] for scrutinizing the cohort of operators whose adjoint

mappings are (p∗, θ)-absolutely continuous, aiming to analyze the duality properties of this

significant operator ideal. E. Dahia et. al. [7] introduced the concept of (p, θ, q, η)-nuclear maps,

where 1 ≤ p, q < ∞ and 0 ≤ θ, η < 1 satisfying (1 − θ) /p + (1 − η) /q = 1. They also

provided some characterization properties in this context, moreover, when θ = η = 0, we come

across the class of p-nuclear operators, originally introduced by J.S. Cohen in [6]. Additionally,

these maps were introduced in the context of multilinear maps in [2].

Based on the recent works of some authors investigating certain operators in the context of

Bloch maps, such as the study of (p, σ)-absolutely continuous Bloch maps in [4] and strongly

(p, σ)-continuous Bloch maps in [3], we will also delve into this study in this paper. Our main

objective is to introduce and establish the most notable properties of a notion of (p, θ, q, η)-

nuclear Bloch maps on the open unit disk D into a complex Banach space X. Our paper

will be divided into several sections after the introduction. In the second section, we will

provide the most important notations and basic definitions used throughout this paper. In the

third section, we will provide the fundamental definition of zero-preserving (p, θ, q, η)-nuclear

Bloch maps from D into X, denoted the set consisting of such maps by N B̂
(p,θ,q,η)(D, X), and
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proved that they form a Banach space with their natural corresponding norms ‖ · ‖
N B̂

(p,θ,q,η)

.

Furthermore, we will present the Pietsch domination theorem of these maps. In the fourth

section, we will establish some of the most important properties, such as Bloch compact-

ness, Kwapień’s factorization theorem, and the Banach-Bloch ideal property of these maps.

Also we show that the space
(
N B̂

(p,θ,q,η)(D, X); ‖ · ‖
N B̂

(p,θ,q,η)

)
is invariant by Möbius transfor-

mations of D. Finally, in the fifth section, we conclude the paper by introducing a Bloch

reasonable crossnorm RB̂
(p,θ,q,η)

on the tensor product space lin
(
Γ(D)

)
⊗̂X∗ and demonstrat-

ing that the space
(
N B̂

(p,θ,q,η)
(D, X); ‖ · ‖

N B̂
(p,θ,q,η)

)
is isometrically isomorphic to the dual space

(
lin
(
Γ(D)

)
⊗̂

RB̂
(p,θ,q,η)

X∗
)∗

.

2 Preliminaries

For Banach spaces X and Y, we denote the closed unit ball of X by BX and L(X, Y) rep-

resents the space of all continuous linear maps from X to Y equipped with the usual norm.

When Y is the scalar field K we simplify L(X, K) as X∗. For any 1 < p < ∞, p∗ denotes the

Hölder conjugate of p given by 1/p + 1/p∗ = 1. Recall from [12] that a mapping T ∈ L(X, Y)

is considered (p, θ)-absolutely continuous, where p ∈ [1, ∞) and θ ∈ [0, 1), if there exists a

constant C > 0 such that

( n

∑
i=1

∥∥T (xi)
∥∥ p

1−θ

) 1−θ
p

≤ C sup
x∗∈BX∗

( n

∑
i=1

(
|x∗ (xi)|

1−θ ‖xi‖
θ
) p

1−θ

) 1−θ
p

for any n ∈ N and x1, . . . , xn ∈ X. The infimum of such constants C is denoted by πp,θ(T),

and the Banach space of all (p, θ)-summing maps of X to Y under the norm πp,θ is denoted

by Πp,θ(X, Y). If θ = 0, then
(
Πp,θ ; πp,θ

)
=
(
Πp; πp

)
, the Banach space of all p-summing

maps. Furthermore, in [1], a mapping T ∈ L(X, Y) is termed strongly (p, η)-continuous, with

p, r ∈ [1, ∞) and η ∈ [0, 1) satisfying 1/r + (1 − η) /p∗ = 1, if there exists a constant C > 0

such that

n

∑
i=1

∣∣〈T (xi) ; y∗i
〉∣∣ ≤ C

( n

∑
i=1

‖xi‖
r
) 1

r

sup
y∗∗∈BY∗∗

( n

∑
i=1

(
|y∗∗ (y∗i )|

1−η ‖y∗i ‖
η
) p∗

1−η

) 1−η
p∗

for any x1, . . . , xn ∈ X and any y∗1 , . . . , y∗n ∈ Y∗. The collection of all strongly (p, η)-continuous

maps from X into Y is denoted by Dp,η(X, Y), which is readily seen to be a subspace of L(X, Y).

The least C for which the inequality holds will be written as dp,η, serving as a norm for the

space Dp,η(X, Y).

Let X be a complex Banach space, a map f ∈ H(D, X) is termed Bloch if its Bloch semi-

norm, defined as ρB( f ) := sup
{
(1 − |z|2) ‖ f ′(z)‖ : z ∈ D

}
, is finite. The space of all holomor-

phic maps from D into X satisfying this property is denoted by B(D, X). The normalized Bloch

space B̂(D, X) is the closed subspace of B(D, X) consisting of all maps f for which f (0) = 0,

under the Bloch norm ρB . For simplicity, we denote B̂ (D) instead of B̂(D, C). Also, Ĥ(D, D)

will denote the set of all holomorphic functions h from D into itself for which h(0) = 0.

In a recent paper [4], the concept of (p, θ)-absolutely continuous maps was adapted to ad-

dress the (p, θ)-absolute continuity property within the framework of Bloch maps, as described

below.
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For any p ∈ [1, ∞) and θ ∈ [0, 1), we define a map f ∈ H(D, X) as (p, θ)-absolutely

continuous Bloch if there exists C > 0 such that for any n in N, β1, . . . , βn in C and z1, . . . , zn

in D, the following inequality holds

( n

∑
i=1

|βi|
p

1−θ
∥∥ f ′ (zi)

∥∥ p
1−θ

) 1−θ
p

≤ C sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

(
1

1 − |zi|
2

)θ ∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

.

The infimum of the constants C, denoted by πB
p,θ , defines a seminorm on space ΠB

p,θ(D, X) of

all p-absolutely continuous Bloch maps from D into X. Furthermore, this seminorm becomes a

norm on the subspace ΠB̂
p,θ(D, X) consisting of all those maps f ∈ ΠB

p,θ (D, X) so that f (0) = 0.

Additionally, in [1], a map f ∈ H(D, X) is said to be strongly (p, η)-absolutely continuous

Bloch with p, r ∈ [1, ∞) and η ∈ [0, 1) such that 1/r + (1 − η) /p∗ = 1, if there exists a constant

C > 0, such that

n

∑
i=1

|βi|
∣∣x∗i
(

f ′ (zi)
)∣∣ ≤ C

( n

∑
i=1

(
|βi|

1 − |zi|
2

)r) 1
r

sup
x∗∗∈BX∗∗

( n

∑
i=1

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) p∗

1−η

) 1−η
p∗

for all n ∈ N, β1, . . . , βn ∈ C, z1, . . . , zn ∈ D and x∗1 , . . . , x∗n ∈ X∗. The linear space of all

strongly (p, η)-absolutely continuous Bloch maps from D to X is denoted by DB
p,η(D, X), and

its subspace consisting of all those mappings f so that f (0) = 0 by DB̂
p,η(D, X).

Now let us consider the space

lin
(
Γ(D)

)
⊗ X∗ := lin

({
γz ⊗ x∗ : z ∈ D, x∗ ∈ X∗

})
⊆ B̂(D, X)∗,

where γz ⊗ x∗ : B̂(D, X) → C is the functional defined by (γz ⊗ x∗) ( f ) = x∗ ( f ′(z)) for all

f ∈ B̂(D, X).

Each element γ ∈ lin
(
Γ(D)

)
⊗ X∗ is of the form γ = ∑

n
i=1 βiγzi

⊗ x∗i for some n ∈ N,

βi ∈ C, zi ∈ D and x∗i ∈ X∗ for i = 1, . . . , n. Its action is given as γ( f ) = ∑
n
i=1 βix

∗
i ( f ′ (zi)) for

all f ∈ B̂(D, X),.

We will also require some results from the paper [9] regarding the Bloch-free Banach space

over D.

For each z ∈ D, a Bloch atom of D is the function γz : B̂ (D) → C defined by γz( f ) = f ′(z)

for all f ∈ B̂ (D). It is worth noting that γz ∈ B̂ (D)∗ with ‖γz‖ = 1/
(
1 − |z|2

)
. The elements

of the linear space lin
(
{γz : z ∈ D}

)
⊆ B̂ (D)∗ are termed Bloch molecules of D. The Bloch-

free Banach space over D is defined as G (D) := lin
(
{γz : z ∈ D}

)
⊆ B̂ (D)∗.

The property outlined in [9], summarizes following several important properties of G (D):

1) the mapping Γ : D → G (D), defined by Γ(z) = γz for all z ∈ D, is holomorphic;

2) the space B̂(D) is isometrically isomorphic to G(D)∗ under the map Λ : B̂(D) → G(D)∗

defined as Λ( f )(γ) = ∑
n
k=1 λk f ′ (zk) for f ∈ B̂ (D), where γ = ∑

n
k=1 λkγzk

∈ lin
(
Γ(D)

)
;

3) for each function h ∈ B̂ (D, D), there exists a unique operator ĥ ∈ L
(
G(D),G(D)

)
such

that ĥ ◦ Γ = h′ · (Γ ◦ h), furthermore, ‖ĥ‖ ≤ 1;

4) for each z ∈ D, the function fz : D → C defined by

fz(w) =

(
1 − |z|2

)
w

1 − zw
, w ∈ D,

belongs to B̂(D) with ρB ( fz) = 1 =
(
1 − |z|2

)
f ′z(z).
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3 Definition and Banach structure

From now on, unless otherwise stated, X and Y will denote Banach complex spaces and

we will suppose that 1 ≤ p, q < ∞ and 0 ≤ θ, η < 1 satisfy (1 − θ) /p + (1 − η) /q = 1.

Following [7, Theorem 4], a map T ∈ L(X, Y) is said to be (p, θ, q, η)-nuclear if there exist

Banach spaces G, H, maps S ∈ Πp(X, G), R ∈ Πq (Y∗, H) and a constant C > 0 such that

∣∣y∗
(
T(x)

)∣∣ ≤ C ‖x‖θ ∥∥S(x)
∥∥1−θ

‖y∗‖η ∥∥R (y∗)
∥∥1−η

(1)

for all x ∈ X and y∗ ∈ Y∗. In such case, we put

‖T‖N(p,θ,q,η)
= inf

{
Cπp(S)

1−θπq(R)1−η
}

,

taking the infimum over all S ∈ Πp(X, G), R ∈ Πq (Y∗, H) and C > 0 such that (1) holds. We

denote by
[
N(p,θ,q,η); ‖ · ‖N(p,θ,q,η)

]
the Banach ideal of (p, θ, q, η)-nuclear maps.

Now, we introduce the Bloch analogue of the notion of (p, θ, q, η)-nuclear operators.

Definition 1. A map f ∈ H (D, X) is said to be (p, θ, q, η)-nuclear Bloch if there exist complex

Banach spaces G and H, a Bloch map g ∈ ΠB
p (D, G), a map T ∈ Πq (X∗, H) and a positive

constant C such that

∣∣x∗
(

f ′(z)
)∣∣ ≤ C

(
1

1 − |z|2

)θ ∥∥g′(z)
∥∥1−θ

‖x∗‖η ‖T (x∗)‖1−η (2)

for all z ∈ D and x∗ ∈ X∗. The linear space of all (p, θ, q, η)-nuclear Bloch maps from

D to X is denoted by N B
(p,θ,q,η) (D, X), and its subspace consisting of all those mappings f

so that f (0) = 0 by N B̂
(p,θ,q,η) (D, X). We denote by ‖ f‖N B

(p,θ,q,η)
the infimum of all values

CπB
p (g)1−θ πq(T)1−η , where the infimum is taken over all Bloch maps g, maps T, and constants

C admitted in inequality above.

Our next result is a reformulation for (p, θ, q, η)-nuclear Bloch maps of Pietsch domination

theorem for (p, θ, q, η)-nuclear maps. This is a particular case of the general characterization

of (p, θ, q, η)-dominated maps [14, Theorem 2.4].

Let us remind that B̂ (D) represents a dual Banach space. Therefore, P
(
BB̂(D)

)
and

P
(

BX∗∗
)

denote the sets of all Borel regular probability measures µ on BB̂(D)
and ν on BX∗∗ , re-

spectively, equipped with the weak-∗ topology. Given µ ∈ P
(
BB̂(D)

)
, ν ∈ P

(
BX∗∗

)
, p ∈ [1, ∞)

and σ ∈ [0, 1), let us consider the following inclusion operators

I∞,p/(1−σ) : L∞(µ) → Lp/(1−σ)(µ), j∞,D : C
(

BB̂(D)

)
→ L∞(µ)

and

j∞,X : C (BX∗∗) → L∞(ν).

We also define the map ιD : D → C
(
BB̂(D)

)
by

ιD(z)(g) = g′(z)

for g ∈ BB̂(D) and z ∈ D, and the isometric linear embedding ιX : X → ℓ∞ (BX∗) given by

ιX (x) (x∗) = x∗(x)

for x∗ ∈ BX∗ and x ∈ X.
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Theorem 1 (Pietsch domination). Given f ∈ B̂ (D, X), the following assertions are equivalent:

1) f ∈ N B̂
(p,θ,q,η) (D, X);

2) there is a constant C > 0 and measures µ ∈ P
(
BB̂(D)

)
and ν ∈ P

(
BX∗∗

)
such that the

following inequality

∣∣x∗
(

f ′(z)
)∣∣ ≤ C

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

( ∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

dν

) 1−η
q

holds for every z ∈ D and x∗ ∈ X∗;

3) there exists a constant C > 0 such that for all n ∈ N and any sequences (zi)
n
i=1 in D,

(βi)
n
i=1 in C and

(
x∗i
)n

i=1
in X∗ we have

n

∑
i=1

|βi|
∣∣x∗i
(

f ′ (zi)
)∣∣ ≤ C sup

h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

.

Moreover, the infimum of the constants C > 0 in 2) and 3) is ‖ f‖N B
(p,θ,q,η)

.

Proof. 1) ⇒ 2) If f ∈ N B̂
(p,θ,q,η) (D, X), then there exist a constant C1 > 0, complex Banach

spaces G and H, a Bloch map g ∈ ΠB̂
p (D, G) and a map T ∈ Πq (X∗, H) such that

∣∣x∗
(

f ′(z)
)∣∣ ≤ C1

(
1

1 − |z|2

)θ ∥∥g′(z)
∥∥1−θ

‖x∗‖η ‖T (x∗)‖1−η

for all z ∈ D and x∗ ∈ X∗. Applying [5, Theorem 1.4] to g and [8, Theorem 2.12] to T, we obtain

measures µ on BB̂(D)
and ν on BX∗∗ such that

∥∥g′(z)
∥∥ ≤ πB

p (g)

( ∫

BB̂(D)

∣∣h′(z)
∣∣p dµ

) 1
p

,
∥∥T
(

x∗
)∥∥ ≤ πq(T)

( ∫

BX∗∗

|x∗∗ (x∗)|q dν

) 1
q

for all (z, x∗) ∈ D × X∗. Taking C = C1πB
p (g)1−θπq(T)1−η , we get

∣∣x∗
(

f ′(z)
)∣∣ ≤ C

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

( ∫

BX∗∗

(
|x∗∗ (x∗)|1−η ‖x∗‖η

) q
1−η

dν

) 1−η
q
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for all z ∈ D and x∗ ∈ X∗.

Moreover ‖ f‖
N B̂

(p,θ,q,η)

≤ C and so inf
{

C > 0 satisfying 2)
}
≤ ‖ f‖

N B̂
(p,θ,q,η)

.

2) ⇒ 3) Consider the sequences (zi)
n
i=1 in D, (βi)

n
i=1 in C and

(
x∗i
)n

i=1 in X∗. Hölder’s

inequality gives

n

∑
i=1

|βi|
∣∣x∗
(

f ′(zi)
)∣∣ ≤ C

(
n

∑
i=1

∫

BB̂(D)

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

(
n

∑
i=1

∫

BX∗∗

(
|x∗∗(x∗i )|

1−η ‖x∗i ‖
η
) q

1−η
dν

) 1−η
q

≤ C

(
n

∑
i=1

∫

BB̂(D)

sup
h∈BB̂(D)

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

(
n

∑
i=1

∫

BX∗∗

sup
x∗∗∈BX∗∗

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) q

1−η
dν

) 1−η
q

≤ C sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗(x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

,

and this proves 3).

3) ⇒ 2) Define the functions R1 : BB̂(D) × D × R → [0, ∞), R2 : BX∗∗ × D × X∗ → [0, ∞),

S : B̂(D, X)× D × R × X∗ → [0, ∞) by

R1(h, z, β) = |β|
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

, R2 (x∗∗, z, x∗) = |x∗∗ (x∗)|1−η ‖x∗‖η ,

S ( f , z, β, x∗) = |β|
∣∣x∗
(

f ′(z)
)∣∣ ,

respectively.

We will apply a general Pietsch domination theorem (see [13, Theorem 4.6]), notice that R1,

R2 and S satisfy the conditions of [13, Definition 4.4], namely

(C1) for each z ∈ D, β ∈ R and x∗ ∈ X∗, the mappings (R1)z,β : BB̂(D) → [0, ∞) and

(R2)z,x∗ : BX∗∗ → [0, ∞), defined by

(R1)z,β (h) = R1(h, z, β), (R2)z,x∗ (x∗∗) = R2 (x∗∗, z, x∗)

are continuous;

(C2) the equalities

R1 (h, z, β1β) = β1R1(h, z, β), R2 (x∗∗, z, β2x∗) = β2R2 (x∗∗, z, x∗)

S ( f , z, β1β, β2x∗) = β1β2S ( f , z, β, x∗)

hold for all h ∈ BB̂(D)
, x∗∗ ∈ BX∗∗ , z ∈ D, β ∈ R, x∗ ∈ X∗ and β1, β2 ∈ [0, 1].
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We now prove that the map f is R1-, R2-, S-abstract (p/(1 − θ), q/(1 − η))-summing.

Indeed, let n ∈ N, β1, . . . , βn ∈ C, z1, . . . , zn ∈ D and x∗1 , . . . , x∗n ∈ X∗. By 3), we have a

constant C > 0 such that

n

∑
i=1

∣∣βi

∣∣∣∣x∗i
(

f ′(zi)
)∣∣ ≤ C sup

h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(∣∣x∗∗ (x∗i )
∣∣1−η

‖x∗i ‖
η
) q

1−η

) 1−η
q

,

and so we find

n

∑
i=1

S ( f , zi, βi, x∗i ) =
n

∑
i=1

∣∣βi

∣∣∣∣x∗i
(

f ′ (zi)
) ∣∣

≤ C sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(∣∣x∗∗(x∗i )
∣∣1−η

‖x∗i ‖
η
) q

1−η

) 1−η
q

= C sup
h∈BB̂(D)

(
n

∑
i=1

R1 (h, zi, βi)
p

1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

R2 (x∗∗, zi, x∗i )
q

1−η

) 1−η
q

.

By [13, Theorem 4.6], there are measures µ ∈ P
(
BB̂(D)

)
and ν ∈ P

(
BX∗∗

)
such that for all

(z, β, x∗) ∈ D × R × X∗ we get

S ( f , z, β, x∗) ≤ C

( ∫

BB̂(D)

R1 (x∗∗, z, β)
p

1−θ dµ

) 1−θ
p
( ∫

BX∗∗

R2 (x∗∗, z, x∗)
p∗

1−σ dν

) 1−σ
p∗

.

It follows that

∣∣x∗
(

f ′(z)
) ∣∣ ≤ C

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′ (z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η

‖x∗‖η
) q

1−η
dν

) 1−η
q

.

2) ⇒ 1) By [5, Lemma 1.5], there exists a map k ∈ B̂ (D, L∞ (µ)) with ρB (k) = 1 such that

k′ = j∞ ◦ ιD. So, k ∈ ΠB̂
p (D, L∞ (µ)) with πB

p (k) = 1 and by [8, 2.4 and 2.9], we can take the

map T = I∞,q ◦ j∞,X ◦ ιX, so T ∈ Πq

(
X∗, Lq (ν)

)
with πq (T) ≤ 1. Since 2) holds, for every

z ∈ D and x∗ ∈ X∗ we can write
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∣∣x∗
(

f ′(z)
) ∣∣ ≤ C

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

( ∫

BX∗∗

(
|x∗∗ (x∗)|1−η ‖x∗‖η

) q
1−η

dν

) 1−η
q

= C
1

(1 − |z|2)θ

( ∫

BB̂(D)

∣∣∣
(

I∞,p ◦ j∞,D ◦ ιD
)
(z) (h)

∣∣∣
p
dµ

) 1−θ
p

× ‖x∗‖η

( ∫

BX∗∗

∣∣∣
(

I∞,q ◦ j∞,X ◦ ιX

)
(x∗) (x∗∗)

∣∣∣
q
dν

) 1−η
q

= C
1

(1 − |z|2)θ

( ∫

BB̂(D)

∣∣∣
(

I∞,p ◦ k
)′
(z) (h)

∣∣∣
p
dµ

) 1−θ
p

× ‖x∗‖η

( ∫

BX∗∗

|T(x∗) (x∗∗)|q dν

) 1−η
q

= C
1

(1 − |z|2)θ

∥∥g′(z)
∥∥1−θ

Lp(µ)
‖x∗‖η ‖T(x∗)‖

1−η

Lq(ν)
,

where g = I∞,p ◦ k ∈ ΠB̂
p

(
D, Lp(µ)

)
, we conclude that f ∈ N B̂

(p,θ,q,η)(D, X).

First, we establish the fact that the introduced functions are indeed Bloch functions. For two

semi-normed spaces (X; ρX) and (Y; ρY) the inequality (X; ρX) ≤ (Y; ρY) means that X ⊆ Y

and ρY(x) ≤ ρX(x) for all x ∈ X.

Proposition 1. We encounter the following inequalities:

1)
(
N B

(p,θ,q,η)(D, X); ‖·‖N B
(p,θ,q,η)

)
≤
(

ΠB
p,θ(D, X); πB

p,θ

)
≤
(
B(D, X); ρB

)
,

2)
(
N B

(p,θ,q,η)
(D, X); ‖·‖N B

(p,θ,q,η)

)
≤
(
DB

q∗,η(D, X); dBq∗ ,η

)
≤
(
B(D, X); ρB

)
.

Proof. 1) Let f ∈ N B̂
(p,θ,q,η)(D, X), Theorem 1 provides us with

∥∥ f ′(z)
∥∥ = sup

x∗∈BX∗

∣∣x∗
(

f ′(z)
) ∣∣ ≤ ‖ f‖N B

(p,θ,q,η)

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

× sup
x∗∈BX∗

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η

‖x∗‖η
) q

1−η
dν

) 1−η
q

≤ ‖ f‖N B
(p,θ,q,η)

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

× sup
x∗∈BX∗

sup
x∗∗∈BX∗∗

∣∣x∗∗(x∗)
∣∣1−η

‖x∗‖η

≤ ‖ f‖N B
(p,θ,q,η)

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p
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for all z ∈ D and x∗ ∈ X∗. Thus, according to Pietsch’s domination theorem for

(p, θ)-absolutely continuous Bloch maps [4, Theorem 2.1.], we have f ∈ ΠB
p,θ(D, X) and

πB
p,θ ( f ) ≤ ‖ f‖N B

(p,θ,q,η)
. For the second inequality, we employ [4, Proposition 1.1], thus

f ∈ B(D, X) and ρB ( f ) ≤ πB
p,θ ( f ).

2) If f ∈ N B
(p,θ,q,η)

(D, X), according to Theorem 1, we have

∣∣x∗
(

f ′(z)
) ∣∣ ≤ ‖ f‖N B

(p,θ,q,η)

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

×

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η∥∥x∗

∥∥η
) q

1−η
dν

) 1−η
q

≤ ‖ f‖N B
(p,θ,q,η)

1

(1 − |z|2)θ

(
sup

h∈BB̂(D)

∣∣h′(z)
∣∣
)1−θ

×

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η∥∥x∗

∥∥η
) q

1−η
dν

) 1−η
q

≤ ‖ f‖N B
(p,θ,q,η)

1

(1 − |z|2)θ

1

(1 − |z|2)1−θ

×

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η∥∥x∗

∥∥η
) q

1−η
dν

) 1−η
q

≤ ‖ f‖N B
(p,θ,q,η)

1

1 − |z|2

( ∫

BX∗∗

(∣∣x∗∗(x∗)
∣∣1−η∥∥x∗

∥∥η
) q

1−η
dν

) 1−η
q

for all z ∈ D and x∗ ∈ X∗. Therefore, according to Pietsch’s domination theorem of maps

DB
q∗,η [3, Theorem 2.2], we conclude that f ∈ DB

q∗,η (D, X) and dBq∗,η ( f ) ≤ ‖ f‖N B
(p,θ,q,η)

. The

second inequality follows from [3, Proposition 2.1].

In the next proposition, we will be able to prove that the linear space of all (p, θ, q, η)-nuc-

lear Bloch maps, along with its norm, forms a Banach space.

Proposition 2. The pair
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
constitutes a Banach space.

Proof. If f ∈ N B
(p,θ,q,η)

(D, X) and ‖ f‖N B
(p,θ,q,η)

= 0, then ρB ( f ) = 0. Therefore, according to

Proposition 1, we get f = 0. Let us establish the triangle inequality. Let fi ∈ N B̂
(p,θ,q,η) (D, X)

for i = 1, 2. For each ε > 0 there exist complex Banach spaces Gi and Hi, Bloch maps

gi ∈ ΠB̂
p (D, Gi), bounded maps Ti ∈ Πq (X∗, Hi) and positive constants Ci such that

∣∣x∗
(

f ′i (z)
) ∣∣ ≤ Ci

1

(1 − |z|2)θ

∥∥g′i(z)
∥∥1−θ

‖x∗‖η ‖Ti (x∗)‖1−η

and

Ciπ
B
p (gi)

1−θ πq (Ti)
1−η ≤ ‖ fi‖N B

(p,θ,q,η)
+ ε. (3)
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Given (z, x∗) ∈ D × X∗, we have

∣∣x∗
(

f ′i (z)
) ∣∣ ≤ Mi

1

(1 − |z|2)θ

∥∥S′
i(z)

∥∥1−θ
‖x∗‖η ‖Ri (x∗)‖1−η ,

where

Mi = Ciπ
B
p (gi)

1−θπq(Ti)
1−η, Si = C

1
p

i πB
p (gi)

1−θ
p πq(Ti)

1−η
p

gi

πB
p (gi)

,

Ri = C
1
q

i πB
p (gi)

1−θ
q πq(Ti)

1−η
q

Ti

πq(Ti)
.

Therefore, we find Si ∈ ΠB̂
p (D, Gi) and Ri ∈ Πq (X∗, Hi) for i = 1, 2. From (3) we have

Mi ≤ ‖ fi‖N B
(p,θ,q,η)

+ ε, πB
p (gi) ≤

(
‖ fi‖N B

(p,θ,q,η)
+ ε
)1/p

, πq(Ti) ≤
(
‖ fi‖N B

(p,θ,q,η)
+ ε
)1/q

.

Let G be a complex Banach space obtained as a direct ℓp-sum of G1 and G2 and let H be a

complex Banach space obtained as a direct ℓq-sum of H1 and H2. Let g be a Bloch map from

D into G defined as g(z) =
(

gi(z)
)2

i=1
for z ∈ D and T be a bounded map from X∗ into H

given by T (x∗) = (Ti (x∗))2
i=1 for x∗ ∈ X∗. For every m ∈ N and any sequence

(
zj

)m

j=1
in D

we establish

∥∥(g(zj)
)m

j=1

∥∥
ℓp(G)

=

( m

∑
j=1

∥∥g(zj)
∥∥p
)1/p

≤

( m

∑
j=1

2

∑
i=1

∥∥gi(zj)
∥∥p
)1/p

≤

( 2

∑
i=1

πB
p (gi)

p sup
h∈BB̂(D)

m

∑
j=1

∣∣h′
(
zj

)∣∣p
)1/p

≤

( 2

∑
i=1

πB
p (gi)

p
)1/p

sup
h∈BB̂(D)

( m

∑
j=1

∣∣h′
(
zj

)∣∣p
)1/p

.

Consequently, the map g is Bloch p-summing with norm

πB
p (g) ≤

( 2

∑
i=1

πB
p (gi)

p
)1/p

≤
(
‖ f1‖N B

(p,θ,q,η)
+ ‖ f2‖N B

(p,θ,q,η)
+ 2ε

)1/p
.

On the other hand, for every sequence
(
x∗j
)m

j=1
in X∗ we also have

∥∥(T
(

x∗j
))m

j=1

∥∥
ℓq(H)

=

( m

∑
j=1

∥∥T(x∗j )
∥∥q
)1/q

≤

( m

∑
j=1

2

∑
i=1

∥∥Ti(x∗j )
∥∥q
)1/q

≤

( 2

∑
i=1

πq (Ti)
q sup

x∗∗∈BX∗∗

m

∑
j=1

∣∣x∗∗(x∗j )
∣∣q
)1/q

≤

( 2

∑
i=1

πq (Ti)
q
)1/q

sup
x∗∗∈BX∗∗

( m

∑
j=1

∣∣x∗∗(x∗j )
∣∣q
)1/q

.

So, we can observe that the map T is q-summing with norm

πq(T) ≤

( 2

∑
i=1

πq (Ti)
q
)1/q

≤
(
‖ f1‖N B

(p,θ,q,η)
+ ‖ f2‖N B

(p,θ,q,η)
+ 2ε

)1/q
.
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Finally, since

∣∣x∗
(
( f ′1 + f ′2)(z)

)∣∣ ≤
2

∑
i=1

Ci
1

(1 − |z|2)θ

∥∥g′i(z)
∥∥1−θ

‖x∗‖η ‖Ti (x∗)‖1−η

≤
1

(1 − |z|2)θ
‖x∗‖η

( 2

∑
i=1

Ci

)( 2

∑
i=1

∥∥g′i(z)
∥∥p
)(1−θ)/p( 2

∑
i=1

∥∥Ti(x∗)
∥∥q
)(1−η)/q

≤

( 2

∑
i=1

Ci

)
1

(1 − |z|2)θ
‖x∗‖η ∥∥g′(z)

∥∥1−θ
‖T (x∗)‖1−η

and

‖ f1 + f2‖N B
(p,θ,q,η)

≤

( 2

∑
i=1

Ci

)
πB

p (g)1−θπq(T)
1−η

≤
(
‖ f1‖N B

(p,θ,q,η)
+ ‖ f2‖N B

(p,θ,q,η)
+ 2ε

)(1−θ)/p+(1−η)/q
,

we deduce that f1 + f2 ∈ N B̂
(p,θ,q,η)

(D, X) and ‖ f1 + f2‖N B
(p,θ,q,η)

≤ ‖ f1‖N B
(p,θ,q,η)

+ ‖ f2‖N B
(p,θ,q,η)

.

Let λ ∈ C and f ∈ N B̂
(p,θ,q,η) (D, X), then there exist a constant C > 0, complex Banach

spaces G and H, a Bloch map g ∈ ΠB̂
p (D, G) and a map T ∈ Πq (X∗, H) such that

∣∣x∗( f ′(z))
∣∣ ≤ C

1

(1 − |z|2)θ

∥∥g′(z)
∥∥1−θ

‖x∗‖η ‖T (x∗)‖1−η

for all (z, x∗) ∈ D × X∗. Hence,

∣∣x∗
(
(λ f )′(z)

)∣∣ ≤ C |λ|
1

(1 − |z|2)θ

∥∥g′(z)
∥∥1−θ

‖x∗‖η ‖T (x∗)‖1−η

= C
1

(1 − |z|2)θ

∥∥(λ1/(1−θ)g
)′
(z)
∥∥1−θ

‖x∗‖η ‖T (x∗)‖1−η .

We find that λ1/(1−θ)g ∈ ΠB̂
p (D, G), it follows that λ f ∈ N B̂

(p,θ,q,η) (D, X) with

‖λ f‖N B
(p,θ,q,η)

≤ CπB
p

(
λ1/(1−θ)g

)1−θ
πq(T)

1−η = |λ| CπB
p (g)1−θπq(T)

1−η .

If λ = 0, then we obtain ‖λ f‖N B
(p,θ,q,η)

= 0 = |λ| ‖ f‖N B
(p,θ,q,η)

. For λ 6= 0, we find that

‖λ f‖N B
(p,θ,q,η)

≤ |λ| ‖ f‖N B
(p,θ,q,η)

. Therefore, ‖ f‖N B
(p,θ,q,η)

≤ (1/ |λ|) ‖λ f‖N B
(p,θ,q,η)

. This implies that

|λ| ‖ f‖N B
(p,θ,q,η)

≤ ‖λ f‖N B
(p,θ,q,η)

, and thus ‖λ f‖N B
(p,θ,q,η)

= |λ| ‖ f‖N B
(p,θ,q,η)

. Consequently, we de-

duce that
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
is a complex normed space.

Let us show the completeness of N B̂
(p,θ,q,η) (D, X). Consider an arbitrary Cauchy sequence

( fn)n∈N
in N B̂

(p,θ,q,η) (D, X). We will prove the convergence of ( fn)n∈N
to f ∈ N B̂

(p,θ,q,η) (D, X).

For every ε > 0 there exists an n0 such that for all m, n ≥ n0 the sequence ( fn)n∈N
being

Cauchy implies ‖ fm − fn‖N
(p,θ,q,η)B

≤ ε. According to Proposition 1, we have the inequality

ρB ( fm − fn) ≤ ‖ fm − fn‖N B
(p,θ,q,η)

. Therefore, ( fn)n∈N
is a Cauchy sequence in the Banach space
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B̂ (D, X). So, there is a Bloch map f with lim
n→0

ρB ( f − fn) = 0. Theorem 1 implies that there

exist regular Borel probability measures µnm on BB̂(D)
and νnm on BX∗∗ such that for any z in

D and x∗ in X∗ we have

∣∣x∗
(
( fm − fn)

′(z)
)∣∣ ≤ ε

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµnm

) 1−θ
p

×

( ∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

dνnm

) 1−η
q

.

On P
(
BB̂(D)

)
× P

(
BX∗∗

)
we define a subnet A, and its values form a subsequence

of the measures in P
(

BB̂(D)

)
× P

(
BX∗∗

)
. For a fixed n ≥ n0, the weak compactness of

P
(

BB̂(D)

)
and P

(
BX∗∗

)
implies that there is a subnet

(
µnm (α) , νnm (α)

)
α∈A

converging to

(µn, νn) ∈ P
(

BB̂(D)

)
×P

(
BX∗∗

)
equipped with the weak-∗ topology. Thus, there exists α0 ∈ A

such that for any z ∈ D and x∗ ∈ X∗ and for any α ∈ A with α ≥ α0, we have

∣∣x∗
(
( fm(α) − fn)

′(z)
)∣∣ ≤ ε

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

d
(
µnm(α) − µn

)

+
∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµn

) 1−θ
p

×

( ∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

d
(
νnm − νn

)
+
∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

dνn

) 1−η
q

,

and by taking limits as α ∈ A, we obtain

∣∣x∗
(
( f − fn)

′(z)
)∣∣ ≤ ε

( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµn

) 1−θ
p

×

(∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

dνn

) 1−η
q

for all z ∈ D and x∗ ∈ X∗. It follows that f − fn ∈ N B̂
(p,θ,q,η) (D, X), and therefore that

f ∈ N B̂
(p,θ,q,η) (D, X). If n ≥ n0, then from the last inequality it follows ‖ fm − fn‖N B

(p,θ,q,η)
≤ ε,

hence
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
is a Banach space.

4 Properties and Möbius invariance

In the domain of complex analysis, the concept of Bloch compactness stands as a significant

result illuminating the behavior of holomorphic functions on the unit disk D. This theorem

states that, under specific conditions, holomorphic mappings belonging to certain Bloch-type

spaces exhibit a remarkable property: compactness.

Let us recall that the Bloch range of a function f ∈ H(D, X), denoted by rangB( f ), is the set
{(

1 − |z|2
)

f ′(z) ∈ X : z ∈ D
}

.

A map f ∈ H(D, X) is called (weakly) compact Bloch if rangB( f ) is a (weakly) compact set

in X, respectively.
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Corollary 1 (Bloch compactness). If X is a reflexive complex Banach space, then every function

f ∈ N B̂
(p,θ,q,η)(D, X) is a compact Bloch map.

Proof. Let f ∈ N B̂
(p,θ,q,η)(D, X). Then, by Proposition 1, f ∈ ΠB̂

p,θ(D, X). Consequently, f is a

compact Bloch map according to [4, Proposition 4.2].

The next result states Kwapień’s factorization theorem for the space N B̂
(p,θ,q,η)

.

Theorem 2 (Kwapień’s factorization). A map f ∈ B̂(D, X) belongs to N B̂
(p,θ,q,η)

(D, X) if and

only if there exist a Banach space Z, a closed subspace Y ⊆ Z, a map h ∈ ΠB̂
p,θ(D, Z) with

h′ (D) ⊆ Y and a map T ∈ Dq∗,η (Y, X) such that f ′ = T ◦ h′.

Proof. Necessity. Let f ∈ N B̂
(p,θ,q,η)

(D, X). According to Pietsch’s factorization theorem

(see [4, Theorem 3.1]), there exists a map h ∈ B̂
(
D, Lp/(1−θ)(µ)

)
such that h = I∞,p/(1−θ) ◦ k′,

where k′ = j∞ ◦ ιD with k ∈ B̂(D, ℓ∞) and ρB (k) = 1. By [5, Lemma 1.5], we have that

k ∈ ΠB̂
p,θ(D, ℓ∞) and ρB (k) = 1. Moreover, h ∈ ΠB̂

p,θ

(
D, Lp/(1−θ)(µ)

)
and πB

p,θ (h) ≤ 1.

Consider the linear subspace Y = lin (h′ (D)) ⊆ Lp/(1−θ) (µ) and the map T ∈ L(Y, X)

defined by T (h′(z)) = f ′(z) for all z ∈ D. By Theorem 1, we have
∥∥T∗(x∗)

∥∥ = sup
{∣∣T∗(x∗)(h′(z))

∣∣ : z ∈ D, ‖h′(z)‖ ≤ 1
}

= sup
{∣∣x∗

(
T
(
h′ (z)

))∣∣ : z ∈ D, ‖h′(z)‖ ≤ 1
}

= sup
{∣∣x∗

(
f ′ (z)

)∣∣ : z ∈ D, ‖h′(z)‖ ≤ 1
}

,

where the Pietsch domination theorem (see [4, Theorem 2.1]) gives us

∥∥h′(z)
∥∥ ≤ πB

p,θ(h)

(( ∫

BB̂(D)

(
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p
1−θ

dµ

) 1−θ
p

)
.

So we find
∥∥T∗(x∗)

∥∥ ≤ C

( ∫

BX∗∗

(
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

dν

) 1−η
q

for all x∗ ∈ X∗. Thus T∗ ∈ Πq,η (X∗, Y∗). According to [1, Remark 3.3], T ∈ Dq∗,η(Y, X) with

dq∗,η (T) ≤ C, thus πB
p,θ (h) dq∗,η (T) ≤ C.

Sufficiency. Let us assume that there is a Banach space Z, a closed subspace Y ⊆ Z, a map

h ∈ ΠB̂
p,θ(D, Z) with h′ (D) ⊆ Y and a map T ∈ Dq∗,η (Y, X) such that f ′ = T ◦ h′. We find

f ∈ N B̂
(p,θ,q,η)

(D, X) by employing the domination theorem for h and the domination theorem

for T∗, where T∗ is a (q, η)-summing map and C = inf
{

πB
p,θ(h)dq∗ ,η(T) : f ′ = T ◦ h′

}
.

The concept of a Banach normalized Bloch ideal on D was initially presented in [9, Defini-

tion 5.11]. Now, we show that
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
exhibits the same property. Let us

recall that for any complex Banach space X the inequality

sup
x∗∈BX∗

( ∞

∑
i=1

|x∗ (xi)|
p

1−θ

) 1−θ
p

≤ sup
x∗∈BX∗

( n

∑
i=1

(
|x∗(xi)|

1−θ ‖xi‖
θ ) p

1−θ

) 1−θ
p

≤

( n

∑
i=1

‖xi‖
p

1−θ

) 1−θ
p

(4)

holds for every 1 ≤ p < ∞, 0 ≤ θ < 1, (xi)
n
i=1 in X such that

( n

∑
i=1

‖xi‖
p

1−θ

) 1−θ
p

< ∞.
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Proposition 3. The space
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
forms a Banach normalized Bloch

ideal.

Proof. The space
(
N B̂

(p,θ,q,η) (D, X) ; ‖·‖N B
(p,θ,q,η)

)
is Banach space according to Proposition 2,

where ρB ( f ) ≤ ‖ f‖N B
(p,θ,q,η)

holds for all f ∈ N B̂
(p,θ,q,η) (D, X).

According to [9, Proposition 5.3], if g ∈ B̂ (D) and x ∈ X, then ρB (g · x) = ρB (g) ‖x‖.

Assume g 6= 0 and x 6= 0. By (4) and Hölder’s inequality, for all (βi)
n
i=1 in C, (zi)

n
i=1 in D and(

x∗i
)n

i=1
in X∗, the following inequalities

n

∑
i=1

∣∣βi

∣∣∣∣x∗i (g · x)′(zi)
∣∣ = ρB(g)‖x‖

n

∑
i=1

|βi|

∣∣∣∣∣

(
g

ρB (g)

)′

(zi)x∗i

(
x

‖x‖

)∣∣∣∣∣

= ρB(g)‖x‖
n

∑
i=1

|βi|

∣∣∣∣∣

(
g

ρB (g)

)′

(zi)JX

(
x

‖x‖

)
(x∗i )

∣∣∣∣∣

≤ ρB (g) ‖x‖

( n

∑
i=1

∣∣∣∣βi

(
g

ρB (g)

)′

(zi)

∣∣∣∣

p

1−θ
) 1−θ

p

×

( n

∑
i=1

∥∥∥∥JX

(
x

‖x‖

)
(x∗i )

∥∥∥∥

q
1−η
) 1−η

q

≤ ρB(g)‖x‖ sup
h∈BB̂ (D)

( n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p
1−θ
) 1−θ

p

× sup
x∗∗∈BX∗∗

( n

∑
i=1

‖x∗∗(x∗i )‖
q

1−η

) 1−η
q

≤ ρB(g)‖x‖ sup
h∈BB̂ (D)

( n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p

1−θ
) 1−θ

p

× sup
x∗∗∈BX∗∗

( n

∑
i=1

(
|x∗∗(x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

hold, where JX represents the canonical injection of X into X∗∗. As per Theorem 1, we ascertain

that g · x ∈ N B̂
(p,θ,q,η) (D, X) with ‖g · x‖N B

(p,θ,q,η)
≤ ρB (g) ‖x‖ . Since

ρB (g) ‖x‖ = ρB (g · x) ≤ ‖g · x‖N B
(p,θ,q,η)

,

it follows that ‖g · x‖N B
(p,θ,q,η)

= ρB (g) ‖x‖.

Consider f ∈ N B̂
(p,θ,q,η) (D, X), T ∈ L (X, Y). Let g : D → D be a holomorphic map with

g(0) = 0. It is immediate that

(T ◦ f ◦ g)′ = T ◦ ( f ◦ g)′ = T ◦ g′ ·
(

f ′ ◦ g
)

.
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For all (βi)
n
i=1 in C, (zi)

n
i=1 in D and

(
y∗i
)n

i=1
in Y∗, the following inequalities

n

∑
i=1

∣∣βi

∣∣∣∣y∗i
((

T ◦ f ◦ g
)′
(zi)

)∣∣ =
n

∑
i=1

∣∣βi

∣∣∣∣y∗i
[
g′(zi)T

(
f ′(g(zi))

)] ∣∣

≤ ‖T‖

( n

∑
i=1

(
|βi|

∥∥ f ′ (g(zi))
∥∥ ∣∣g′(zi)

∣∣ ) p
1−θ

) 1−θ
p

sup
y∗∗∈BY∗∗

( ∞

∑
i=1

|y∗∗ (y∗i )|
q

1−η

) 1−η
q

≤ ‖T‖ ‖ f‖N B
(p,θ,q,η)

sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |g(zi)|2)θ

∣∣g′ (zi)
∣∣ ∣∣h′ (g(zi))

∣∣1−θ
) p

1−θ

) 1−θ
p

× sup
y∗∗∈BY∗∗

(
n

∑
i=1

(
|y∗∗ (y∗i )|

1−η ‖y∗i ‖
η
) q

1−η

) 1−η
q

≤ ‖T‖ ‖ f‖N B
(p,θ,q,η)

sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

(
g′(zi)

1 − |g(zi)|
2

)θ ∣∣g′(zi)h
′ (g(zi))

∣∣1−θ
) p

1−θ

) 1−θ
p

× sup
y∗∗∈BY∗∗

(
n

∑
i=1

(
|y∗∗(y∗i )|

1−η ‖y∗i ‖
η
) q

1−η

) 1−η
q

hold, derived from (4) and Hölder’s inequality.

The Pick-Schwarz Lemma states that
|g′ (z)|

1 − |g (z)|2
≤

1

1 − |z|2
for all z in D. So, we get

n

∑
i=1

∣∣βi

∣∣∣∣y∗i
((

T ◦ f ◦ g
)′
(zi)

)∣∣

≤ ‖T‖ ‖ f‖N B
(p,θ,q,η)

sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣(h ◦ g)′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
y∗∗∈BY∗∗

(
n

∑
i=1

(
|y∗∗(y∗i )|

1−η ‖y∗i ‖
η
) q

1−η

) 1−η
q

≤ ‖T‖ ‖ f‖N B
(p,θ,q,η)

sup
k∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣k′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
y∗∗∈BY∗∗

(
n

∑
i=1

(
|y∗∗(y∗i )|

1−η ‖y∗i ‖
η
) q

1−η

) 1−η
q

.

Note that ρB (h ◦ g) ≤ ρB (g). Therefore, T ◦ f ◦ g ∈ N B̂
(p,θ,q,η) (D, X) with

‖T ◦ f ◦ g‖N B
(p,θ,q,η)

≤ ‖T‖ ‖ f‖N B
(p,θ,q,η)

.

The Möbius group of D, denoted as Aut(D), comprises all biholomorphic bijections from

D onto itself.
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Recall that a linear space A(D, X) ⊆ B(D, X), equipped with a seminorm ρA, is Möbius-

invariant if:

(i) there is C > 0 such that ρB( f ) ≤ CρA( f ) for all f ∈ A(D, X),

(ii) f ◦ φ ∈ A(D, X) with ρA( f ◦ φ) = ρA( f ) for all φ ∈ Aut(D) and f ∈ A(D, X).

The invariance of (p, θ, q, η)-nuclear Bloch maps under Möbius transformations over D can

now be derived.

Proposition 4 (Möbius invariance). Space
(
N B

(p,θ,q,η)
(D, X); ‖·‖N B

(p,θ,q,η)

)
is Möbius-invariant.

Proof. Let us show the conditions of above definition.

(i) Proposition 1 yields
(
N B

(p,θ,q,η)
(D, X); ‖·‖N B

(p,θ,q,η)

)
≤
(
B(D, X); ρB

)
.

(ii) A review of the proof of Proposition 3 reveals that f ◦ φ ∈ N B
(p,θ,q,η)

(D, X) with

‖ f ◦ φ‖N B
(p,θ,q,η)

≤ ‖ f‖N B
(p,θ,q,η)

if f ∈ N B
(p,θ,q,η)

(D, X) and φ ∈ Aut(D). Moreover, from this

we also deduce that ‖ f‖N B
(p,θ,q,η)

=
∥∥( f ◦ φ) ◦ φ−1

∥∥
N B

(p,θ,q,η)
≤ ‖ f ◦ φ‖N B

(p,θ,q,η)
.

5 Crossnorms and duality

We are now ready to study the duality of the space of (p, θ, q, η)-nuclear Bloch maps from

D into a complex Banach space X.

Recall that a norm α on lin(Γ(D))⊗ X is a Bloch reasonable crossnorm if the following condi-

tions hold:

(1) α(γz ⊗ x∗) ≤ ‖γz‖ ‖x∗‖ for all z ∈ D and x∗ ∈ X∗,

(2) for every g ∈ B̂(D) and x∗∗ ∈ X∗∗, the linear functional g ⊗ x∗∗ : lin(Γ(D)) ⊗ X∗ → C

given by

(g ⊗ x∗∗)(γz ⊗ x∗) = g′(z)x∗∗ (x∗)

is bounded on lin(Γ(D)) ⊗α X∗ with ‖g ⊗ x∗∗‖ ≤ ρB(g) ‖x∗∗‖.

Definition 2. Let X be a complex Banach space. We define RB̂
(p,θ,q,η) on lin(Γ(D)) ⊗ X∗ as

follows

RB̂
(p,θ,q,η)(γ) = inf

{
sup

h∈BB̂(D)

( n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p
1−θ
) 1−θ

p

× sup
x∗∗∈BX∗∗

( n

∑
i=1

(
|x∗∗(x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

}
,

where the infimum is taken over all representations of γ in the form γ = ∑
n
i=1 βiγzi

⊗ x∗i for

all (zi)
n
i=1 in D , (βi)

n
i=1 in C and

(
x∗i
)n

i=1 in X∗.
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Theorem 3. Defined above RB̂
(p,θ,q,η)

is a Bloch reasonable crossnorm on lin(Γ(D))⊗ X∗.

Proof. Using the same techniques as those employed in [4, Theorem 5.2] and the inequality (4),

we can prove that RB̂
(p,θ,q,η)

is a norm on lin(Γ(D))⊗ X∗.

(1) Given z ∈ D and x∗ ∈ X∗, we get

RB̂
(p,θ,q,η)(γz ⊗ x∗)

≤ sup
h∈BB̂(D)

((
1

(1 − |z|2)θ

∣∣h′(z)
∣∣1−θ

) p

1−θ
) 1−θ

p

sup
x∗∗∈BX∗∗

((
|x∗∗(x∗)|1−η ‖x∗‖η

) q
1−η

) 1−η
q

≤

(
1

1 − |z|2

)θ (
1

1 − |z|2

)1−θ

‖x∗‖ =
‖x∗‖

1 − |z|2
= ‖γz‖ ‖x∗‖ .

(2) For any g ∈ B̂(D) and x∗∗ ∈ X∗∗, an application of Hahn-Banach theorem and Hölder

inequality yields

∣∣ (g ⊗ x∗∗) (γ)
∣∣ =

∣∣∣∣
n

∑
i=1

βi (g ⊗ x∗∗) (γzi
⊗ x∗i )

∣∣∣∣ =
∣∣∣∣

n

∑
i=1

βig
′ (zi) x∗∗ (x∗i )

∣∣∣∣

≤
n

∑
i=1

|βi|
∣∣g′ (zi)

∣∣ |x∗∗ (x∗i )| ≤ ρB(g) ‖x∗∗‖
n

∑
i=1

|βi|

1 − |zi|
2
‖x∗i ‖

= ρB(g) ‖x∗∗‖
n

∑
i=1

∣∣βi

∣∣ ∣∣ f ′zi
(zi)

∣∣ ∣∣x∗∗i (x∗i )
∣∣

= ρB(g) ‖x∗∗‖
n

∑
i=1

∣∣βi

∣∣ 1

(1 − |zi|2)θ

∣∣ f ′zi
(zi)

∣∣1−θ
|x∗∗i (x∗i )|

1−η ‖x∗i ‖
η

= ρB(g) ‖x∗∗‖

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣ f ′zi
(zi)

∣∣1−θ
) p

1−θ

) 1−θ
p

×

(
n

∑
i=1

(
|x∗∗i (x∗i )|

1−θ ‖x∗i ‖
θ
) q

1−η

) 1−η
q

≤ ρB(g) ‖x∗∗‖ sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

,

where for each i = 1, . . . , n we have taken a functional x∗∗i ∈ BX∗∗ such that
∣∣x∗∗i

(
x∗i
)∣∣ =

∥∥x∗i
∥∥.

Passing to the infimum over all the representations of γ, we obtain

∣∣ (g ⊗ x∗∗) (γ)
∣∣ ≤ ρB(g) ‖x∗∗‖RB̂

(p,θ,q,η)(γ).

Hence g ⊗ x∗∗ ∈
(
lin
(
Γ(D)

)
⊗

RB̂
(p,θ,q,η)

X∗
)∗

and ‖g ⊗ x∗∗‖ ≤ ρB(g) ‖x∗∗‖.

We are now ready to investigate the duality of the space of (p, θ, q, η)-nuclear Bloch maps

from D into a complex Banach space X.



(p, θ, q, η)-Nuclear Bloch maps 403

Theorem 4 (Duality). The space
(
N B̂

p,θ,q,η (D, X) ; ‖·‖N B
p,θ,q,η

)
is isometrically isomorphic to

(
lin
(
Γ(D)

)
⊗̂

RB̂
(p,θ,q,η)

X∗
)∗

.

Proof. It is easy to see that the map

Λ :
(
N B̂

p,θ,q,η (D, X) ; ‖·‖N B
p,θ,q,η

)
→
(
lin
(
Γ(D)

)
⊗̂

RB̂
(p,θ,q,η)

X∗)∗,

defined by

Λ( f )
(

γz ⊗ x∗
)
= x∗

(
f ′(z)

)
, f ∈ N B̂

p,θ,q,η (D, X) , z ∈ D, x∗ ∈ X∗,

is linear and injective. Fix f ∈ N B̂
p,θ,q,η (D, X). For γ = ∑

n
i=1 λiγzi

⊗ x∗i ∈ lin
(
Γ(D)

)
⊗ X∗, an

application of Theorem 1 gives

|Λ( f )(γ)| ≤
n

∑
i=1

∣∣βi

∣∣ ∣∣x∗i
(

f ′ (zi)
)∣∣

≤ ‖ f‖N B
p,θ,q,η

sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p

1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

.

Taking the infimun over all the representation of γ, we get

|Λ( f )(γ)| ≤ ‖ f‖N B
p,θ,q,η

RB̂
(p,θ,q,η)(γ),

and therefore ‖Λ( f )‖ ≤ ‖ f‖N B
p,θ,q,η

. In order to establish the reverse inequality and the surjec-

tivity of Λ, let φ ∈
(
lin
(
Γ(D)

)
⊗̂

RB̂
(p,θ,q,η)

X∗
)∗

. Define Fφ : D → X by

x∗
(

Fφ(z)
)
= φ (γz ⊗ x∗) , z ∈ D, x∗ ∈ X∗.

A look at the proof of [5, Proposition 2.4] shows that Fφ ∈ H
(
D, X

)
and Fφ = f ′φ for a

convenient map fφ ∈ B̂
(
D, X

)
with ρB

(
fφ

)
≤ ‖φ‖.

To prove that fφ ∈ N B̂
p,θ,q,η (D, X), let n ∈ N, βi ∈ C and zi ∈ D for i = 1, . . . , n. For each

i ∈ {1, . . . , n}, we can take a functional x∗i ∈ X∗ with ‖x∗i ‖ = 1 so that x∗i
(

f ′φ(zi)
)
=
∣∣ f ′φ(zi)

∣∣.
Obviously, the function T : C

n → C defined by

T (t1, . . . , tn) =
n

∑
i=1

tiβi

∥∥ f ′φ(zi)
∥∥, (t1, . . . , tn) ∈ C

n,

is in (Cn, ‖ · ‖∞)
∗ and ‖T‖ = ∑

n
i=1

∣∣βi

∣∣∣∣ f ′φ(zi)
∣∣.



404 Hamidou Y.S., Bougoutaia A., Belacel A.

For any (t1, . . . , tn) ∈ Cn with ‖(t1, . . . , tn)‖∞ ≤ 1, we get

|T (t1, . . . , tn)| =

∣∣∣∣φ
( n

∑
i=1

tiβiγzi
⊗ x∗i

)∣∣∣∣

≤ ‖φ‖RB̂
(p,θ,q,η)

( n

∑
i=1

βiγzi
⊗ tix

∗
i

)

≤ ‖φ‖ sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗(tix

∗
i )|

1−η ‖tix
∗
i ‖

η
) q

1−η

) 1−η
q

≤ ‖φ‖ sup
h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′(zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗(x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

,

and therefore

n

∑
i=1

∣∣βi

∣∣∣∣x∗i
(

f ′φ(zi)
)∣∣ ≤ ‖φ‖ sup

h∈BB̂(D)

(
n

∑
i=1

(
|βi|

1

(1 − |zi|2)θ

∣∣h′ (zi)
∣∣1−θ

) p
1−θ

) 1−θ
p

× sup
x∗∗∈BX∗∗

(
n

∑
i=1

(
|x∗∗ (x∗i )|

1−η ‖x∗i ‖
η
) q

1−η

) 1−η
q

.

Therefore, according to Theorem 1, it follows that fφ ∈ N B̂
p,θ,q,η

(
D, X

)
and

∥∥ fφ

∥∥
N B

p,θ,q,η
≤ ‖φ‖.

Now, for any γ = ∑
n
i=1 βiγzi

⊗ x∗i ∈ lin
(
Γ(D)

)
⊗ X∗, we have

Λ
(

fφ

)
(γ) =

n

∑
i=1

βix
∗
i

(
f ′φ(zi)

)
=

n

∑
i=1

βiφ (γzi
⊗ x∗i ) = φ

( n

∑
i=1

βiγzi
⊗ x∗i

)
= φ(γ),

and so Λ
(

fφ

)
= φ on lin(Γ

(
D)
)
⊗̂

RB̂
(p,θ,q,η)

X∗. Hence

∥∥ fφ

∥∥
N B

p,θ,q,η
≤
∥∥Λ
(

fφ

)∥∥ .
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[5] Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. p-Summing Bloch mappings on the complex unit

disc. Banach J. Math. Anal. 2024, 18 (2), article number 9. doi:10.1007/s43037-023-00318-6

[6] Cohen J.S. Absolutely p-summing, p-nuclear operators and their conjugates. Math. Ann. 1973, 201, 177–200.

[7] Dahia E., Soualmia R., Achour D. Banach space of strongly (p, q, σ)-summable sequences and applications. Rend.

Circ. Mat. Palermo (2) 2022, 71, 793–806. doi:10.1007/s12215-021-00647-1

[8] Diestel J., Jarchow H., Tonge A. Absolutely Summing Operators. In: Bertoin J. (Ed.) Cambridge Studies in

Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
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[13] Pellegrino D., Santos J., Seoane-Sepúlveda J. Some techniques on nonlinear analysis and applications. Adv. Math.

2012, 229 (2), 1235–1265. doi:10.1016/j.aim.2011.09.014
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У цiй статтi використано новi результати теорiї iдеалiв вiдображень Блоха для введення

та аналiзу властивостей (p, θ, q, η)-ядерних вiдображень Блоха з вiдкритого одиничного диска

D у комплексний банахiв простiр X, де 1 ≤ p, q < ∞ та 0 ≤ θ, η < 1 задовольняють умову

(1 − θ) /p + (1 − η) /q = 1. Основну увагу придiлено означенню цих вiдображень, встановлен-

ню їхнiх властивостей як банахових просторiв i дослiдженню фундаментальних характери-

стик, таких як домiнування Пiтча, компактнiсть Блоха та iнварiантнiсть Мебiуса. Наприкiнцi

статтi представлено вiдповiдну крос-норму Блоха та проiлюстровано iзометричний iзомор-

фiзм мiж визначеним простором i його спряженим простором.

Ключовi слова i фрази: оператор сумування, векторнозначне вiдображення Блоха, компа-

ктне вiдображення Блоха, домiнування Пiтча, факторизацiя Квапєня.


